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Abstract. In this paper we obtain some results of harmonic analysis on quantum complex
hyperbolic spaces. We introduce a quantum analog for the Laplace–Beltrami operator and its
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1 Introduction

Consider the group SUn,m and its homogeneous space Hn,m = SUn,m/S(Un,m−1 × U1). The
latter is called a complex hyperbolic space. The Faraut paper [5] on such pseudo-Hermitian
symmetric spaces has a great impact into the theory of semisimple symmetric spaces of rank 1.
Also there are numerous papers of Molchanov, van Dijk and others (see [11, 12, 21] and references
therein) on representation theory related to these symmetric spaces and harmonic analysis on
them. In particular, there is the celebrated Penrose transform which enables to relate classical
bounded symmetric domains and complex hyperbolic spaces.

In this paper we develop harmonic analysis on quantum complex hyperbolic spaces. Recall
that the related polynomial algebras were introduced in the early paper by Faddeev, Reshetikhin,
and Takhtadjan [14]. Unfortunately, there was no further inquiry.

Nearly 10 years ago L. Vaksman and his team started the theory of quantum bounded sym-
metric domains. Their approach enables to formulate and solve various problems on noncommu-
tative complex and harmonic analysis in these domains, geometric realizations of representations
of quantum groups [19]. Their paper [17] establishes the missed link between quantum bounded
symmetric domains and introduces this project.

The initial notions of function theory on quantum complex hyperbolic spaces Hn,m were
introduced in [3]. Namely, a quantum analog D(Hn,m)q,k for the algebra of Uk = Us(gln × glm)-
finite smooth functions on Hn,m with compact support and an Uqsun,m-invariant integral

∫
dνq

on it were constructed. We recall basic notations from the quantum group theory and [3] in
Sections 2, 3, 4. Section 5 is devoted to the subalgebra of Uqk-invariant finite functions.

In Sections 6 and 7 we introduce a quantum analog � for the Laplace–Beltrami operator

on Hn,m. Also we consider its radial part �(0), i.e., its restriction to the space L2
(
dν

(0)
q

)
, where∫

·dν(0)q is the restriction of
∫
dνq to the space of Uqk-invariant elements of D(Hn,m)q,k. The
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latter operator naturally appears to be q-difference operator and is related to a three-diagonal
Jacobi matrix. Section 8 is devoted to generalized eigenfunctions of �(0) and lead us towards
an expected yet remarkable appearance of Al-Salam–Chihara polynomials. A spectral theorem
for �(0) in Section 9 is obtained as a corollary to well known results on these polynomials
(see [9]).

2 Preliminaries on quantum group theory

Everywhere in the sequel we suppose q ∈ (0, 1). All algebras are associative and unital.
The Hopf algebra UqslN is given by its generators Ki, K

−1
i , Ei, Fi, i = 1, 2, . . . , N − 1, and

the relations:

KiKj = KjKi, KiK
−1
i = K−1i Ki = 1,

KiEi = q2EiKi, KiFi = q−2FiKi,

KiEj = q−1EjKi, KiFj = qFjKi, |i− j| = 1,

EiFj − FjEi = δij
Ki −K−1i
q − q−1

,

E2
i Ej −

(
q + q−1

)
EiEjEi + EjE

2
i = 0, |i− j| = 1,

F 2
i Fj −

(
q + q−1

)
FiFjFi + FjF

2
i = 0, |i− j| = 1,

[Ei, Ej ] = [Fi, Fj ] = 0, |i− j| 6= 1.

The comultiplication ∆, the antipode S, and the counit ε are defined on the generators by

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1i + 1⊗ Fi, ∆(Ki) = Ki ⊗Ki,

S(Ei) = −K−1i Ei, S(Fi) = −FiKi, S(Ki) = K−1i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1,

see [7, Chapter 4].
We need also the Hopf algebra C[SLN ]q of matrix elements of finite dimensional weight

UqslN -modules. Recall that C[SLN ]q can be defined by the generators tij , i, j = 1, . . . , N (the
matrix elements of the vector representation in a weight basis) and the relations

tij′tij′′ = qtij′′tij′ , j′ < j′′,

ti′jti′′j = qti′′jti′j , i′ < i′′,

tijti′j′ = ti′j′tij , i < i′ & j > j′,

tijti′j′ = ti′j′tij +
(
q − q−1

)
tij′ti′j , i < i′ & j < j′,

together with one more relation

detq t = 1,

where detq t is a q-determinant of the matrix t = (tij)i,j=1,...,N :

detq t =
∑
s∈SN

(−q)l(s)t1s(1)t2s(2) · · · tNs(N),

with l(s) = card{(i, j)|i < j & s(i) > s(j)}. The algebra C[SLN ]q is endowed with the standard
structure of Uop

q slN ⊗ UqslN -module algebra (here ’op’ reflects the fact that we should change
the multiplication by the opposite one).
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Let also Uqsun,m, m+ n = N , denotes the Hopf ∗-algebra (UqslN , ∗) given by

(K±1j )∗ = K±1j , E∗j =

{
KjFj , j 6= n,

−KjFj , j = n,
F ∗j =

{
EjK

−1
j , j 6= n,

−EjK−1j , j = n,

with j = 1, . . . , N − 1 [14, 15].
Recall the notion of an algebra of ‘regular functions on the quantum principal homogeneous

space’ X constructed in [15]. Put Pol(X̃)q
def
= (C[SLN ]q, ∗), where the involution ∗ is defined by

t∗ij = sign[(i−m− 1/2)(n− j + 1/2)](−q)j−i detq Tij . (1)

Here detq is the quantum determinant [4], and the matrix Tij is derived from the matrix t = (tkl)

by discarding its i’s row and j’s column. In [15] it is proved that Pol(X̃)q is a Uqsun,m-module
∗-algebra.

3 A ∗-algebra Pol(Hn,m)q

Let m,n ∈ N, m ≥ 2, and N
def
= n+m. Recall that the classical complex hyperbolic space Hn,m

can be obtained by projectivization of the domain

Ĥn,m =

(t1, . . . , tN ) ∈ CN
∣∣∣ − n∑

j=1

|tj |2 +
N∑

j=n+1

|tj |2 > 0

 .

Now we pass from the classical case q = 1 to the quantum case 0 < q < 1. Let us consider
the well known [14] q-analog of the polynomial algebras. Let Pol(Ĥn,m)q be the unital ∗-algebra
with the generators t1, t2, . . . , tN and the commutation relations as follows:

titj = qtjti, i < j,

tit
∗
j = qt∗j ti, i 6= j,

tit
∗
i = t∗i ti +

(
q−2 − 1

) N∑
k=i+1

tkt
∗
k, i > n,

tit
∗
i = t∗i ti +

(
q−2 − 1

) n∑
k=i+1

tkt
∗
k −

(
q−2 − 1

) N∑
k=n+1

tkt
∗
k, i ≤ n.

Obviously,

c = −
n∑
j=1

tjt
∗
j +

N∑
j=n+1

tjt
∗
j

is central in Pol(Ĥn,m)q. Moreover, c is not a zero divisor in Pol(Ĥn,m)q. This allows one to em-

bed the ∗-algebra Pol(Ĥn,m)q into its localization Pol(Ĥn,m)q,c with respect to the multiplicative
system cN.

The ∗-algebra Pol(Ĥn,m)q,c admits the following bigrading:

deg tj = (1, 0), deg t∗j = (0, 1), j = 1, 2, . . . , N.

Introduce the notation

Pol(Hn,m)q =
{
f ∈ Pol(Ĥn,m)q,c

∣∣ deg f = (0, 0)
}
.
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This ∗-algebra Pol(Hn,m)q will be called the algebra of regular functions on the quantum hy-
perbolic space.

We are going to endow the ∗-algebra Pol(Hn,m)q with a structure of Uqsun,m-module alge-

bra [4]. For this purpose, we embed it into the Uqsun,m-module ∗-algebra Pol(X̃)q.

By a q-analog of the Laplace expansion of detq t along the first row [8, Section 9.2] and (1),
one can obtain from detq t = 1 that

−
n∑
j=1

t1jt
∗
1j +

N∑
j=n+1

t1jt
∗
1j = 1.

Thus the map J : tj 7→ t1j , j = 1, 2, . . . , N , admits a unique extension to a homomorphism of

∗-algebras J : Pol(Ĥn,m)q,c → Pol(X̃)q. Its image will be denoted by Pol(H̃n,m)q. It is easy

to verify that the ∗-algebra Pol(Hn,m)q is embedded this way into Pol(H̃n,m)q and its image is

just the subalgebra in Pol(H̃n,m)q generated by t1jt
∗
1k, j, k = 1, 2, . . . , N (recall that c goes to

detq t = 1). In what follows we will identify Pol(Hn,m)q with its image under the map J .

Consider the subalgebra Uqs(gl1 × glN−1) generated by K±1i , i = 1, . . . , N − 1, Ej , Fj ,
j = 2, . . . , N − 1. By obvious reasons,

Pol(Hn,m)q =
{
f ∈ Pol(X̃)q

∣∣ L(ξ)f = ε(ξ)f, ξ ∈ Uqs(gl1 × glN−1)
}
,

where L is the left action of Uop
q slN in Pol(X̃)q.

Let Iϕ, ϕ ∈ R/2πZ, be the ∗-automorphism of the ∗-algebra Pol(H̃n,m)q defined on the
generators {tj}j=1,...,N by

Iϕ : tj 7→ eiϕtj . (2)

We use the notation tj instead of t1j for the generators of Pol(H̃n,m)q.

Then one more description of Pol(Hn,m)q is as follows:

Pol(H̃n,m)q =
{
f ∈ Pol(H̃n,m)q

∣∣ Iϕ(f) = f for all ϕ
}
.

At the end of this section we list explicit formulas for the action of Uqsun,m on Pol(H̃n,m):

Ejti =

{
q−1/2ti−1, j + 1 = i,

0, otherwise,
Fjti =

{
q1/2ti+1, j = i,

0, otherwise,

K±1j ti =


q±1ti, j = i,

q∓1ti, j + 1 = i,

ti, otherwise.

4 Algebras of generalized and finite functions
on the quantum Hn,m

Let us construct a faithful ∗-representation T of Pol(Hn,m)q in a pre-Hilbert space H (our
method is well known; see, for example, [15]).

The space H is a linear span of its orthonormal basis {e(i1, i2, . . . , iN−1) | i1, . . . , in ∈ −Z+;
in+1, . . . , iN−1 ∈ N}.
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The ∗-representation T is a restriction to Pol(Hn,m)q of the ∗-representation of Pol(H̃n,m)q
defined by

T (tj)e(i1, . . . , iN−1) = q

j−1∑
k=1

ik(
q2(ij−1) − 1

)1/2
e(i1, . . . , ij − 1, . . . , iN−1),

T (t∗j )e(i1, . . . , iN−1) = q

j−1∑
k=1

ik(
q2ij − 1

)1/2
e(i1, . . . , ij + 1, . . . , iN−1),

for j ≤ n,

T (tj)e(i1, . . . , iN−1) = q

j−1∑
k=1

ik(
1− q2(ij−1)

)1/2
e(i1, . . . , ij − 1, . . . , iN−1),

T (t∗j )e(i1, . . . , iN−1) = q

j−1∑
k=1

ik(
1− q2ij

)1/2
e(i1, . . . , ij + 1, . . . , iN−1),

for n < j < N , and, finally,

T (tN )e(i1, . . . , iN−1) = q

N−1∑
k=1

ik
e(i1, . . . , iN−1),

T (t∗N )e(i1, . . . , iN−1) = q

N−1∑
k=1

ik
e(i1, . . . , iN−1).

Define the elements {xj}j=1,...,N as follows:

xj
def
=


N∑
k=j

tkt
∗
k, j > n,

−
n∑
k=j

tkt
∗
k +

N∑
k=n+1

tkt
∗
k, j ≤ n.

(3)

Obviously, x1 = 1, xixj = xjxi,

tjxk =

{
q2xktj , j < k,

xktj , j ≥ k.
(4)

The vectors e(i1, . . . , iN−1) are joint eigenvectors of the operators T (xj), j = 1, 2, . . . , N :

T (xj)e(i1, . . . , iN−1) = q
2
j−1∑
k=1

ik
e(i1, . . . , iN−1).

The joint spectrum of the pairwise commuting operators T (xj), j = 1, 2, . . . , N , is

M =
{

(x1, . . . , xN ) ∈ RN | xi/xj ∈ q2Z & 1 = x1 ≤ x2 ≤ · · · ≤ xn+1,

& xn+1 > xn+2 > · · · > xN > 0
}
.

The next proposition was proved in [3].

Proposition 1. T is a faithful representation of Pol(Hn,m)q.

Let us now introduce the notion of generalized functions on the quantum complex hyperbolic
space Hn,m. Evidently, using the commutation relations, one can decompose every polynomial

f ∈ Pol(H̃n,m)q as follows:

f =
∑

I=(i1,...,iN ),J=(j1,...,jN )∈ZN+

cIJ t
i1
1 · · · t

in
n t
∗in+1

n+1 · · · t
∗iN
N tjNN · · · t

jn+1

n+1 t
∗jn
n · · · t∗j11 , cIJ ∈ C. (5)
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Due to (3), the latter can be reduced to the decomposition

f =
∑

(i1,...,iN ,j1,...,jN ): ikjk=0

ti11 · · · t
in
n t
∗in+1

n+1 · · · t
∗iN
N fIJ(x2, . . . , xN )tjNN · · · t

jn+1

n+1 t
∗jn
n · · · t∗j11 , (6)

where fIJ(x2, . . . , xN ) are polynomials.

One can equip Pol(H̃n,m)q with the weakest topology such that the functionals

l(i1,...,iN ;j1,...,jN )(f) = (T (f)e(i1, . . . , iN ), e(j1, . . . , jN ))

are continuous. The completion of Pol(H̃n,m)q w.r.t. this topology will be considered as the

space of generalized functions on the quantum Ĥn,m and denoted by D(H̃n,m)′q. Naturally, one

can extend T to a representation of D(H̃n,m)′q by continuity. Now (6) allows one to identify

D(H̃n,m)′q with the space of formal series

f =
∑

(i1,...,iN ,j1,...,jN ): ikjk=0

ti11 · · · t
in
n t
∗in+1

n+1 · · · t
∗iN
N fIJ(x2, . . . , xN )tjNN · · · t

jn+1

n+1 t
∗jn
n · · · t∗j11 ,

where fIJ(x2, . . . , xN ) are functions on M. The topology on this space of formal series is the
topology of pointwise convergence of the functions fIJ .

Denote by f0 the following function

f0 = f0(xn+1) =

{
1, xn+1 = 1,

0, xn+1 ∈ q−2N.
(7)

(Recall that specxn+1 = q−2Z+ .) Thus f0 is a q-analog of the characteristic function of the
submanifold{

(t1, . . . , tN ) ∈ CN
∣∣ t1 = t2 = · · · = tn = 0

}
∩Hn,m.

Introduce now a ∗-algebra Fun(H̃n,m)q ⊂ D(H̃n,m)′q generated by Pol(H̃n,m)q and f0. Easy
computations from (4) show that f0 satisfies the following relations:

t∗jf0 = f0tj = 0, j ≤ n,
xn+1f0 = f0xn+1 = f0,

f20 = f∗0 = f0,

tjf0 = f0tj , t∗jf0 = f0t
∗
j , j ≥ n+ 1.

The relation Iϕf0 = f0 allows one to extend the ∗-automorphism Iϕ (2) of the algebra

Pol(H̃n,m)q to the ∗-automorphism of Fun(H̃n,m)q. Let

Fun(Hn,m)q
def
=
{
f ∈ Fun(H̃n,m)q

∣∣ Iϕf = f
}
.

Obviously, there exists a unique extension of the ∗-representation T to a ∗-representation of the
∗-algebra Fun(Hn,m)q such that T (f0) is the orthogonal projection of H onto the linear span of
vectors {e(0, . . . , 0︸ ︷︷ ︸

n

, in+1, . . . , iN−1)| in+1, . . . , iN−1 ∈ N}.

Let D(Hn,m)q,k be the two-sided ideal of Fun(Hn,m)q generated by f0. We call this ideal the
algebra of finite functions on the quantum hyperbolic space. It is a quantum analog for the
algebra of Uk = Us(gln × glm)-finite smooth functions on Hn,m with compact support.
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Remark 1. Let us explain the adjective ‘finite’. If f is a finite function, T (f) is an operator
with only a finite number of nonzero entries. However, we do not consider all possible finite
functions (and, therefore, all operators with finite number of nonzero entries) but only Uqk-finite
ones, cf. [5].

It was proved in [3] that

Theorem 1. The representation T of D(Hn,m)q,k is faithful.

Remark 2. Let f(xn+1) be a polynomial. Then it follows from (3), (4) that

n∑
i=1

tif(xn+1)t
∗
i = f

(
q2xn+1

) n∑
i=1

tit
∗
i = f

(
q2xn+1

)
(xn+1 − 1). (8)

This computation, together with (7), allows one to consider the element f1 =
n∑
i=1

tif0t
∗
i as

a function of xn+1 such that

f1(xn+1) =

{
q−2 − 1, xn+1 = q−2,

0, xn+1 = 1 or xn+1 ∈ q−2N−2.

Thus a multiple application of (8) leads to the following claim: D(Hn,m)q,k contains all finite
functions of xn+1 (i.e., such functions f that f(q−n) = 0 for all but finitely many n ∈ N).

The Uqsun,m-module algebra structure is established on D(Hn,m)q,k by the following:

Enf0 = − q−1/2

q−2 − 1
tnf0t

∗
n+1, Fnf0 = − q3/2

q−2 − 1
tn+1f0t

∗
n, Knf0 = f0,

Ejf0 = Fjf0 = (Kj − 1)f0 = 0, j 6= n.

Now we present an explicit formula for a positive invariant integral on the space of finite
functions D(Hn,m)q,k and thereby establish its existence.

Let νq : D(Hn,m)q,k → C be a linear functional defined by

νq(f) = Tr(T (f) ·Q) =

∫
Hn,m

fdνq,

where Q : H→ H is the linear operator given on the basis elements e(i1, . . . , iN−1) by

Qe(i1, . . . , iN−1) = const1 q
2
N−1∑
j=1

(N−j)ij
e(i1, . . . , iN−1), const1 > 0.

Theorem 2 ([3]). The functional νq is well defined, positive, and Uqsun,m-invariant.

One has to normalize this integral in a some way. In [3] we put
∫
Hn,m

f0dνq = 1, so the

constant in the previous theorem equals

const1 =
m−1∏
j=1

(
q−2j − 1

)
.
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5 The subalgebra D(Hn,m)
Uqk
q,k

In this section we restrict ourselves to subalgebras of Uqk-invariant elements. It is well known
that Hn,m is a pseudo-Hermitian symmetric space of rank 1 [12]. The following proposition is
a natural quantum analog for this fact.

Proposition 2. D(Hn,m)
Uqk
q,k = {f(xn+1) ∈ D(Hn,m)q,k}.

Since Uqk = C[Kn,K
−1
n ]⊗ Uqsln ⊗ Uqslm, the proof of this proposition follows from the next

statement on Uqsln × Uqslm-isotypic components in D(Hn,m)q,k.

Proposition 3. Uqsln × Uqslm-isotypic components of D(Hn,m)q,k correspond to the modules
L(n)(a$1 + d$n−1) � L(m)(c$1 + b$m−1) with a, b, c, d ∈ Z+, a + c = b + d (with infinite
multiplicity). The highest weight subspace is spanned by the vectors ta1t

∗b
Nϕ(xn+1)t

c
n+1t

∗d
n , where

ϕ(xn+1) is a finite function.

Remark 3. The sign � reflects the fact that the multipliers are modules of different algebras
Uqsln and Uqslm.

Proof. Let us describe Uqsln×Uqslm-highest weight vectors in D(Hn,m)q,k. One can decompose
every finite function f ∈ D(Hn,m)q,k in the following way

f =
∑

I=(i1,...,iN ),J=(j1,...,jN )∈ZN+
i1+···+in+jn+1+···+jN
=in+1+···+iN+j1+···+jn

cIJ t
i1
1 · · · t

in
n t
∗in+1

n+1 · · · t
∗iN
N f0t

jN
N · · · t

jn+1

n+1 t
∗jn
n · · · t∗j11 , cIJ ∈ C.

(just by applying the commutation relations, cf. (5)). Let L(n)(λ) be the finite dimensional Uqsln-
module with highest weight λ and $j are fundamental weights of sln. By standard arguments,

l.s.
{
tl11 t

l2
2 · · · t

ln
n | l1 + · · ·+ ln = a

}
= L(n)(a$1),

l.s.
{
t∗l11 t∗l22 · · · t

∗ln
n | l1 + · · ·+ ln = a

}
= L(n)(a$n−1),

l.s.
{
t
ln+1

n+1 t
ln+2

n+2 · · · t
lN
N | ln+1 + · · ·+ lN = a

}
= L(m)(a$1),

l.s.
{
t
∗ln+1

n+1 t
∗ln+2

n+2 · · · t
∗lN
N | ln+1 + · · ·+ lN = a

}
= L(m)(a$m−1).

Thus we have an epimorphism⊕
a+c=b+d

L(n)(a$1)⊗ L(m)(d$m−1)⊗ L(m)(c$1)⊗ L(n)(b$n−1)→ D(Hn,m)q,k,

ti11 · · · t
in
n � t

∗in+1

n+1 · · · t
∗iN
N ⊗ tjNN · · · t

jn+1

n+1 � t∗jnn · · · t∗j11

7→ ti11 · · · t
in
n t
∗in+1

n+1 · · · t
∗iN
N f0t

jN
N · · · t

jn+1

n+1 t
∗jn
n · · · t∗j11 .

Recall that, as in the classical case, see [13],

L(n)(a$1)⊗ L(n)(b$n−1) = ⊕max(a,b)
i=0 L(n)((a− i)$1 + (b− i)$n−1)

in the category of Uqsln-modules. By explicit calculations one can show that the Uqsln-highest
weight vector in L(n)((a− i)$1 + (b− i)$n−1) ⊂ L(n)(a$1)⊗ L(n)(b$n−1) has the form

ta−i1

 n∑
j=1

tj ⊗ t∗j

i

t∗(b−i)n .

Now a routine application of the commutation relations (similar to the ones in Remark 2) al-
lows one to reduce every highest weight vector to a linear span of the vectors ta1t

∗b
Nϕ(xn+1)t

c
n+1t

∗d
n ,

where ϕ(xn+1) is a finite function. �
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Now let us obtain an explicit form of the restriction of νq to the space D(Hn,m)
Uqk
q,k of Uqk-

invariant elements of D(Hn,m)q,k.

Recall the standard notation (a; q)k = (1− a) · · · (1− aqk−1), (a; q)0 = 1,∫ ∞
1

f(x)dq−2x =
(
q−2 − 1

) ∞∑
k=0

f
(
q−2k

)
q−2k.

Proposition 4. For any function f(xn+1) ∈ D(Hn,m)q,k one has∫
Hn,m

f(xn+1)dνq =

∫ ∞
1

f(x)ρ(x)dq−2x,

where

ρ(x) = const2 x
m−1(q−2x− 1

)(
q−4x− 1

)
· · ·
(
q−2(n−1)x− 1

)
, (9)

and const2 = 1
q−2−1

n−1∏
j=1

1
q−2j−1 .

Proof. By explicit calculations,∫
Hn,m

f(xn+1)dνq = const1
∑

i1...,in∈−Z+,
in+1,...,iN−1∈N

f
(
q2i1+···+2in

)
q2(N−1)i1+2(N−2)i2+···+2iN−1

= const1

∞∑
in+1,...,iN−1=1

 ∑
i1,...,in∈−Z+,
i1+···+in=i

f(q2i)q2(N−1)i1+···+2min

 q2(m−1)in+1+···+2iN−1

= const1
∑
i∈−Z+

qm(m−1)

(q2; q2)m−1

 ∑
i1,...,in−1∈−Z+,
i1+···+in−1≥i

q2(n−1)i1+···+2in−1

 f(q2i)q2mi

= const1
qm(m−1)

(q2; q2)m−1

∑
i∈−Z+

f(q2i)q2mi

 ∑
i1,...,in−1∈Z+,
i1+···+in−1≤−i

q−2(n−1)i1−···−2in−1

 .

Let us verify that for every j, k ∈ Z+∑
i1,...,ik∈Z+,
i1+···+ik≤j

q−2(k−1)i1−···−2ik =
(q−2; q−2)j+k

(q−2; q−2)j(q−2; q−2)k
.

Denote the l.h.s. of the previous equation by Ψ(j, k). One can verify the recurrence relation for
the q-Pascal triangle

Ψ(j, k) = q−2kΨ(j − 1, k) + Ψ(j, k − 1)

and the boundary values

Ψ(0, k) = 1, Ψ(j, 1) =
1− q−2(j+1)

1− q−2
,
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explicitly. Thus Ψ(j, k) are the corresponding entries of the q-Pascal triangle. Now we can
complete our calculations and obtain that∫

Hn,m

f(xn+1)dνq = const1
qm(m−1)

(q2; q2)m−1

∑
i∈−Z+

f
(
q2i
)
q2mi

(q−2; q−2)n−1−i
(q−2; q−2)−i(q−2; q−2)n−1

= const1
qm(m−1)

(q2; q2)m−1

∑
i∈−Z+

f
(
q2i
)
q2mi

(q2i−2; q−2)n−1
(q−2; q−2)n−1

=

∫ ∞
1

f(x)ρ(x)dq−2x,

where ρ(x) = const2 x
m−1(q−2x− 1)(q−4x− 1) · · · (q−2(n−1)x− 1), and

const2 =
1

q−2 − 1
const1

qm(m−1)

(q2; q2)m−1

(−1)n−1

(q−2; q−2)n−1
=

(−1)n−1

(q−2 − 1)(q−2; q−2)n−1
. �

Now one can complete D(Hn,m)
Uqk
q,k with respect to the norm ||f ||2 =

∫∞
1 f∗fρ(x)dq−2x. The

resulting Hilbert space will be denoted by L2
(
dν

(0)
q

)
.

6 Covariant first order differential calculi over Pol(H̃n,m)q

In this section we introduce holomorphic and antiholomorphic covariant first order differential
calculi over Pol(H̃n,m)q.

First of all, recall a general definition of a covariant first order differential calculus fol-
lowing [8].

Let F be a unital algebra. A first order differential calculus over F is a pair (M,d) where
M is an F -bimodule and d : F →M is a linear map such that

1. for all f1, f2 ∈ F one has d(f1 · f2) = df1 · f2 + f1 · df2;
2. M is a linear span of the vectors f1 · df2 · f3, where f1, f2, f3 ∈ F .

Now suppose that A is a Hopf algebra and F is an A-module algebra. A first order differential
calculus (M,d) over F is called covariant if the following conditions hold:

1. M is an A-covariant F -bimodule, i.e. the action maps F ⊗M → M , M ⊗ F → M are
morphisms of A-modules;

2. d is a morphism of A-modules.

Let L = L ◦ ω, where L is the canonical antirepresentation of UqslN in C[SLN ]q (or the
representation of Uqsl

op
N ) and ω is an antiautomorphism of UqslN defined on the generators by

ω(Ki) = K−1i , ω(Ei) = Fi, ω(Fi) = Ei. Thus L is a representation of UqslN in C[SLN ]q.

Consider the action of L(E1K
−1/2
1 ) in C[SLN ]q and its restriction to Pol(H̃n,m)q. Put

∂ : Pol(H̃n,m)q → Pol(X̃)q, ∂ti = L
(
E1K

−1/2
1

)
t1i.

Let Ω(1,0)(H̃n,m)q ⊂ Pol(X̃)q be the Pol(H̃n,m)q-submodule generated by ∂ti, i = 1, . . . , N .

Lemma 1. Ω(1,0)(H̃n,m)q is a UqslN -covariant first order differential calculus over Pol(H̃n,m)q.

Proof. One has to verify the Leibniz rule which immediately follows from the formulas for
the comultiplication in UqslN . Since left and right action of UqslN in C[SLN ]q commute, ∂ is
a morphism of UqslN -modules, so the calculus is covariant. �
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Now we define ∂̄ : Pol(H̃n,m)q → Pol(X̃)q by the rule ∂̄f = (∂f∗)∗. Let Ω(0,1)(H̃n,m)q ⊂
Pol(X̃)q be the Pol(H̃n,m)q-submodule generated by ∂̄ti, i = 1, . . . , N .

Lemma 2. Ω(0,1)(H̃n,m)q is a UqslN -covariant first order differential calculus over Pol(H̃n,m)q.

This lemma can be proved similarly to the previous one.

Remark 4. The introduced first order differential calculi can be obtained in another way. One
should start from the canonical Wess–Zumino calculi on a quantum complex space introduced
in [14] and then turn to a localization of the corresponding algebras of functions.

Now we introduce a Hermitian pairing Ω(0,1)(H̃n,m)q × Ω(0,1)(H̃n,m)q → Pol(Hn,m)q.

Let P : Pol(X̃)q → Pol(Hn,m)q be the projection parallel to a sum of other Uqs(gl1× glN−1)-
isotypic components of L. Now we define

(θ1, θ2) = P (θ∗2θ1), θ1, θ2 ∈ Ω(0,1)(H̃n,m)q.

By obvious commutativity of the left and right actions of UqslN we have

Proposition 5. The pairing (·, ·) is UqslN -invariant.

Lemma 3.

P (t2jt
∗
2k) = q−2

1− q2

1− q2(N−1)
(εjk − t1jt∗1k),

where

εjk =


q2(j−1), j = k, j ≥ n+ 1,

−q2(j−1), j = k, j ≤ n,
0, j 6= k.

Proof. Since Uqs(gl1 × glN−1) = C[K1,K
−1
1 ] ⊗ UqslN−1, one can decompose the projection P

as follows: P = P0P1, where P1 is a projection to the subspace of UqslN−1-invariant elements
(w.r.t. the L-action) and P0 is a projection to the subspace of elements that are preserved by
the L(K1)-action.

Let u1, . . . , uk be the standard basis in the Uqslk-module L($1), and v1, . . . , vk the dual basis
in the Uqslk-module L($k−1), where $1 and $k−1 are the fundamental weights. A standard

argument on finite dimensional Uqslk-modules allows one to prove that
k∑
j=1

(−q)j−1uj ⊗ vj is

a Uqslk-invariant element in the Uqslk-module L($1)⊗ L($k−1), and the map

ui ⊗ vj 7→


1− q2

1− q2k
(−q)i−1

k∑
a=1

(−q)a−1ua ⊗ va, i = j,

0, i 6= j,

(10)

is a projection to the subspace of Uqslk-invariant elements parallel to other isotypic components.
By obvious reasons, for j = 1, . . . , N − 1 the maps

φj : ui 7→ ti+1,j , ψj : vi 7→ detq Ti+1,j ,

admit extensions to morphisms of UqslN−1-modules

φj : L($N−2)→ C[SLN ]q, ψj : L($1)→ C[SLN ]q
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(w.r.t. the L-action). By definition (1), t∗ij = (−q)j−i detq Tij for i ≤ m and j ≥ n + 1. Thus
one can apply the map (10) to compute for l ≥ n+ 1

P1(t2lt
∗
2l) = (−q)l−2P1(t2l detq T2l) = (−q)l−2 1− q2

1− q2(N−1)
N−1∑
j=1

(−q)j−1tj+1,l detq Tj+1,l.

Since C[SLN ]q is a Hopf algebra, one has
N∑
j=1

tljS(tjk) = δlk and S(tjk) = (−q)j−k detq Tkj .

Thus

P1(t2lt
∗
2l) = (−q)2(l−2) 1− q2

1− q2(N−1)
(
1− (−q)1−lt1l detq T1l

)
= (−q)2(l−2) 1− q2

1− q2(N−1)
(
1− (−q)−2(l−1)t1lt∗1l

)
.

The other cases can be verified in a similar way. �

Proposition 6.(
∂̄xn+1, ∂̄xn+1

)
= q2(n−1)

1− q2

1− q2(N−1)
xn+1(1− q−2nxn+1).

Proof. An easy application of the previous lemma allows one to compute that(
∂̄(t∗1kt1l), ∂̄(t∗1jt1i)

)
= q−2

1− q2

1− q2(N−1)
(εjkt

∗
1it1l − (t∗1it1j)(t

∗
1kt1l)).

Thus for j, k ≥ n+ 1 one has(
∂̄(q−2jt∗1jt1j), ∂̄(q−2kt∗1kt1k)

)
= q−2

1− q2

1− q2(N−1)
(
δjkq

−2(j+1)t∗1jt1j −
(
q−2jt∗1jt1j

)(
q−2kt∗1kt1k

))
.

By easy computations, q−2(n+1)xn+1 =
N∑

j=n+1
q−2jt∗1jt1j , which enables to prove the claim. �

Let us fix notation for q-difference operators:

B− : f(x) 7→ f(q−2x)− f(x)

q−2x− x
, B+ : f(x) 7→ f(q2x)− f(x)

q2x− x
.

Lemma 4.(
∂̄f(xn+1), ∂̄g(xn+1)

)
= q2(n−1)

1− q2

1− q2(N−1)
xn+1

(
1− q−2nxn+1

)
B−g(xn+1)B−f(xn+1).

Proof. By explicit calculations in C[SLN ]q we obtain for i ≥ n+ 1

t1i∂̄xn+1 = q−1∂̄xn+1t1i, t∗1i∂̄xn+1 = q−1∂̄xn+1t
∗
1i.

Let us verify the second identity. One has ∂̄xn+1 =
N∑

j=n+1
t1jt
∗
2j , so

t∗1i∂̄xn+1 = t∗1i

 i−1∑
j=n+1

t1jt
∗
2j + t1it

∗
2i +

N∑
j=i+1

t1jt
∗
2j

 = q−1
i−1∑

j=n+1

t1jt
∗
2jt
∗
1i
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+ q−1t1it
∗
2it
∗
1i +

(
q − q−1

)∑
j>i

t1jt
∗
1jt
∗
2i + q−1

N∑
j=i+1

t1jt
∗
2jt
∗
1i +

(
q−1 − q

)∑
j>i

t1jt
∗
1jt
∗
2i.

So we have xn+1∂̄xn+1 = q−2∂̄xn+1xn+1. Hence for every polynomial f(x)

∂̄f(xn+1) = ∂̄xn+1
f(q−2xn+1)− f(xn+1)

q−2xn+1 − xn+1
= ∂̄xn+1B−(f)(xn+1),

and the claim follows from the previous proposition. �

Using the above formal arguments, we can extend ∂̄ to D(Hn,m)q,k.

7 The Laplace–Beltrami operator and its radial part

In this section we introduce a UqslN -invariant operator � in the space of finite functions
D(Hn,m)q,k. This operator will be considered as a quantum analog for the invariant Laplace–
Beltrami operator on the complex hyperbolic space Hn,m. Also we compute an explicit formula

for the restriction �(0) of � to the space D(Hn,m)
Uqk
q,k , the so called radial part of �. The

restriction appears to be a q-difference operator in variable x = xn+1.

Now we define � by the formula∫
Hn,m

f∗2 (�f1)dνq =

∫
Hn,m

(∂̄f1, ∂̄f2)dνq, f1, f2 ∈ D(Hn,m)q,k.

Proposition 7. � is a self-adjoint UqslN -invariant operator.

Proof. The self-adjointness follows from the definition. The UqslN -invariance of the form (·, ·)
and the linear functional

∫
Hn,m

·dνq implies the UqslN -invariance of �. �

Let us find the restriction �(0) of the operator � on the subspace

D(Hn,m)
Uqk
q,k =

{
f(xn+1), suppf ⊂ q−2Z+ , ](suppf) <∞

}
,

based on the equation∫ ∞
1

(
�(0)f

)
(x)f(x)ρ(x)dq−2x

= q2(n−1)
1− q2

1− q2(N−1)

∫ ∞
1

x
(
1− q−2nx

) ∣∣∣∣f(q−2x)− f(x)

q−2x− x

∣∣∣∣2 ρ(x)dq−2x

for every f with finite support.

Using the q-analog of the partial integration formulas one can prove that operators B− and
−q2B+ are formally dual. Exactly, for every functions u(x), v(x) with finite support on q2Z

holds ∫ ∞
0

u(x)
v(q−2x)− v(x)

(q−2 − 1)x
dq−2x = −q2

∫ ∞
0

u(x)− u(q2x)

(1− q2)x
v(x)dq−2x,

where∫ ∞
0

f(x)dq−2x =
(
q−2 − 1

) ∞∑
k=−∞

f
(
q−2k

)
q−2k.
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Thus

�(0) : f(x) 7→ const(q, n,N)ρ(x)−1B+x
(
q−2nx− 1

)
ρ(x)B−f(x),

where

const(q, n,N) = q2n
1− q2

1− q2(N−1)
,

and ρ(x) is defined in (9).
Lemma 4 allows us to extend the Hermitian UqslN -invariant pairing to first order differential

forms with coefficients in D(Hn,m)q,k.

Lemma 5. For every function f(x) with finite support on q−2Z+

�(0)f(x) =
q2

(1− q2)2x
(
(x− 1)q2m−2f(q2x) +

(
q−2nx− 1

)
f
(
q−2x

)
+
(
1 + q2m−2 − q2m−2x− q−2nx

)
f(x)

)
.

Proposition 8. The operator �(0) is bounded.

Proof. Consider the operator

�̃ : f(x) 7→ x−(N−1)const(q, n,N)q−2nB+x
N+1B−f(x).

It differs from �(0) by a compact operator, so it is sufficient to prove that �̃ is bounded. The
boundness of the latter operator can be proved by the direct evaluation. �

By the previous proposition, one can extend �(0) from D(Hn,m)
Uqk
q,k to a bounded self-adjoint

operator in L2
(
dν

(0)
q

)
. The latter extension will also be denoted by �(0).

8 Generalized eigenfunctions of �(0)

and Al-Salam–Chihara polynomials

In this section we obtain the initial results on the bounded self-adjoint operator �(0), namely we
obtain its formal eigenfunctions and eigenvalues explicitly. Note that explicit computations of
the asymptotics of these eigenfunctions, as in the classical case, allow us to consider a quantum
analog of the Harish-Chandra c-function (see Appendix A).

By the direct computation we obtain the following lemma.

Lemma 6. The function

Φl(x) = 3Φ2

(
x, q−2l, q2(l+N−1)

q2n, 0
; q2, q2

)
in D(Hn,m)′q is a generalized eigenfunction for �(0):

�(0)Φl = λ(l)Φl

with the eigenvalue

λ(l) = −q2−2n (1− q−2l)(1− q2l+2(N−1))

(1− q2)2
.
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Recall the definition of the Al-Salam–Chihara polynomials, following [9]:

Qk(z; a, b|q) =
(ab; q)k
ak

3Φ2

(
q−k, aeiθ, ae−iθ

ab, 0
; q, q

)
, z = cos θ.

We have the following well known orthogonality relations for the Al-Salam–Chihara polyno-
mials:

1

2π

∫ 1

−1
Qi(z; a, b|q)Qj(z; a, b|q)

w(z)√
1− z2

dz

+
∑

1<aqk<a

wkQi(zk; a, b|q)Qj(zk; a, b|q) =
δij

(qi+1, abqi; q)∞
, (11)

where

w(z) =
h(z, 1)h(z,−1)h(z, q1/2)h(z,−q1/2)

h(z, a)h(z, b)
, h(z, a) =

(
aeiθ, ae−iθ; q

)
∞, z = cos θ,

zk = aqk+aq−k

2 , and

wk =
(a−2; q)∞

(q, ab, b/a; q)∞

(1− a2q2k)(a2, ab; q)k
(1− a2)(q, qa/b; q)k

q−k
2

(
1

a3b

)k
.

Also, these polynomials satisfy the following recurrence relations:

zQi(z; a, b|q) =
1

2
Qi+1(z; a, b|q) +

1

2
qi(a+ b)Qi(z; a, b|q)

+
1

2

(
1− qi

)(
1− abqi−1

)
Qi−1(z; a, b|q). (12)

As one can see, the eigenfunctions Φl(x) are connected with the Al-Salam–Chihara polyno-
mials:

Φl(q
−2k) =

qk(N−1)

(q2n; q2)k
Qk
(
z; q2n−N+1, qN−1|q2

)
, eiθ = q2l+N−1, z = cos θ.

Let us denote the orthogonal measure for Al-Salam–Chihara polynomials by dσ. Note that if
2n−N + 1 > 0, the sum in the orthogonality relations vanishes and we have just the continuous
measure.

9 A spectral theorem for the radial part of �

In this section we obtain a spectral theorem for �(0). As in the classical case [5, pp. 429–432],
the support of the Plancherel measure consists of continuous and discrete parts. The continuous
part corresponds to principal unitary series of Uqsun,m-modules related to a quantum analog of
the cone

Ξn,m =
{
x ∈ CN | −x1x̄1 − · · · − xnx̄n + xn+1x̄n+1 + · · ·+ xN x̄N = 0

}
(this series is established in [3]). The discrete part is supposed to be corresponded to a discrete
series of unitary Uqsun,m-modules.
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Theorem 3. The bounded self-adjoint linear operator �(0) is unitary equivalent to the operator
of multiplication by independent variable in the Hilbert space L2(dσ). The unitary equivalence
is given by the operator

U : L2
(
dν(0)q

)
→ L2(dσ),

U : f(x) 7→ f̂(λ) =

∫ ∞
1

f(x)Φl(x)ρ(x)dq−2x,

where λ = −q2−2n (1−q−2l)(1−q2l+2N−2)
(1−q2)2 .

Proof. Let us consider the finite functions on q−2Z+

fj(x) =

{
1, x = q−2j ,

0, otherwise,
j ∈ Z+.

These functions form an orthogonal system in D(Hn,m)
Uqk
q,k and the completion of its linear span

is L2
(
dν

(0)
q

)
. By standard arguments [1], the bounded self-adjoint linear operator �(0) is unitary

equivalent to the multiplication operator f(λ) 7→ λf(λ) in the Hilbert space L2(dµ(λ)) of square
integrable functions with respect to a certain measure dµ(λ) with compact support in R. Let us
find explicitly the corresponding measure and the operator of unitary equivalence U . One can
fix the unitary equivalence operator by the condition Uf0 = 1.

By easy calculations, �(0) transforms fj by the formula

�(0)fj =
q2

(1− q2)2
(
fj+1

(
1− q2j+2

)
q2m−2 + fj−1

(
1− q2j+2n−2)q−2n

+ fj
(
q2j + q2j+2m−2 − q2m−2 − q−2n

))
, j ∈ Z+,

and ||fj ||2 = q−2j(N−1) (q
2j+2;q2)n−1

(q2;q2)n−1
(here we naturally suppose f−1 = 0).

Thus the finite functions ej = qj(N−1)
√

(q2;q2)n−1

(q2j+2;q2)n−1
fj form an orthonormal system in

L2
(
dν

(0)
q

)
and �(0) acts on them by the formula

�(0)ej =
qm−n+1

(1− q2)2
(
ej+1

√(
1− q2j+2

)(
1− q2j+2n

)
+ ej−1

√(
1− q2j

)(
1− q2j+2n−2

)
+ ej

(
q2j+(N−1) + q2j+2n−(N−1) − qN−1 − q1−N

))
, j ∈ Z+.

Thus Pj = Uej ∈ L2(dµ(λ)), j ∈ Z+ form an orthonormal system of polynomials∫
Pi(λ)Pj(λ)dµ(λ) = δij , i, j ∈ Z+,

and one has

λPj(λ) =
qm−n+1

(1− q2)2
(
Pj+1(λ)

√(
1− q2j+2

)(
1− q2j+2n

)
+ Pj−1(λ)

√(
1− q2j

)(
1− q2j+2n−2

)
+ Pj(λ)

(
q2j+(N−1) + q2j+2n−(N−1) − qN−1 − q1−N

))
, j ∈ Z+, (13)

P0(λ) = Ue0 = Uf0 = 1. (14)

(we naturally suppose that P−1 = 0).
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The orthogonal polynomials Pj(λ), j ∈ Z+ are determined by (13) and (14). Let us compare
them with the corresponding recurrence relations (12) and the initial data for the Al-Salam–
Chihara polynomials Qj(z; q

2n−(N−1), qN−1|q2). One can observe that

||Qj ||2 =
1

(q2j+2, q2j+2n; q2)∞
=

(q2, q2n; q2)j
(q2; q2)n−1(q2n; q2)2∞

.

The polynomials

Q̃j
def
=

√
1

(q2, q2n; q2)j
Qj

satisfy the following recurrence relations:

zQ̃j =
1

2

√(
1− q2(j+1)

)(
1− q2j+2n

)
Q̃j+1 +

1

2

√(
1− q2j

)(
1− q2j+2n−2

)
Q̃j−1

+
1

2
q2j
(
q2n−N+1 + qN−1

)
Q̃j , j ∈ Z+.

Thus we obtain that Pj and Q̃j are related by the change of variable

λ =
2qm−n+1

(1− q2)2
z − qm−n+1

(1− q2)2
(
qN−1 + q−(N−1)

)
.

So,

Pj(λ) =

√
1

(q2, q2n; q2)j
Qj
(
z; q2n−N+1, qN−1|q2

)
,

where z = cos θ = eiθ+e−iθ

2 and

λ = − q2−2n

(1− q2)2
(
1− qN−1eiθ

)(
1− qN−1e−iθ

)
,

Ufj = q−j(N−1)

√
(q2j+2; q2)n−1

(q2; q2)n−1

√
1

(q2, q2n; q2)j
Qj
(
z; q2n−N+1, qN−1|q2

)
= q−j(N−1)

1

(q2; q2)j
Qj
(
z; q2n−N+1, qN−1|q2

)
.

On the other hand,∫ ∞
1

fj(x)Φl(x)ρ(x)dq−2x =
q−j(N−1)

(q2; q2)j
Qj
(
z; q2n−N+1, qN−1|q2

)
,

where z = 1
2

(
q2l+N−1 + q−(2l+N−1)

)
.

Hence for every function f(x) on q−2Z+ with finite support one has

Uf =

∫ ∞
1

f(x)Φl(x)ρ(x)dq−2x.

Now the claim of the theorem follows from the orthogonality relations for the Al-Salam–Chihara
polynomials (11). �
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Remark 5. There is an extensive literature on harmonic analysis related to a quantum SUq(1, 1)
(see the references [10, 18, 20] from three research groups and references therein). Even the
notion of quantum SUq(1, 1) had some uncertainties back then (unlike to the case of quantum
compact group SUq(2)). A remarkable quantum effect lies in the fact that the Plancherel
type theorems for the quantum SUq(1, 1) present decompositions with entries coming from the
principal unitary series and strange unitary series of representations (which also has no classical
analog).

Later on L. Vaksman established a new concept of quantum SUq(1, 1) (and other noncompact
real Lie groups). He substituted the group SU(1, 1) ⊂ SL2(C) by its principal homogeneous

space w0SU(1, 1), where w0 =

(
0, −1
1, 0

)
. This enables him and his collaborators to prove the

Plancherel type theorems with decompositions that does not contain the strange series entries
(see [16, 2]). Still a relation between these two approaches of quantization may require further
investigations.

A Appendix on the Harish-Chandra c-function
and the Plancherel measure

Let us introduce the notation of the q-analog of the Harish-Chandra c-function

c(l) =
Γq2(n)Γq2(2l +N − 1)

Γq2(l + n)Γq2(l +N − 1)
=

(q2(l+N−1); q2)∞(q2(l+n); q2)∞

(q2(2l+N−1); q2)∞(q2n; q2)∞
,

where Γq(x) = (1− q)1−x (q;q)∞
(qx;q)∞

is a well known quantum analog for the Gamma-function [6].

Lemma 7.

1. For Re l < −(N − 1)/2 one has Φl(x) ∼ c(−l − N + 1)x−l−N+1 as x ∈ q−2Z+ tends to
infinity.

2. For Re l > −(N − 1)/2 one has Φl(x) ∼ c(l)xl as x ∈ q−2Z+ tends to infinity.

Proof. Let us compute an asymptotic behavior of Φl(x) for Re l > −(N − 1)/2, the other case
can be managed similarly. For x = q−2k, k →∞, one has

3Φ2

(
q−2k, q−2l, q2(l+N−1)

q2n, 0
; q2, q2

)
=

(q2−2l−2n−2k; q2)k
(q2−2n−2k; q2)k

2Φ1

(
q−2k, q−2l

q2−2l−2n−2k
; q2, q2l+2m

)
∼ q−2lk (q2l+2n; q2)∞

(q2n; q2)∞
1Φ0

(
q−2l

− ; q2, q4l+2(N−1)
)

= q−2lk
(q2l+2n; q2)∞(q2l+2(N−1); q2)∞

(q2n; q2)∞(q4l+2(N−1); q2)∞
. �

Let us return to the Plancherel measure of �(0), namely for its absolutely continuous part.
Since eiθ = q2l+N−1 and z = cos θ, one can observe by easy calculations that

w(z) = w
(
z, q2n−N+1, qN−1|q2

)
=

(q4l+2(N−1), q−4l−2(N−1); q2)∞

(q2l+2n, q2n−2l−2(N−1), q2l+2(N−1), q−2l; q2)∞

=
1

c(l)c(−l − (N − 1))

1

(q2n; q2)2∞
.

By this calculations we establish a relation between continuous part of the Plancherel measure
and the Harish-Chandra c-function in the quantum case. Of course, this interplay in the classical
(q = 1) situation is well-known.



Harmonic Analysis on Quantum Complex Hyperbolic Spaces 19

Acknowledgements

This project started out as joint work with L. Vaksman and D. Shklyarov. We are grateful to
both of them for helpful discussions and drafts with preliminary definitions and computations.
Also we are grateful for referees for their comments that help to improve and simplify our
exposition.

References

[1] Akhiezer N.I., Glazman I.M., Theory of linear operators in Hilbert space, Dover Publications, New York,
1993.

[2] Bershtein O., Kolisnyk Ye., Plancherel measure for the quantum matrix ball. I, J. Math. Phys. Anal. Geom.
5 (2009), 315–346, arXiv:0903.4068.

[3] Bershtein O., Sinelshchikov S., Function theory on a q-analog of complex hyperbolic space, arXiv:1009.6063.

[4] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.

[5] Faraut J., Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58 (1979), 369–444.

[6] Gaspar G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications,
Vol. 35, Cambridge University Press, Cambridge, 1990.

[7] Jantzen J.C., Lectures on quantum groups, Graduate Studies in Mathematics, Vol. 6, American Mathema-
tical Society, Providence, RI, 1996.
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