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Abstract. We show a connection formula of the Hahn–Exton q-Bessel function around
the origin and the infinity. We introduce the q-Borel transformation and the q-Laplace
transformation following C. Zhang to obtain the connection formula. We consider the limit
p→ 1− of the connection formula.
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1 Introduction

In this paper, we show a connection formula of the Hahn–Exton q-Bessel function J
(3)
ν (x; q). At

first, we review the Bessel function and q-analogues of the Bessel function. The Bessel equation

d2u

dz2
+

1

z

du

dz
+

(
1− ν2

z2

)
u = 0

has a solution u(z) = Jν(z), J−ν(z). Here, the Bessel function Jν(z) is

Jν(z) =
1

Γ(ν + 1)

(z
2

)ν
0F1

(
−, ν + 1,−z

2

4

)
.

The degenerated confluent hypergeometric function 0F1(−, α, z) is defined by

0F1(−, α, z) =
∑
n≥0

1

(α)nn!
zn, (α)n = α{α+ 1} · · · {α+ (n− 1)}.

Both Jν(z) and J−ν(z) are linearly independent if ν 6∈ Z.
It is known that there exists three different q-analogues of the Bessel function.

J (1)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

(x
2

)ν
2ϕ1

(
0, 0; qν+1; q,−x

2

4

)
, |x| < 2,

J (2)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

(x
2

)ν
0ϕ1

(
−; qν+1; q,−q

ν−1x2

4

)
, x ∈ C,

J (3)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

xν1ϕ1

(
0; qν+1; q, qx2

)
, x ∈ C.

Here,

(a; q)n :=

{
1, n = 0,

(1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,
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(a; q)∞ = lim
n→∞

(a; q)n

and

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Moreover, the basic hypergeometric series rϕs is

rϕs(a1, . . . , ar; b1, . . . , bs; q, x) :=
∑
n≥0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

[
(−1)nq

n(n−1)
2

]1+s−r
xn.

The first and the second one are called Jackson’s first and second q-Bessel function and the
third one is called the Hahn–Exton q-Bessel function. They satisfy the following q-difference
equations:

J (1)
ν : u(xq)−

(
qν/2 + q−ν/2

)
u(xq1/2) +

(
1 +

x2

4

)
u(x) = 0,

J (2)
ν :

(
1 +

qx2

4

)
u(xq)−

(
qν/2 + q−ν/2

)
u
(
xq1/2

)
+ u(x) = 0,

J (3)
ν : u(xq)−

{
(qν/2 + q−ν/2)− q−ν/2+1x2

}
u
(
xq1/2

)
+ u(x) = 0. (1)

The limits of these q-analogues of the Bessel function are the Bessel function when q → 1−:

lim
q→1−

J (k)
ν ((1− q)x; q) = Jν(x), k = 1, 2

and

lim
q→1−

J (3)
ν ((1− q)x; q) = Jν(2x).

The relation between J
(1)
ν (x; q) and J

(2)
ν (x; q) was found by Hahn [3] as follows:

J (2)
ν (x; q) =

(
−x

2

4
; q

)
∞
J (1)
ν (x; q). (2)

Connection problems of the q-difference equation between the origin and the infinity are
studied by G.D. Birkhoff [1]. We review connection formulae for several q-difference functions.

1. Watson’s formula. In 1910 [6], Watson showed the connection formula of the basic hyper-
geometric function 2ϕ1 as follows:

2ϕ1 (a, b; c; q;x) =
(b, c/a; q)∞(ax, q/ax; q)∞
(c, b/a; q)∞(x, q/x; q)∞

2ϕ1 (a, aq/c; aq/b; q; cq/abx)

+
(a, c/b; q)∞(bx, q/bx; q)∞
(c, a/b; q)∞(x, q/x; q)∞

2ϕ1 (b, bq/c; bq/a; q; cq/abx) .

2. Connection formula of J
(1)
ν (x; q). C. Zhang has given some connection formulae for the

solutions of the q-difference equations of confluent type [7, 8] and [9]. In [8], Zhang

has shown connection formulae for J
(1)
ν (x; q) and J

(2)
ν (x; q). The connection formula of

J
(1)
ν (x; q) is given by(

α√
px ; p

)
∞

θp
(
−α
x

) 2ϕ1

(
pν+

1
2 , p−ν+

1
2 ;−p; p, α

√
px

)
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=
1

θp
(
−α
x

)

θp

(
−αq

ν
2

x

)
(q, q−ν ; q)∞

2ϕ1

(
0, 0; qν+1; q,−x

2

4

)

+
θp

(
−αq−

ν
2

x

)
(q, qν ; q)∞

2ϕ1

(
0, 0; q−ν+1; q,−x

2

4

) , (3)

where q = p2 and α2 = −4q3/2.

The connection formula of J
(2)
ν (x; q) is obtained by (3) and (2). But it is not known the con-

nection formula of the Hahn–Exton q-Bessel function.

The Hahn–Exton q-Bessel equations (1) has two analytic solutions u(x) = J
(3)
ν (x), J

(3)
−ν (xp−ν)

around x = 0 and has one analytic solution z (1/x) = 1
θp(−pν+2/x)

∑
n≥0

anx
−n, a0 = 1. We show

a connection formula of J
(3)
ν (x; q) in Section 2 as follows:

Theorem 1. For any x ∈ C∗ \ [pν+2; p],

z

(
1

x

)
=

1

(p−2ν , p; p)∞

θp

(
−p2ν+2

x

)
θp

(
−pν+2

x

) 1ϕ1

(
0, p1+2ν ; p, x

)

+
1

(p2ν , p; p)∞

θp

(
−p2

x

)
θp

(
−pν+2

x

) 1ϕ1

(
0, p1−2ν ; p, p−2νx

)
. (4)

Here, θp(·) is the theta function of Jacobi and [λ; q] is the q-spiral (see Section 2). We use the
q-Borel transformation and the q-Laplace transformation which is defined by C. Zhang in [8].

In Section 3, we consider the limit p → 1− of the connection formula. If we take a suitable
limit p→ 1− of (4), we obtain

H(2)
ν

(√
z
)

=
−ieνπi

sin νπ

{
Jν
(√
z
)
− e−νπiJ−ν

(√
z
)}
.

Here, H
(2)
ν (z) is the Hankel function of the second kind. Thus we obtain a connection formula

of the Bessel function as a limit p→ 1− of (4).

2 The connection formula

In this section, we give a connection formula of the Hahn–Exton q-Bessel function. We introduce
the p-Borel transformation and the p-Laplace transformation to obtain the connection formula
between the origin and the infinity. These transformations are useful to consider connection
problems. We assume that q ∈ C∗ satisfies 0 < |q| < 1 and q = p2. The q-difference operator σq
is given by σqf(x) = f(qx).

2.1 The theta function of Jacobi

Before we study connection problems, we review the theta function of Jacobi. The theta function
of Jacobi is given by the following series:

Definition 1. For any x ∈ C∗,

θq(x) = θ(x) :=
∑
n∈Z

q
n(n−1)

2 xn.
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We denote by θq(x) or more shortly θ(x). The theta function satisfies Jacobi’s triple product
identity:

θ(x) =
(
q,−x,− q

x
; q
)
∞
.

The theta function satisfies the q-difference equation as follows

θ(qkx) = q−
k(k−1)

2 x−kθ(x), ∀x ∈ C∗.

The theta function has the inversion formula xθ(1/x) = θ(x). For all fixed λ ∈ C∗, we define
a q-spiral [λ; q] := λqZ = {λqk : k ∈ Z}. We remark that θ

(
λqk/x

)
= 0 if and only if x ∈ [−λ; q].

2.2 The Hahn–Exton q-Bessel function

The Hahn–Exton q-Bessel function is defined by

J (3)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

xν
∑
n≥0

(−1)nq
n(n−1)

2

(qν+1, q; q)n

(
qx2
)n
.

The function J
(3)
ν (x; q) satisfies the q-difference equation[

σ2p −
{

(pν + p−ν)− x2p2−ν
}
σp + 1

]
y(x) = 0. (5)

If we replace ν by −ν and x by xp−ν , we obtain J
(3)
−ν (xp−ν ; q) which is another solution of (5)

around the origin. This solution corresponds to the classical Neumann function Yν(x) [5]. We
consider the behavior of equation (5) around the infinity. We set 1/t, formally t2 7→ t and
z(t) = y(1/t). Then z(t) satisfies[

σ2p −
{

(pν + p−ν)− p−2−ν

t

}
σp + 1

]
z (t) = 0. (6)

We set E(t) = 1/θp(−pν+2t) and f(t) =
∑
n≥0

ant
n, a0 = 1. We assume that z(t) can be

described as

z(t) = E(t)f(t) =
1

θp(−pν+2t)

∑
n≥0

ant
n

 .

Since E(t) satisfies the following q-difference equation

σpE(t) = −pν+2tE(t), σ2pE(t) = p2ν+5t2E(t),

we can check out that the function f(t) satisfies the equation{
p2ν+5t2σ2p + pν+2(pν + p−ν)tσp − σp + 1

}
f(t) = 0. (7)

2.3 The p-Borel transformation and the p-Laplace transformation

We define the p-Borel transformation and the p-Laplace transformation to solve the equation (7),
following Zhang [8].
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Definition 2. For f(t) =
∑
n≥0

ant
n, the p-Borel transformation is defined by

g(τ) = (Bpf) (τ) :=
∑
n≥0

anp
−n(n−1)

2 τn,

and the p-Laplace transformation is given by

(Lpg) (t) :=
1

2πi

∫
|τ |=r

g(τ)θp

(
t

τ

)
dτ

τ
.

Here, r0 > 0 is enough small number.

The p-Borel transformation is considered as a formal inverse of the p-Laplace transformation.

Lemma 1. We assume that the function f can be p-Borel transformed to the analytic func-
tion g(τ) around τ = 0. Then,

Lp ◦ Bpf = f.

Proof. We can prove this lemma calculating residues of the p-Laplace transformation around
the origin. �

The p-Borel transformation has the following operational relation.

Lemma 2. For any l,m ∈ Z≥0,

Bp
(
tmσlp

)
= p−

m(m−1)
2 τmσl−mp Bp.

Applying the p-Borel transformation to the equation (7) and using Lemma 2, g(τ) satisfies
the first order difference equation

g(pτ) =
(
1 + p2ν+2τ

) (
1 + p2τ

)
g(τ).

Since g(0) = 1, we get an infinite product of g(τ):

g(τ) =
1

(−p2ν+2τ ; p)∞(−p2τ ; p)∞
.

Then g(τ) has single poles at{
−p−2ν−2−k,−p−2−k; k ∈ Z≥0

}
.

We set

0 < r < r0 := min

{
1

|p2ν+2|
,

1

|p2|

}
.

and choose the radius r > 0 such that 0 < r < r0. By Cauchy’s residue theorem, the p-Laplace
transform of g(τ) is

f(t) =
1

2πi

∫
|τ |=r

g(τ)θp

(
t

τ

)
dτ

τ

= −
∑
k≥0

Res

{
g(τ)θp

(
t

τ

)
1

τ
; τ=−p−2ν−2−k

}
−
∑
k≥0

Res

{
g(τ)θp

(
t

τ

)
1

τ
; τ=−p−2−k

}
,

where 0 < r < r0. To calculate the residue, we use the following lemma.
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Lemma 3. For any k ∈ N, λ ∈ C∗, we have

1. Res

{
1

(τ/λ; p)∞

1

τ
: τ = λp−k

}
=

(−1)k+1p
k(k+1)

2

(p; p)k(p; p)∞
,

2.
1

(λp−k; p)∞
=

(−λ)−kp
k(k+1)

2

(λ; p)∞ (p/λ; p)k
, λ 6∈ pZ.

Summing up all of the residues, we obtain the convergent series f(t) as follows

f(t) =
θp
(
−p2ν+2t

)
(p−2ν , p; p)∞

1ϕ1

(
0, p1+2ν ; p, x

)
+

θp
(
−p2t

)
(p2ν , p; p)∞

1ϕ1

(
0, p1−2ν ; p, p−2νx

)
,

where xt = 1. Therefore, we acquire the connection formula for z(t) = E(t)f(t).

3 The limit of the connection formula

In this section, we show that the limit p → 1− of the connection formula gives a connection
formula of the Bessel function. At first, we assume that 0 < p < 1 and 0 <

√
p < 1. For the

Bessel function, we set the Hankel function of the first and the second kind H
(1)
ν (z) and H

(2)
ν (z).

Definition 3. The Hankel function of the first kind is given by

H(1)
ν (z) :=

Γ
(
1
2 − ν

)
πi
√
π

(z
2

)ν ∫ (1+)

1+∞i
eizt

(
t2 − 1

)ν− 1
2 dt, −π < arg z < 2π.

The Hankel function of the second kind is defined by

H(2)
ν (z) :=

Γ
(
1
2 − ν

)
πi
√
π

(z
2

)ν ∫ (−1−)

−1+∞i
eizt

(
t2 − 1

)ν− 1
2 dt, −2π < arg z < π.

The contour for H
(1)
ν (z) is a path starting from t = +1 +∞i, rounding the circle around

t = 1 counterclockwise, and going back to t = +1 +∞i. Moreover, the contour for H
(2)
ν (z) is

a path starting from t = −1 +∞i, rounding the circle around t = 1 clockwise, and going back
to t = −1 +∞i.

The Hankel functions can be written by Jν(z):

H(1)
ν (z) =

ie−νπi

sin νπ

{
Jν(z)− eνπiJ−ν(z)

}
, (8)

H(2)
ν (z) = − ieνπi

sin νπ

{
Jν(z)− e−νπiJ−ν(z)

}
. (9)

The Hankel functions have asymptotic expansions around z = 0 [4]:

H(1)
ν (z) ∼

(
2

πz

) 1
2

eiζ
∑
s≥0

is
As(ν)

zs
, −π + δ ≤ arg z ≤ 2π − δ,

H(2)
ν (z) ∼

(
2

πz

) 1
2

e−iζ
∑
s≥0

(−i)sAs(ν)

zs
, −2π + δ ≤ arg z ≤ π − δ,

as z →∞. Here, δ is an any small constant,

As(ν) =
(4ν2 − 12)(4ν2 − 32) · · ·

{
4ν2 − (2s− 1)2

}
s!8s

and

ζ = z − 1

2
νπ − 1

4
π.

In this sense, (8) and (9) considered as connection formula of the Bessel equation.
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3.1 Limit of the connection formula

We rewrite the connection formula in Theorem 1 in order to take a limit p → 1−. We set new
functions hν(t; p) and J±ν (x; p). We set hν(t; p) := (p1/2, p1/2; p)∞z(t). For any x ∈ C∗ \ [−λ; p]
and λ ∈ C∗, J+

ν,λ(x; p) is

J+
ν,λ(x; p) :=

(pν+1; p)∞
(p; p)∞

θp

(
λpν

x

)
θp
(
λ
x

) 1ϕ1

(
0; p1+2ν ; p, x

)
.

Similarly, J−ν,λ(x; p) is

J−ν,λ(x; p) :=
(pν+1; p)∞

(p; p)∞

θp

(
λpν

x

)
θp
(
λ
x

) 1ϕ1

(
0; p1+2ν ; p, p2νx

)
.

We remark that the function θp(λp
ν/x)/θp(λ/x) satisfies the following q-difference equation

u(px) = pνu(x),

which is also satisfied by the function u(x) = xν . We remark that the pair (J+
ν,λ(x; p), J−−ν,λ(x; p))

gives a fundamental system of solutions of equation (6) if ν 6∈ Z. We set the function C+
ν (λ, t; p)

and C−ν (λ, t; p) as follow:

Definition 4. For any λ ∈ C∗, C+
ν (λ, t; p) is

C+
ν (λ, t; p) :=

(p
1
2 , p

1
2 ; p)∞

(pν+1, p−2ν ; p)∞

θp(−p2ν+2t)

θp(−pν+2t)

θp(λt)

θp(λpνt)
.

Similarly, the function C−ν (λ, t; p) is

C−ν (λ, t; p) :=
(p

1
2 , p

1
2 ; p)∞

(p−ν+1, p2ν ; p)∞

θp(−p2t)
θp(−pν+2t)

θp(λt)

θp(λp−νt)
.

Then, C+
ν (λ, t; p) and C−ν (λ, t; p) are single valued as a function of t. The function C+

ν (λ, t; p)
and C−ν (λ, t; p) are the p-elliptic functions. By using these new functions, our connection formula
is rewritten by

hν

(
1

x
; p

)
= C+

ν

(
λ,

1

x
; p

)
J+
ν (x; p) + C−ν

(
λ,

1

x
; p

)
J−−ν,λ(x; p).

Theorem 2. For any x ∈ C∗ \ (−∞, 0] where arg x ∈ (−π, π), we have

lim
p→1−

hν

(
1

(1− p)2x
; p

)
= −ie−νπiH(2)

2ν (2
√
x).

Here, H
(2)
2ν (·) is the Hankel function of the second kind.

The aim of this section is to give a proof of the theorem above.
By the definition, hν

(
1/{(1− p)2x}; p

)
can be described as follows

hν

(
1

(1− p)2x
; p

)
=

{
(p

1
2 , p

1
2 ; p)∞

(p−2ν , p; p)∞
(1− p)2ν

}θp
(
− p2ν+2

x(1−p)2

)
θp

(
− pν+2

x(1−p)2

)(1− p)−2ν
 .

×
{
1ϕ1

(
0; p1+2ν ; p, (1− p)2x

)}
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+

{
(p

1
2 , p

1
2 ; p)∞

(p2ν , p; p)∞
(1− p)−2ν

}θp
(
− p2

x(1−p)2

)
θp

(
− pν+2

x(1−p)2

)(1− p)2ν


×
{
1ϕ1

(
0; p1−2ν ; p, p−2ν(1− p)2x

)}
. (10)

We consider the limit of each part {·}.

Lemma 4. For any ν ∈ C∗ \ Z, we have

lim
p→1−

(p
1
2 , p

1
2 ; p)∞

(p−2ν , p; p)∞
(1− p)2ν = − 1

sin(2νπ)Γ(2ν + 1)
.

Proof. We can check out as follows

(p
1
2 , p

1
2 ; p)∞

(p−2ν , p; p)∞
(1− p)2ν =

(p;p)∞
(p−2ν ;p)∞

(1− p)1+2ν{
(p;p)∞

(p
1
2 ;p)∞

(1− p)
1
2

}{
(p;p)∞

(p
1
2 ;p)∞

(1− p)
1
2

} =
Γp(−2ν)

Γp
(
1
2

)
Γp
(
1
2

) .
Here, Γq(·) is Jackson’s q-gamma function which is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1.

This function satisfies lim
q→1−

Γq(x) = Γ(x) [2]. Therefore,

lim
p→1−

(p
1
2 , p

1
2 ; p)∞

(p−2ν , p; p)∞
(1− p)2ν =

Γ(−2ν)

Γ
(
1
2

)
Γ
(
1
2

) .
By Euler’s reflection formula of the gamma function, we get

Γ(−2ν)

Γ
(
1
2

)
Γ
(
1
2

) = − 1

sin(2νπ)Γ(2ν + 1)
.

Therefore, we get the conclusion. �

If we replace ν by −ν, we get the limit

lim
p→1−

(p
1
2 , p

1
2 ; p)∞

(p2ν , p; p)∞
(1− p)−2ν =

1

sin(2νπ)Γ(1− 2ν)
.

In [8], the following proposition can be found:

Proposition 1. For any x ∈ C∗ (−π < arg x < π), we have

lim
p→1−

θp

(
pν1

(1−p2)x

)
θp

(
pν2

(1−p2)x

) (1− p2)ν2−ν1 = xν1−ν2 ,

and

lim
p→1−

θp

(
− pν1

(1−p2)x

)
θp

(
− pν2

(1−p2)x

) (1− p2)ν2−ν1 = (−x)ν1−ν2 .
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Lemma 5. For any x ∈ C∗ (−π < arg x ≤ π) and fixed constant K, we have

θp(−
√
p)θp

(
−K
x

)
= θ√p

(√
K

x

)
θ√p

(
−
√
K

x

)
.

Proof. From Jacobi’s triple product identity and (a2; q2)n = (a,−a; q)n, we obtain

(
√
p;
√
p)∞

(−√p;√p)∞
θp

(
−K
x

)
= θ√p

(√
K

x

)
θ√p

(
−
√
K

x

)
.

We remark that (
√
p;
√
p)∞/(−

√
p;
√
p)∞ can be rewritten as follows [2]:

(
√
p;
√
p)∞

(−√p;√p)∞
=
∑
n∈Z

(−1)n(
√
p)n

2
= θp(−

√
p).

We obtain the conclusion. �

Therefore, we obtain the following relation.

Corollary 1. For any x ∈ C∗ (−π < arg x ≤ π), we have

θp

(
p2ν+2 −1

(1−p)2x

)
θp

(
pν+2 −1

(1−p)2x

) =
θ√p

(
pν+1 1

(1−p)
√
x

)
θ√p

(
pν+1 −1

(1−p)
√
x

)
θ√p

(
p
ν
2
+1 1

(1−p)
√
x

)
θ√p

(
p
ν
2
+1 −1

(1−p)
√
x

) (11)

and

θp

(
p2 −1

(1−p)2x

)
θp

(
pν+2 −1

(1−p)2x

) =
θ√p

(
p 1
(1−p)

√
x

)
θ√p

(
p −1
(1−p)

√
x

)
θ√p

(
p
ν
2
+1 1

(1−p)
√
x

)
θ√p

(
p
ν
2
+1 −1

(1−p)
√
x

) . (12)

We consider the limit p→ 1− (i.e.,
√
p→ 1−) of (11) and (12).

Lemma 6. For any x ∈ C∗ \ (−∞, 0] (−π < arg x ≤ π), we have

1. lim
p→1−

θp

(
− p2ν+2

x(1−p)2

)
θp

(
− pν+2

x(1−p)2

)(1− p)−2ν = eνπixν and

2. lim
p→1−

θp

(
− p2

x(1−p)2

)
θp

(
− pν+2

x(1−p)2

)(1− p)2ν = e−νπix−ν .

Proof. Combining Proposition 1 and Corollary 1, we consider the limit
√
p→ 1− as follows:

θp

(
p2ν+2 −1

(1−p)2x

)
θp

(
pν+2 −1

(1−p)2x

) (1− p)−2ν =
θ√p

(
pν+1 1

(1−p)
√
x

)
θ√p

(
pν+1 −1

(1−p)
√
x

)
θ√p

(
p
ν
2
+1 1

(1−p)
√
x

)
θ√p

(
p
ν
2
+1 −1

(1−p)
√
x

)(1− p)−2ν

=

θ
√
p

(
(
√
p)2ν+2 1

(1−(√p)2)
√
x

)
θ√p

(
(
√
p)ν+2 1

(1−{√p)2)
√
x

) {1− (
√
p)2
}−ν

×

θ
√
p

(
−(
√
p)2ν+2 1

(1−(√p)2)
√
x

)
θ√p

(
−(
√
p)ν+2 1

(1−{√p)2)
√
x

) {1− (
√
p)2
}−ν

→ (
√
x)ν · (−

√
x)ν = (−x)ν = eνπixν ,

√
p→ 1−.

Similarly, we can prove the latter one. We obtain the conclusion. �
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We consider the last part.

Lemma 7. For any x ∈ C∗, we have

lim
p→1−

1ϕ1

(
0; p1+2ν ; p, (1− p)2x

)
= 0F1 (−, 1 + 2ν;−x)

and

lim
p→1−

1ϕ1

(
0; p1−2ν ; p, p−2ν(1− p)2x

)
= 0F1 (−, 1− 2ν;−x) .

Proof. We check each of the term of

1ϕ1

(
0; p1+2ν ; p, (1− p)2x

)
=
∑
n≥0

1

(p1+2ν , p; p)n
(−1)np

n(n−1)
2

{
(1− p)2x

}n
.

For any n ≥ 0,

1

(p1+2ν , p; p)n
(−1)np

n(n−1)
2

{
(1− p)2x

}n
=

(1− p)n(1− p)n

(p1+2ν ; p)n(p; p)n
p
n(n−1)

2 (−x)n → 1

(1 + 2ν)n · n!
(−x)n , p→ 1−.

Summing up all terms, we get∑
n≥0

1

(1 + 2ν)n · n!
(−x)n = 0F1 (−, 1 + 2ν;−x) .

Therefore, we obtain the conclusion. Similarly, we can prove the latter. �

We give the proof of Theorem 2.

Proof. Apply Lemma 4, Lemma 6 and Lemma 7 to (10), we obtain

hν

(
1

(1− p)2x
; p

)
→
{
− 1

sin(2νπ)Γ(1 + 2ν)

}
eνπixν0F1 (−, 1 + 2ν;−x)

+

{
1

sin(2νπ)Γ(1− 2ν)

}
e−νπix−ν0F1 (−, 1− 2ν;−x)

=
−eνπiJ2ν (2

√
x) + e−νπiJ−2ν (2

√
x)

sin(2νπ)

=
e−νπi

i
H

(2)
2ν

(
2
√
x
)
, p→ 1−.

Therefore, we acquire the conclusion. �
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[3] Hahn W., Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen q-
Differenzengleichung. Das q-Analogon der Laplace-Transformation, Math. Nachr. 2 (1949), 340–379.

[4] Olver F.W.J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic
Press, New York – London, 1974.

[5] Swarttouw R.F., Meijer H.G., A q-analogue of the Wronskian and a second solution of the Hahn–Exton
q-Bessel difference equation, Proc. Amer. Math. Soc. 129 (1994), 855–864.

[6] Watson G.N., The continuation of functions defined by generalized hypergeometric series, Trans. Camb.
Phil. Soc. 21 (1910), 281–299.

[7] Zhang C., Remarks on some basic hypergeometric series, in Theory and Applications of Special Functions,
Dev. Math., Vol. 13, Springer, New York, 2005, 479–491.

[8] Zhang C., Sur les fonctions q-Bessel de Jackson, J. Approx. Theory 122 (2003), 208–223.
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