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Nicolas CRAMPÉ †‡, Eric RAGOUCY § and Ludovic ALONZI §
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Abstract. We compute the eigenfunctions and eigenvalues of the periodic integrable spin s
XXX model using the coordinate Bethe ansatz. To do so, we compute explicitly the Hamil-
tonian of the model. These results generalize what has been obtained for spin 1

2 and spin 1
chains.
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1 Introduction

The resolution of Heisenberg spin chain [1] was initiated in H. Bethe’s seminal paper [2] where
he used a method called now coordinate Bethe ansatz. Since this work, several new methods
appeared: algebraic Bethe ansatz [3, 4], functional Bethe ansatz (or separation of variables) [5]
or analytical Bethe ansatz [6]. These more elaborated techniques allowed one to go further: new
solvable models have been discovered and new results have been computed such as correlation
functions. As a consequence, the coordinate Bethe ansatz was neglected. However, this method
is the simplest one and gives a very efficient way to construct explicitly eigenfunctions, but it
is believed that it works only for simple models. In this note, we show that actually it can be
applied also to more complicated models as the spin s XXX model.

This paper is organized as follows. In Section 2, we compute the Hamiltonian of the spin s
chain we want to solve. To our knowledge, the explicit form of the entries of the Hamiltonian are
written for the first time. We also compte the su(2) symmetry algebra and the pseudo-vacuum,
a particular (reference) eigenstate. In Section 3, we present the coordinate Bethe ansatz and
get the Bethe equations obtained previously by the algebraic or analytical Bethe ansatz. We
conclude, in Section 4, on the advantages of this method and on open problems.

2 Integrable periodic spin s chain

2.1 Hamiltonian of the spin s chain

The Hamiltonian of the periodic integrable spin s chain has been computed in [7] thanks to
a fusion procedure. This Hamiltonian has been expressed as a polynomial of the invariant

?This paper is a contribution to the Proceedings of the International Workshop “Recent Advances in Quantum
Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2010.html
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of su(2) (see for example also [8] for a review). For our purpose, we need to give an explicit
expression of the Hamiltonian entries. Namely, the Hamiltonian is the following matrix acting
on (C2s+1)⊗L

H =
L∑
j=1

hj,j+1 (2.1)

with the periodic condition L + 1 = 1 and the subscript (j, j + 1) stands for the two spaces
where the (2s + 1)2 × (2s + 1)2-matrix h acts non-trivially. We choose to enumerate the basis
of C2s+1 as follows: |s〉, |s − 1〉, . . . , | − s〉, where |m〉 ≡ |s,m〉 denotes1 the spin s state with
sz-component equals to m.

The non-vanishing entries of the matrix h may be parameterized by three integer parameters
m1, m2, n

h =
2s∑

m1,m2=0

min(m2,2s−m1)∑
n=−min(m1,2s−m2)

βnm1,m2
|s−m1 − n〉〈s−m1| ⊗ |s−m2 + n〉〈s−m2|.

From the results found in [7], one may prove that βnm1,m2
can be factorised as:

βnm1,m2
=

(−1)n−1

n

√√√√√√√√
(
M1 + n
M1

) (
M2

n

)
(

2s−M1

n

) (
2s−M2 + n

n

) for n > 0, (2.2)

where we have introduced the notation

M1 = min(m1, 2s−m2) and M2 = min(m2, 2s−m1). (2.3)

The remaining β’s are given by the relations:

β0m1,m2
= −

M1−1∑
`=0

1

2s− `
−
M2−1∑
`=0

1

2s− `
,

β−nm2,m1
= βnm1,m2

.

2.2 su(2) symmetry

At each site, we have a spin s representation, and the expression of the su(2) generators in this
representation reads:

s− =
s∑

n=−s+1

√
(s+ n)(s− n+ 1)|n− 1〉〈n|,

s+ =
s−1∑
n=−s

√
(s− n)(s+ n+ 1)|n+ 1〉〈n|,

sz =
s∑

n=−s
n|n〉〈n|.

1Let us stress that since all the sites have spin s, we do not mention it, and write only the sz value of the
states.
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They obey

[s+, s−] = 2sz, [sz, s±] = ±s±, c2 = (sz)2 +
1

2
(s+s− + s−s+) = s(s+ 1).

We will note sαj , α = z,± and j = 1, . . . , L, the generators acting on site j. Let us stress that
these local operators do not commute with the Hamiltonian H given in (2.1). However, there is
a global su(2) symmetry. The generators of this su(2) symmetry take the form

Sz =
L∑
j=1

szj and S± =
L∑
j=1

s±j .

They obey the su(2) commutation relations [Sz,S±] = ±S±, [S+,S−] = 2Sz. Remark that the
Casimir operator C2 = (Sz)2 + 1

2(S+S− + S−S+), although central, is not proportional to the
identity, since we are considering the tensor product of L spin s representations, a reducible
representation.

It is a simple calculation to show that [sαj + sαj+1, hj,j+1] = 0, α = z,±. It amounts to check
the following recursion relations on the coefficients βnm1,m2

:√
(m1 + 1)(2s−m1)β

n
m1+1,m2

=
√

(2s+ n−m2 + 1)(m2 − n)βn+1
m1,m2

−
√

(m2 + 1)(2s−m2)β
n+1
m1,m2+1 +

√
(2s− n−m1)(n+m1 + 1)βnm1,m2

,√
m1(2s−m1 + 1)βnm1−1,m2

=
√

(2s+ n−m2)(m2 − n+ 1)βn−1m1,m2

−
√
m2(2s−m2 + 1)βn−1m1,m2−1 +

√
(2s− n−m1 + 1)(n+m1)β

n
m1,m2

.

Hence, Sα commutes with H.

Due to this su(2) symmetry, the wave functions can be characterized by their energy, their
spin and their Sz component. In other words, one can diagonalize the Hamiltonian in a sector
where the operators Sz has a fixed value Sz = Ls−m. This is done in the next section.

2.3 Pseudo-vacuum and pseudo-excitations

We wish to present the construction of the Hamiltonian eigenfunction in the framework of
coordinate Bethe ansatz for spin s. The spin s = 1

2 case is the Heisenberg chain, solved in [2].
It gave the name to the method. For the case s = 1, the method has been generalized in [9].

The first step of the coordinate Bethe ansatz [2] consists in finding a particular eigenvector,
called the pseudo-vacuum, for the Hamiltonian. It is usually chosen as the vector with the
highest spin. In the present case, it is the unique vector in the sector Sz = Ls:

|∅〉 = |s〉 ⊗ |s〉 · · · ⊗ |s〉.

Using the explicit forms for the β’s, we get h12 |s〉 ⊗ |s〉 = 0. Thus, |∅〉 is a H-eigenvector with
vanishing eigenvalue.

The second step consists in adding pseudo-excitations. These pseudo-excitations are not
physical excitations (hence the name pseudo-excitation). They are obtained by acting with a
creation operator e−j , conjugated to s−j , on the pseudo-vacuum |∅〉. Let us remark that this

operator in this finite representation does not satisfy (e−)2 = 0 but rather (e−)2s+1 = 0. This
explains the supplementary difficulties to deal with s > 1

2 . Indeed, in the case s = 1
2 , no more

than one pseudo-excitation can be at the same site: we have strict exclusion. In the general case
of spin s, we have a weaker exclusion. More precisely, we can have up to 2s pseudo-excitations
at the same site. This behavior appears already for s = 1.
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3 Coordinate Bethe ansatz for general spin s

We define a state in the sector Sz = Ls−m, for 1 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ L

|x1, x2, . . . , xm〉 = e−x1e
−
x2 · · · e

−
xm |∅〉, (3.1)

where e− is conjugated to s−:

e− =
s∑

n=−s+1

√
s+ n

s− n+ 1
|n− 1〉〈n| = gs−g−1 with g =

s∑
n=−s

(2s)!

(s− n)!
|n〉〈n|.

This choice for e− is for later convenience. The set of such non-vanishing vectors (i.e. xj+2s > xj
for 1 ≤ j ≤ L− 2s) provides a basis for this sector. As already noticed, contrarily to the usual
case (s = 1

2), several (up to 2s) pseudo-excitations at the same site are allowed, that is to say,
some xj ’s can be equal. The restriction that no more than 2s particles are on the same site
is implemented by the fact that (e−)2s = 0. Using the explicit form of e−, we can rewrite the
excited states as follows:

|x1, x2, . . . , xm〉 = αm1 · · ·αmk
|s〉 ⊗ · · · ⊗ |s〉︸ ︷︷ ︸

x1−1

⊗|s−m1〉 ⊗ |s〉 ⊗ · · · ⊗ |s〉︸ ︷︷ ︸
xm1+1−xm1−1

⊗|s−m2〉 ⊗ · · · ,

where mj is the number of times xj appears and

αm =

√(
2s
m

)
,

where

(
z
k

)
= z(z−1)···(z−k+1)

k! is the binomial coefficient. Let us remark that, if mj > 2s the

vector |s−mj〉 has no meaning but the normalization αmj vanishes.

Any eigenvector in the sector Sz = Ls−m is a linear combination of the vectors (3.1). Then,
let us introduce the vector

Ψm =
∑

x1≤x2≤···≤xm

a(x1, x2, . . . , xm)|x1, x2, . . . , xm〉,

where a(x1, x2, . . . , xm) are complex-valued functions to be determined. As in the case of s = 1
2 ,

we assume a plane wave decomposition for these functions (Bethe ansatz)

a(x1, . . . , xm) =
∑
P∈Sm

AP (k) exp
{
i(kP1x1 + · · ·+ kPmxm)

}
,

where Sm is the permutation group of m elements and AP (k) are functions on the symmetric
group algebra depending on some parameters k which will be specified below2. Using the fact
that the states |x1, x2, . . . , xm〉 form a basis, we can project the eigenvalue equation

HΨm = EΨm (3.2)

on these different basis vectors to determine the AP (k) parameters.

Since H is a sum of operators acting on two neighbouring sites only, one has to single out
the cases where the x’s obey the following constraints:

2In the following, to lighten the presentation, the k-dependence will not be written explicitly.
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• all the xj ’s are far away one from each other and are not on the boundary sites 1 and L
(this case will be called generic),

• xj + 1 = xj+1 for some j,

• xj = xj+1 for some j,

• xj = xj+1 = · · · = xj+m1 and xj + 1 = xj+m1+1 = · · · = xj+m1+1+m2 for some positive
integers m1 and m2,

• x1 = 1, or xm = L.

As the eigenvalue problem is a linear problem, it is enough to treat the cases where at most one
of the particular cases appears: more complicated cases just appear as superposition of these
‘simple’ cases.

Projection on |x1, x2, . . . , xm〉 with xj + 1 < xj+1, ∀ j, x1 > 1 and xm < L. As
usual, we start by projecting (3.2) on a generic vector |x1, x2, . . . , xm〉. This leads to

∑
P∈Sm

AP

(
m∑
j=1

(β01,0 + β00,1 + β−11,0e
ikPj + β10,1e

−ikPj )− E

)
exp(i(kP1x1 + · · ·+ kPmxm)) = 0

which must be true for any choice of generic x’s. Therefore, we get for the energy (using the
explicit forms of the β’s given in Section 2)

E = − 1

2s

m∑
j=1

(
2− eikj − e−ikj

)
.

After the change of variable

eikj =
λj + is

λj − is
, (3.3)

the energy becomes

E = −
m∑
j=1

2s

λj + s2
.

This form for the energy is the one obtained by algebraic Bethe ansatz [10].
Projection on |x1, x2, . . . , xm〉 with xj + 1 = xj+1 for some j. Let us consider now

the projection of (3.2) when two pseudo-excitations are nearest neighbours. Using the form of
the energy previously found, we get∑

P∈Sm

AP
(
β01,1 − β01,0 − β00,1 + (β−11,1α2 − β−11,0)eikPj + (β11,1α2 − β10,1)e−ikP (j+1)

)
× ei(...kPjxj+kP (j+1)(1+xj)... ) = 0.

This equation is trivially satisfied for s > 1
2 since using explicit values we find β01,1−β01,0−β00,1 = 0,

β−11,1α2 − β−11,0 = 0 and β11,1α2 − β10,1 = 0. For the case s = 1
2 , we find a constraint between AP

and APTj (where Tj is the transposition of j and j + 1). Explicitly, it is given by (3.5) with
s = 1

2 .
Projection on |x1, x2, . . . , xm〉 with xj = xj+1 for some j. For s > 1

2 , we must also
consider the case when several particles are on the same site. Defining Sj , the shift operator
adding 1 to the jth variable, we get the following relation, when two particles are on the same
site

1

2s(1− 2s)
(1 + S−1i S−1i+1)

(
SiSi+1 + (2s− 1)Si − (2s+ 1)Si+1 + 1

)
a(. . . , xi, xi, . . . ) = 0
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⇒
(
SiSi+1 + (2s− 1)Si − (2s+ 1)Si+1 + 1

)
a(. . . , xi, xi, . . . ) = 0. (3.4)

Using the plane waves decomposition, we get the following constraint

APTj = σ
(
eikPj , eikP (j+1)

)
AP , (3.5)

where Tj is the transposition of j and j + 1, and we have introduced the scattering matrix

σ(u, v) = −uv + (2s− 1)u− (2s+ 1)v + 1

uv + (2s− 1)v − (2s+ 1)u+ 1
. (3.6)

As in the case s = 1
2 , relation (3.5) allows us to express all the AP ’s in terms of only one,

for instance AId (where Id is the identity of Sm). More precisely, one expresses P ∈ Sm as
a product of Ti, and then uses (3.5) recursively to express AP in terms of AId. At this point,
one must take into account that the expression of P in terms of Ti is not unique, because of the
relations

T 2
i = Id, [Tj , Ti] = 0 (|j − i| > 1) and TiTi+1Ti = Ti+1TiTi+1.

Therefore, for the construction to be consistent, the function σ has to satisfy the relations

σ(u, v)σ(v, u) = 1, [σ(u, v), σ(w, z)] = 0,

σ(u1, u2)σ(u1, u3)σ(u2, u3) = σ(u2, u3)σ(u1, u3)σ(u1, u2).

By direct computation, we can show that (3.6) indeed satisfies these relations. We can solve
the recursive defining relations for AP and we find, with a particular choice of normalisation
for AId, the following explicit form, for any P ∈ Sm

AP =
∏
j<k

(
1 +

1

2s

(eikPj − 1)(eikPk − 1)

eikPj − eikPk

)
.

This scattering matrix becomes after the change of variables u = λ+is
λ−is and v = µ+is

µ−is

σ(λ, µ) =
λ− µ− i
λ− µ+ i

.

Let us remark that after this change of variables the scattering matrix σ(λ, µ) does not depend
on the value of spin and is similar to the one obtained for s = 1

2 .
Projection on |x1, . . . , xi, . . . , xi︸ ︷︷ ︸

m1

, xi + 1, . . . , xi + 1︸ ︷︷ ︸
m2

, . . . , xm〉. One can compute

[
Pm1,m2(Si, . . . , Si+m1−1;Si+m1 , . . . , Si+m1+m2−1)

+ Pm2,m1

(
S−1i+m1+m2−1, . . . , S

−1
i+m1

;S−1i+m1−1, . . . , S
−1
i

)]
× a(. . . , xi, . . . , xi, xi + 1, . . . , xi + 1, . . . ) = 0, (3.7)

where

Pm1,m2(y; z) =

m2∑
n=1

αnαm2−nαm1β
n
0,m2

zm2−n+1 · · · zm2

+

M1∑
n=1

αm1−nαm2+nβ
−n
m1,m2

ym1−n+1 · · · ym1
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− αm1αm2

m1∑
j=1

(
β01,0 + β00,1

2
+ β−11,0yj

)
− αm1αm2

m2∑
j=1

(
β01,0 + β00,1

2
+ β−11,0zj

)

+
1

2
αm1αm2(β0m1,m2

+ β00,m1
+ β00,m2

),

and we have used the notation (2.3) and

y = (y1, y2, . . . , ym1) with yk = Si+k−1, 1 ≤ k ≤ m1,

z = (z1, z2, . . . , zm2) with zk = Si+m1+k−1, 1 ≤ k ≤ m2.

Relation (3.7) is implied by (3.4). The sketch of the proof goes as follows.
First, one can check directly that3 P0,2(Sj , Sj+1) = 0, ∀ j, since P0,2(Sj , Sj+1) corresponds to

relation (3.4). The same is true for P2,0(S
−1
j+1, S

−1
j ) (after multiplication by S−1j+1S

−1
j ).

Next, we rewrite (3.7) as

Pm1,m2(y; z) + Pm2,m1(z; y) = 0, (3.8)

where we have defined

y =
(
y−1m1

, . . . , y−12 , y−11

)
, i.e. yk = S−1i+m1−k, 1 ≤ k ≤ m1,

z =
(
z−1m2

, . . . , z−12 , z−11

)
, i.e. zk = S−1i+m1+m2−k, 1 ≤ k ≤ m2.

These variables are such that if P0,2(zj , zj+1) = 0 ∀ j, then we have also P0,2(zj , zj+1) = 0.
Hence, a property valid for Pm1,m2(y; z) will be also valid for Pm2,m1(z; y).

We first focus on

P0,m(z) =
m∑
n=1

αnαm−nβ
n
0,mzm−n+1 · · · zm − αmβ−11,0

m∑
j=1

zj + αm
(
β00,m −mβ01,0

)
.

If we suppose that we have variables zj such that P0,2(zj , zj+1) = 0, ∀ j, then from expres-
sion (2.2), and after some calculation, one can show that

z1z2 · · · zm = 1−m+

m∑
j=1

χ
(m)
j zj ,

χ
(m)
j = (−1)m+j

m−j∏
k=1

(
2s

k
− 1

) j−1∏
`=1

(
2s

`
+ 1

)
.

Thus, the polynomial P0,m(z) becomes a linear function of the zj ’s. Looking at the coefficient
of zj and at the constant term, one checks that they identically vanish, so that P0,m(z) = 0.

Looking at the general polynomial Pm1,m2(y, z) and using the relation

αm1−nαm2+nβ
−n
m1,m2

= αM2αM1−nαnβ
n
0,M1

,

one can rewrite it as

Pm1,m2(y, z) = αm1 P0,m2(z) + αM2 P0,M1(ym1−M1+1, . . . , ym1) + αM1 αM2 Rm1,m2(y),

Rm1,m2(y) = −
m1−M1∑
j=1

(
β01,0 + β00,1

2
+ β−11,0yj

)
+

1

2

(
β00,M2

− β0M1,0 + β00,m1
− β00,m2

)
.

3Multiplication on the right by a(. . . , xi, . . . , xi, xi + 1, . . . , xi + 1, . . . ) will be understood during the proof.
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Thus, to prove relation (3.8), it is enough to show that

Rm1,m2(y) +Rm2,m1(z) = 0. (3.9)

Using the expression of M1 and M2, see (2.3), it is easy to see that

m1 −M1 = m2 −M2 ≡ m12 ≥ 0.

Two cases have to be distinguished: m12 = 0 or m12 > 0. In the first case, relation (3.9) is
trivially satisfied. In the second case, equation (3.9) can be rewritten as

m12∑
j=1

(
yj + zj

)
= 2m12,

which is obeyed if

Si+j−1 + S−1i+2s+j−1 = 2.

To prove this last relation, we use recursively (3.4) to show

Sk Sk+` + 1 +

(
2s

`
− 1

)
Sk −

(
2s

`
+ 1

)
Sk+` = 0 ∀ j.

Taking k = i+ j − 1, ` = 2s and using m1 +m2 = 2s+ m12 gives the result.
Hence, relation (3.8) is satisfied if the variables are such that P0,2(zj , zj+1) = P0,2(yj , yj+1) =

0, ∀ j. This ends the proof.
This step concludes the bulk part of the problem, the other possible equations being fulfilled

by linearity. It remains to take into account the periodic boundary condition. It is done through
the following projection.

Projection on |1, x2, . . . , xm〉. As usual, this leads to a constraint on the parameters kj .
It is not surprising since these parameters can be interpreted as momenta: we are quantizing
them since we are on a line with (periodic) boundary conditions. Namely, this leads to∑

P∈Sm

AP
(

exp(i(kP2x2 + · · ·+ kPmxm))

− exp(i(kP1x2 + kP2x3 + · · ·+ kP (m−1)xm + kPmL))
)

= 0.

Now, we first perform the change of variable in the summation P → PT1 · · ·Tm−1 in the second
term of the previous relation. Then, using recursively relation (3.5) and projecting on inde-
pendent exponential functions, we get the quantization of the momenta via the so-called Bethe
equations

eiLkj =
∏
6̀=j
σ
(
eik` , eikj

)
for j = 1, 2, . . . ,m. (3.10)

Since these equations express the periodicity of the chain, they are equivalent to the ones ob-
tained through projection on |x1, . . . , xm−1, L〉 (as it can be checked explicitly). Thus, we do
not have any new independent equations through projections, and the eigenvalue problem has
been solved (up to the resolution of the Bethe equations).

Note that using the change of variables (3.3) and the expression (3.6) for the scattering
matrix, equations (3.10) can be rewritten as

λj + is

λj − is
= −

m∏
`=1

λ` − λj − i
λ` − λj + i

.

One recognizes the usual Bethe equations of the spin s chain [10, 11].
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Action of su(2) generators

Since the su(2) generators commute with the Hamiltonian, from any eigenfunction Ψm, one
can construct (possibly) new eigenfunctions by application of Sα, α = z,± on Ψm. As already
mentioned, it is a straightforward calculation to check that

Sz Ψm = (Ls−m)Ψm.

Moreover, it is part of the ansatz to suppose that the eigenvector Ψm is a highest weight vector
of the su(2) symmetry algebra,

S+Ψm = 0.

Let us stress that for Ψm to be an eigenvector, one has to assume that the rapidities λj have to
obey the Bethe equations. In the same way, Ψm is a highest weight vector only when the Bethe
equations are fulfilled. In the context of coordinate Bethe ansatz, there exists no general proof
(for generic spin s) of it (at least to our knowledge). Note however that for spin 1

2 , the proof
was given in [12]. Nevertheless, one can check the highest weight property on different cases,
and we illustrate it below by the calculation of S+Ψ1, S+Ψ2 and S+Ψ3. We also show on the
last example where the proof used by Gaudin does not work anymore for spin s > 1

2 .
The Ψm vectors should be also related to the ones obtained through algebraic Bethe ansatz

(ABA). Such a correspondence, for the case of spin 1
2 , has been done in [13] using an iteration

trick based on the comultiplication [14, 15]. Let us note that in [13] they used the relation
(T12)

2 = 0 which is not true anymore for s > 1
2 . Their proof must be generalized to apply in

our case. Let us also notice the other method using the Drinfel’d twist [16]. Moreover, since it
is known that the ABA construction leads to su(2) highest weight vectors, and assuming the
same property for the coordinate Bethe approach, it is clear that the two methods should lead
to the same vectors, up to a normalisation.

For instance, considering Ψ1, its ABA “counterpart” takes the form

Φ1 =

L∑
x=1

T
(1)
11 (λ1) · · ·T (x−1)

11 (λ1)T
(x)
12 (λ1)T

(x+1)
22 (λ1) · · ·T (L)

22 (λ1)|∅〉,

where T (j)(λ) is the representation of the monodromy matrix at site j:

T (j)(λ) =
1

λ− is

(
λ+ i szj is−j
is+j λ− i szj

)
and λ1 is the Bethe parameter. This leads to

Φ1 =
i

λ1 + is

L∑
x=1

(
λ1 + is

λ1 − is

)x
s−x |∅〉,

that has to be compared with

Ψ1 =

L∑
x=1

eik1x|x〉 =
L∑
x=1

eik1xe−x |∅〉.

Using the change of variable (3.3), it is clear that, apart from a normalisation factor, the two
vectors are equal.

Calculation of S+Ψ1 and S+Ψ2. A direct calculation leads to

S+Ψ1 = 2s
y

1− y
(
1− yL

)
|∅〉 with y = eik1 ,
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which is identically zero using the Bethe equation yL = 1. Hence, Ψ1 is indeed a highest weight
vector for the su(2) symmetry.

In the same way, one can compute

S+Ψ2 =
∑
P∈S2

AP (k1, k2)

×


L∑
x=1

(2s− 1)ei(k1+k2)x|x〉+
∑

1≤x1<x2≤L
2s ei(kP1x1+kP2x2)

(
|x1〉+ |x2〉

) .

Using the relation

AT1(k1, k2) = σ(k1, k2)AId(k1, k2)

and the normalisation AId(k1, k2) = 1, one gets

S+Ψ2 =

L∑
x=1

{
(2s− 1)(y1y2)

x
(
1 + σ(y1, y2)

)
+ 2s

[
yx+1
2 − yL+1

2

1− y2
yx1

+ σ(y1, y2)
yx+1
1 − yL+1

1

1− y1
yx2 +

y1 − yx1
1− y1

yx2 + σ(y1, y2)
y2 − yx2
1− y2

yx1

]}
|x〉,

where yj = eikj , j = 1, 2.
Now, from the Bethe equations

yL1 = σ(y1, y2) and yL2 = σ(y2, y1),

one simplifies it as

S+Ψ2 =
L∑
x=1

(y1y2)
x

{
2s− 1 + 2s

(
y2

1− y2
− 1

1− y1

)

+ σ(y1, y2)

[
2s− 1 + 2s

(
y1

1− y1
− 1

1− y2

)]}
|x〉.

Finally, the form of the scattering matrix σ ensures that the quantity within brackets {· · · }
vanishes.

Calculation of S+Ψ3. Performing the same kind of calculation on Ψ3, we get

S+Ψ3 =
∑
P∈S3

AP (k)

{
L∑
x=1

(y1y2)
x

[
(2s− 2)yx3 + 2s

yx+1
3 − yL+1

3

1− y3

+ 2sσ23σ13
(y3 − yx3 )

1− y3

]
|x, x〉+

∑
1≤x1<x2≤L

yx11 y
x2
2

[
(2s− 1)σ23y

x1
3 + (2s− 1)yx23

+ 2s
yx2+1
3 − yL+1

3

1− y3
+ 2sσ23σ13

y3 − yx13
1− y3

+ 2sσ23
yx1+1
3 − yx23

1− y3

]
|x1, x2〉

}
,

where4

yj = eikPj , j = 1, 2, 3 and σj` = σ(yj , y`), 1 ≤ j 6= ` ≤ 3.

4Let us stress the dependence on P ∈ S3 in the definition of yj : it is used below.



Coordinate Bethe Ansatz for Spin s XXX Model 11

After use of the Bethe equation, yL3 = σ23σ13, it can be recasted as

S+Ψ3 =
∑
P∈S3

AP (k)

{
L∑
x=1

(y1y2y3)
x

[
2s− 2 +

2s

1− y3
(y3 − σ23σ13)

]
|x, x〉

+
∑

1≤x1<x2≤L
yx11 y

x2
2

[
σ23y

x1
3

(
2s− 1 + 2s

y3
1− y3

− 2s

1− y3
σ13

)

+ yx23

(
2s− 1 + 2s

y3
1− y3

− 2s

1− y3
σ23

)]
|x1, x2〉

}
.

Using the sum on P to relabel the variables yj , one can rewrite this equality as

S+Ψ3 =
∑
P∈S3

AP (k)

{
L∑
x=1

1

6
(y1y2y3)

x

×

[
(2s− 2)

(
1 + σ12 + σ23 + σ12σ13 + σ23σ13 + σ12σ13σ23

)
+

2s

1− y3
(
y3(1− σ12)− σ23σ13 − σ12σ13σ23

)
+

2s

1− y2
(
y2σ23(1− σ13)− σ12 − σ12σ13

)
+

2s

1− y1
(
y1σ12σ13(1− σ23)− 1− σ23

)]
|x, x〉

+
∑

1≤x1<x2≤L
(y1y2)

x1yx23

[
(1 + σ12)(2s− 1) + 2s

(
y2

1− y2
− 1

1− y1

)

+ 2sσ12

(
y1

1− y1
− 1

1− y2

)]
|x1, x2〉

+
∑

1≤x1<x2≤L
yx11 (y2y3)

x2

[
(1 + σ23)(2s− 1) + 2s

(
y3

1− y3
− 1

1− y2

)

+ 2sσ23

(
y2

1− y2
− 1

1− y3

)]
|x1, x2〉

}
.

The term inside the square bracket [· · · ] in factor of (y1y2)
x1yx23 on the one hand, and in factor

of yx11 (y2y3)
x2 on the other hand, identically vanishes. It is in fact the same identity as the one

used to show that S+Ψ2 = 0. It is also the identity used by Gaudin [12] to prove, for spin 1
2 ,

that Ψm, ∀m, is a highest weight vector.

When the spin is higher than 1
2 , it remains the term in factor of |x, x〉, which is a state that

does not exist when s = 1
2 . The square bracket in front of |x, x〉 also identically vanishes, another

identity due to the form of the scattering matrix σ, and we get S+Ψ3 = 0.

When s = 1 this new identity is sufficient (together with the one used for S+Ψ2) to prove
that Ψm, ∀m, is a highest weight vector. However, for s > 1, to prove that S+Ψ4 = 0, one needs
to consider the state |x, x, x〉, that we will lead to another identity of the scattering matrix, and
so on: for spin s, one needs 2s identities to prove that Ψm, ∀m, is a highest weight vector.
Hence the difficulty to get a generic proof of it.
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4 Conclusions

In previous studies, the eigenfunctions of the spin s chain studied in this paper were known
thanks to the algebraic Bethe ansatz. This later construction allows one to compute the cor-
relation functions [17, 18, 19]. Prior to that computation, the coordinate Bethe ansatz allowed
Gaudin [20] to show, for spin 1

2 chains, orthogonality relations for the Bethe eigenfunctions, and
prove a closure property for these functions. The explicit form of the eigenfunctions computed
in this note is a first step toward a generalisation to spin s chains. The same method can also
be applied to spin chains associated to higher rank algebras, for which less is known.

In the same way, the spin 1 XXX chain with open (diagonal) boundaries has been studied
in [21]: there is no doubt that their results can be generalized to spin s, using the present
approach. The advantage of this method lies in the fact that we do not need to solve the reflection
equation before computing the spectrum. We may start with general boundary conditions and
find the ones for which the method is still consistent. In this way, the boundaries which keep
the model solvable are classified.

We also believe that the method presented here can be applied to solve the XXZ model with
higher spin in the case of periodic boundary conditions. These cases have been treated through
algebraic Bethe ansatz, see e.g. [22, 23]. More interestingly, general XXZ models with open
boundary conditions can also be treated in this way, see e.g. [24] where a first account has been
given.

To conclude, we hope that this paper convinced the reader that the coordinate Bethe ansatz
is a very powerful method and can be applied to solve a rather large class of integrable models.
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