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Instituto de F́ısica Teórica, UNESP-Universidade Estadual Paulista,
Caixa Postal 70532-2, 01156-970, São Paulo, SP, Brasil
E-mail: david@ift.unesp.br, david.schmidtt@gmail.com

Received December 10, 2009, in final form May 19, 2010; Published online May 27, 2010
doi:10.3842/SIGMA.2010.043

Abstract. We couple two copies of the supersymmetric mKdV hierarchy by means of the
algebraic dressing technique. This allows to deduce the whole set of (N,N) supersymmetry
transformations of the relativistic sector of the extended mKdV hierarchy and to interpret
them as fermionic symmetry flows. The construction is based on an extended Riemann–
Hilbert problem for affine Kac–Moody superalgebras with a half-integer gradation. A gene-
ralized set of relativistic-like fermionic local current identities is introduced and it is shown
that the simplest one, corresponding to the lowest isospectral times t±1 provides the super-
charges generating rigid supersymmetry transformations in 2D superspace. The number of
supercharges is equal to the dimension of the fermionic kernel of a given semisimple element
E ∈ ĝ which defines both, the physical degrees of freedom and the symmetries of the model.
The general construction is applied to the N = (1, 1) and N = (2, 2) sinh-Gordon models
which are worked out in detail.
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1 Introduction

It is well known that bosonic Toda models are underlined by Lie algebras and that they provide
some sort of field theoretic realization to them. They are relevant to particle physics because
they describe integrable perturbations of two-dimensional conformal field theories, allow soliton
configurations in their spectrum and are useful laboratories to develop new methods relevant to
the study of non-perturbative aspects of quantum field theory.

A natural step when having a bosonic field theory is to try to incorporate fermions and to
construct its supersymmetry extension. In the case of bosonic Toda models this is a not an easy
task because we want to preserve the integrability, which is one of the main properties of this
kind of theories. Integrability is a consequence of the existence of an infinite number of bosonic
Hamiltonians in involution which depend strongly on the Lie algebraic input data defining the
Toda model itself. Each Hamiltonian generates a bosonic (even) symmetry flow and due to the
fact that supersymmetry is just a symmetry, it is natural to expect the presence of conserved
supercharges each one generating its own fermionic (odd) symmetry flow and also to expect
that the supersymmetric extension is not related to a Lie algebra but to a Lie superalgebra,
see [12] for an example of how bosonic symmetries are not preserved after supersymmetrization.
By definition, a supersymmetry is a symmetry where the application of two successive odd
transformations close into an even one. If there is an infinite number of even flows, then it is
natural to incorporate the same number of odd flows in order to close the ‘flow superalgebra’.
Hence, the set of fields F will depend on an infinite number of even and odd variables F =
F(t±1/2, t±1, t±3/2, t±3, . . . ), see [20] for a first example of this ‘flow approach’ applied to the KP
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hierarchy. Our main motivation to formulate supersymmetric affine Toda models within this
setting relies on the possibility of using powerful techniques available in the theory of infinite-
dimensional Lie algebras and integrable systems, in particular, vertex operator representations
and tau functions. The goal is to set the ground to study the quantization of the affine super
Toda integrable models within this fashion.

Several authors have studied the problem of constructing supersymmetric extensions of inte-
grable hierarchies. On one side, for the Toda lattice most of them use superfields as a natural way
to supersymmetrize Lax operators while preserving integrability or to obtain a manifestly super-
symmetric Hamiltonian reduction of super WZNW models, see for example [22, 11, 10, 5]. The
common conclusion is that only Lie superalgebras (classical or affine) with a purely fermionic
simple root system allow supersymmetric integrable extensions, otherwise supersymmetry is bro-
ken. On the other side, there are several supersymmetric formulations of the Drinfeld–Sokolov
reduction method for constructing integrable hierarchies in which the algebraic Dressing method
and the ‘flow approach’ were gradually developed and worked out in several examples, see for
example [18, 9, 19, 4]. The main goal of these works is the construction of an infinite set of
fermionic non-local symmetry flows but a clear relation between the conserved supercharges and
its corresponding field component transformations remains obscure. In [3], fermionic fields were
coupled to the Toda fields in a supersymmetric way in the spirit of generalized Toda models
coupled to matter fields introduced in [14] and further analyzed in [13]. This coupling was per-
formed on-shell and only the first half of the supersymmetric sector was analyzed (corresponding
to the positive part t+1/2, t+1). An important result of that paper was the introduction of a ‘re-
ductive’ automorphism τred (constructed explicitly in the sl(2, 1) affine case) devised to remove
the non-locality of the lowest supersymmetric flow t+1/2, as a consequence, it was shown that it
is not strictly necessary to start with an affine superalgebra with a purely fermionic simple root
system in order to get an integrable supersymmetric extension of a bosonic model. See also [24]
for another (based on Osp(1,4) having one bosonic and one fermionic simple roots) example of
a Toda model with superconformal symmetry realized non-linearly. The complementary off-shell
Hamiltonian reduction was developed in [15] by using a two-loop super-WZNW model where
the (local) action functional leading to the supersymmetric Leznov–Saveliev equations of motion
was constructed, in principle, for any superalgebra endowed with a half-integer gradation and
invariant under τred. It was also shown that several known purely fermionic integrable models
belong to the family of perturbed WZNW on supercosets where the bosonic part is fully gauged
away.

The purpose of this paper is to introduce the second half of the supersymmetric sector
(corresponding to the negative part t−1/2, t−1) and to study the whole coupled system generated
by the subset of symmetry flows (t−1, t−1/2, t+1/2, t+1). This analysis was not performed neither
in [3] nor [15] so this work complement their study. The outcome is that the supersymmetry
flows described in terms of the algebraic dressing technique turn out to be equivalent to the
usual notion of supersymmetry described in terms of superspace variables (this is shown by
considering explicit examples). This allows to locate the supersymmetry of the models inside
a formalism which is manifestly integrable by construction.

In Section 2.1 we review the algebraic dressing technique and use it to couple two identical
copies of the same integrable hierarchy thus defining its extension. In Section 2.2 we introduce
the relativistic/supersymmetric sector of the extended super-mKdV hierarchy by coupling two
super-mKdV hierarchies in different gauges. This idea was first used in [21] in the bosonic case.
In Section 2.3 we construct two odd Lax pairs associated to the chiral sectors of the hierarchy
and in Section 2.4 the complete set of extended (N,N) supersymmetry transformations is given.
The recursion operators are given in Section 2.5 to show that all higher fermionic flows are
non-local. In Section 2.6 we use the extended Riemann–Hilbert problem to construct a set of
local fermionic current identities associated to the non-Abelian flows t±1/2, where each pair of
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isospectral flows t±n is coupled in a relativistic-like manner. It is also shown that the number
of supersymmetries (i.e. supercharges) is equal to the dimension of the fermionic kernel of the
operator AdE. This means that in the superalgebra decomposition ĝ = ker (AdE)⊕ Im (AdE)
induced by the constant semisimple element E, any element of the affine superalgebra ĝ have
a well defined role, i.e. it defines a symmetry flow or a physical degree of freedom. In Sec-
tion 2.7 we use the two-Loop super WZNW action to construct the supercharges generating the
supersymmetry transformations giving a direct relation between the t±1/2 odd flows and the
fields transformations. We also show that the Noether procedure reproduces the supercharges
constructed in Section 2.6 by using the factorization problem thus confirming their equivalence.
Finally, in the Sections 3.1 and 3.2 we study in detail the construction in order to have a bet-
ter feeling of how the fermionic symmetry flows of the models are defined by the kernel part
(ker (AdE)) and to make contact with the usual notion of superspace. We also give an example
of a solution to a relativistic-like equation expressed in terms of the higher graded t±3 isospec-
tral times only, thus generalizing the sine-Gordon equation. In the conclusion we pose the more
important problems to be treated in the future which are the main motivations of the present
work.

2 General analysis

Here we study the supersymmetric sector of the extended mKdV hierarchy and obtain the main
results of the paper. The goal of this chapter is to put into one consistent body the new pieces
with the known previous results. The core of the flow approach we will follow relies on the
algebraic dressing technique used to unify symmetry flows (isospectral and non-Abelian) of
integrable hierarchies related to affine Lie algebras. The Riemann–Hilbert factorization defines
the integrable structure and a related hierarchy of non-linear partial differential equations.

2.1 The algebraic dressing technique

Consider an affine Lie superalgebra ĝ =
+∞⊕

i∈Z/2=−∞

ĝi half-integer graded by an operator Q

([Q, ĝi] = iĝi) and two supergroup elements (dressing matrices) Θ and Π taken as the exponen-
tials of the negative/positive subalgebras of ĝ respectively, i.e. ĝ− and ĝ+ in the decomposition
ĝ = ĝ−+ ĝ+ induced by the projections P±(∗) = (∗)± along positive and negative grades. They
are taken to be formal expansions of the form

Θ = exp
(
ψ(−1/2) + ψ(−1) + ψ(−3/2) + · · ·

)
,

Π = BM, M = exp
(
− ψ(+1/2) − ψ(+1) − ψ(+3/2) − · · ·

)
, (1)

where B = exp ĝ0 ∈ Ĝ0 and ψ(i) ∈ ĝi. The constant semisimple elements E(±1) of grade ±1([
Q,E(+1)

]
= ±E(+1)

)
define operators AdE(±1) each one splitting the superalgebra ĝ = K±+

M± into kernel and image subspaces obeying [K±,K±] ⊂ K±, [K±,M±] ⊂ M±, where K± ≡
ker

(
AdE(±1)

)
and M± ≡ Im

(
AdE(±1)

)
. The kernel and image subspaces have bosonic and

fermionic components K± = K±B ⊕ K
±
F and M± = M±

B ⊕M
±
F each one having a well defined

(half-integer) grade respect the operator Q.
Recall [6] that the dressing transformation of x ∈ Ĝ by g ∈ Ĝ is defined by

gx =
(
xgx−1

)
± xg

−1
± .

The infinitesimal transformation for g = expA with A = A+ +A− and A± ∈ ĝ± is

δAx = gx− x = ±
(
xAx−1

)
± x∓ xA±. (2)



4 D.M. Schmidtt

From this we find the pure actions of A = A+ ∈ K+ and A = A− ∈ K− on x = Θ and x = Π,
respectively

δA+Θ = −
(
ΘA+Θ−1

)
−Θ, δA−Π = +

(
ΠA−Π−1

)
+

Π. (3)

To see this, consider A = A+ and x = Θ and the upper sign in (2). We get

δA+Θ =
(
ΘA+Θ−1

)
+
Θ−ΘA+ = −

(
ΘA+Θ−1

)
−Θ,

where we have used the decomposition ΘA+Θ−1 =
(
ΘA+Θ−1

)
+

+
(
ΘA+Θ−1

)
−. For A = A−

and x = Π the proof is similar. We also have that for A = A− and x = Θ and for A = A+ and
x = Π the variations vanish, δA−Θ = 0 and δA+Π = 0 respectively. Hence, in the present form,
the dressing matrices (1) only evolve under half of the flows.

Setting A± = t±nE
(±n) (with

[
Q,E(±n)

]
= ±nE(±n)) and taking the limit t±n → 0, we have

the isospectral evolutions for Θ and Π

∂+nΘ = −
(
ΘE(+n)Θ−1

)
−Θ, ∂−nΠ = +

(
ΠE(−n)Π−1

)
+
Π, (4)

where δA+Θ/t+ =
(
A+Θ−Θ

)
/t+ → ∂+nΘ and similar for δA−Π. From equations (4) we obtain

the dressing relations

E
(+n)
Θ =

(
ΘE(+n)Θ−1

)
+

= ΘE(+n)Θ−1 + ∂+nΘΘ−1,

E
(−n)
Π =

(
ΠE(−n)Π−1

)
− = ΠE(−n)Π−1 − ∂−nΠΠ−1

and the Lax operators

L+n = ∂+n − E(+n)
Θ , L−n = ∂−n + E

(−n)
Π .

The Baker–Akhiezer wave functions Ψ± are defined by L±nΨ∓ = 0 and are given by

Ψ− = Θexp

+
∑

n∈Z+

t+nE
(+n)

 , Ψ+ = Πexp

− ∑
n∈Z+

t−nE
(−n)

 .

Equations (4) describe two identical but decoupled systems of evolution equations as shown
above, the coupling of the two sectors is achieved by imposing the relation g = Ψ−1

− Ψ+ with g
a constant group element. Alternatively, we have

exp

+
∑

n∈Z+

t+nE
(+n)

 g exp

+
∑

n∈Z+

t−nE
(−n)

 = Θ−1(t)Π(t). (5)

This is the extended Riemann–Hilbert factorization problem originally used in [2] to extend
the mKdV hierarchy to the negative flows. From (5) we recover (4) and two important extra
equations describing the isospectral evolution of Θ and Π with respect opposite flow parameters

∂+nΠ = +
(
ΘE(+n)Θ−1

)
+
Π, ∂−nΘ = −

(
ΠE(−n)Π−1

)
−Θ. (6)

These equations are extended to actions of A+ ∈ K+ and A− ∈ K− on Π and Θ, similar to (3)
we have

δA+Π = +
(
ΘA+Θ−1

)
+
Π, δA−Θ = −

(
ΠA−Π−1

)
−Θ. (7)

The equations (3), (4) and (6), (7) describe the isospectral evolution and non-Abelian varia-
tions of the dressing matrices Θ and Π and their consistency, as an algebra of flows, is encoded
in Proposition 1 below. Note that the flows associated to the positive times are dual to the ones
associated to the negative times, in the sense that K∗+ ' K− under the (assumed to exists) non-
degenerate inner product 〈∗〉 which provide the orthogonality condition 〈ĝiĝj〉 = δi+j,0 of graded
spaces. This also show how the degrees of freedom are naturally doubled by the extension.
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Remark 1. If we consider pseudo-differential operators, the equations (4), (6) are good starting
points to extend the KP hierarchy with the negative flows and the expectation value of (5) to
extend its corresponding τ -function.

2.2 Relativistic sector of the extended mKdV hierarchy

From (4) and (6) we have the following

Definition 1. The relativistic sector of the extended mKdV hierarchy is defined by the following
set of evolution equations

∂+Θ = +
(
ΘE(+1)

+ Θ−1
)
<0

Θ, ∂+Π = −
(
ΘE(+1)

+ Θ−1
)
≥0

Π,

∂−Θ = +
(
ΠE(−1)

− Π−1
)
<0

Θ, ∂−Π = −
(
ΠE(−1)

− Π−1
)
≥0

Π, (8)

for the two isospectral times t±1 = −x± associated to the grade ±1 constant elements E(±1)
± ∈ ĝ.

The (∗)≥0 denote projection onto grades ≥ 0 and the (∗)<0 onto grades ≤ −1/2.

In the definition above we write explicitly the projections (∗)± in terms of grades in order to
avoid confusion with the different projections used below in (10). The Lax covariant derivative(
L = d+AL

)
extracted from (8) has a Lax connection AL given by

L− = ∂− +AL
−, AL

− = −B
(
E

(−1)
− + ψ

(−1/2)
−

)
B−1,

L+ = ∂+ +AL
+, AL

+ = −∂+BB
−1 + ψ

(+1/2)
+ + E

(+1)
+ , (9)

where

ψ
(±1/2)
± = ±

[
ψ(∓1/2), E

(±1)
±

]
∈M(±1/2)

F .

The RHS of (5) can be written in an equivalent way because we have

Θ−1(t)Π(t) = Θ−1(t)BM =
(
B−1Θ

)−1
M

and this motivates the following

Definition 2. The gauge-equivalent relativistic sector is defined by the following set of evolution
equations

∂+Θ′ = +
(
Θ′E(+1)

+ Θ′−1
)
≤0

Θ′, ∂+Π′ = −
(
Θ′E(+1)

+ Θ′−1
)
>0

Π′,

∂−Θ′ = +
(
Π′E(−1)

− Π′−1
)
≤0

Θ′, ∂−Π′ = −
(
Π′E(−1)

− Π′−1
)
>0

Π′, (10)

where Θ′ = B−1Θ and Π′ = M. The (∗)>0 denote projection onto grades ≥ +1/2 and (∗)≤0

onto grades ≤ 0.

The Lax covariant derivative extracted from (10) has a Lax connection

L′− = ∂− +A′L− , A′L− = B−1∂−B − ψ(−1/2)
− − E(−1)

− ,

L′+ = ∂+ +A′L+ , A′L+ = B−1
(
E

(+1)
+ + ψ

(+1/2)
+

)
B

and it is related to (9) by a gauge transformation L → L′, where A′L = B−1ALB − dB−1B.
Clearly, the two definitions are equivalent.

The constant part of the Lax connection is given by (Σ is parametrized by x±)

E(±1) = E
(±1)
± dx± ∈ ΩB (Σ)⊗ ĝ(±1)
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and change under coordinate transformations because of their dx± basis. We also have that

ψ
(±1/2)
± dx± = ΩF (Σ)⊗ ĝ(±1/2)

are fermionic 1-forms. Thus, AL is a superalgebra-valued 1-form. This is to recall that no
superspace formulation is involved in the construction of our super-Lax operators and that the
approach relies entirely on pure Lie algebraic properties.

The equations of motion are defined by the zero curvature of AL, namely [L+, L−] = 0 and
leads to a system of non-linear differential equations in which the derivatives ∂± appear mixed
with the same order, hence the name relativistic. The coupling of one positive and one negative
higher graded isospectral flow of opposite sign is direct from the construction. This allows the
construction of relativistic-like integrable equations, see equation (37) below for an example.

In the definitions of the Lax operators above we actually have

−∂+BB
−1 = A

(0)
+ +Q

(0)
+ , −B−1∂−B = A

(0)
− +Q

(0)
− , (11)

where (the upper label denoting the Q grading)

A
(0)
± = ±

[
ψ(∓1), E

(±1)
±

]
∈M(0)

B , Q
(0)
± =

1
2
[
ψ(∓1/2),

[
ψ(∓1/2), E

(±1)
±

]]
∈ K(0)

B .

These relations are the solutions to the grade −1 and +1 components of the zero curvature
relations [L+, L−]−1 =

[
L′+, L

′
−
]
+1

= 0 for the operators L± and L′± obtained from (8) and (10).

The presence of the fermion bilinear Q(0)
± results in the non-locality of the odd t±1/2 symmetry

flows [3] and also in the existence of gauge symmetries of the models as can be deduced from
the off-shell formulation of the system (9) done in [15]. Having K(0)

B 6= ∅ translates into the
existence of flat directions of the Toda potential which takes the models out of the mKdV
hierarchy. Thus, we impose the vanishing of Q(0)

± . Another reason why we impose Q(0)
± = 0, is

to get a well defined relation between the dressing matrix Θ and the term A
(0)
± in the spirit

of [4], which means that the dynamical fields are described entirely in terms of the image part
of the algebra M. The kernel part K is responsible only for the symmetries of the model and
all this together clarifies the role played by the term Q

(0)
± . Then, by restricting to superalgebras

in which Q(0)
± = 0 we have local t±1/2 flows and models inside the mKdV hierarchy.

Remark 2. Flat directions in the Toda potential VB =
〈
E

(+1)
+ BE

(−1)
− B−1

〉
allows the existence

of soliton solutions with Noether charges, e.g. the electrically charged solitons of the complex
sine-Gordon model which is known to belong to the relativistic sector of the AKNS hierarchy [1]
instead of the mKdV.

We parametrize the Toda field as B = g exp[ηQ] exp[νC], provided we have a subalgebra
solution to the algebraic conditions Q(0)

± = 0. The model is then defined on a reduced group
manifold and (11) is conveniently parametrized in the image part M(0)

B of the algebra, i.e.
−∂+BB

−1 = A
(0)
+ and −B−1∂−B = A

(0)
− .

The zero curvature (FL = 0) of (9) gives the supersymmetric version of the Leznov–Saveliev
equations [3]

0 = F
(+1/2)
+− = −∂−ψ(+1/2)

+ +
[
Bψ

(−1/2)
− B−1, E

(+1)
+

]
,

0 = F
(0)
+− = ∂−

(
∂+BB

−1
)
−

[
E

(+1)
+ , BE

(−1)
− B−1

]
−

[
ψ

(+1/2)
+ , Bψ

(−1/2)
− B−1

]
,

0 = F
(−1/2)
+− = B

(
− ∂+ψ

(−1/2)
− +

[
E

(−1)
− , B−1ψ

(+1/2)
+ B

])
B−1. (12)
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Written more explicitly in the form

∂−ψ
(+1/2)
+ = e−η/2

[
gψ

(−1/2)
− g−1, E

(+1)
+

]
,

∂−
(
∂+gg

−1
)

+ ∂−∂+νC = e−η
[
E

(+1)
+ , gE

(−1)
− g−1

]
+ e−η/2

[
ψ

(+1/2)
+ , gψ

(−1/2)
− g−1

]
,

∂+ψ
(−1/2)
− = e−η/2

[
E

(−1)
− , g−1ψ

(+1/2)
+ g

]
, ∂−∂+ηQ = 0,

the linearized equations of motion with η = η0, η0 ∈ R may be written in the Klein–Gordon
form (

∂+∂− + m̂2
)
◦ (Ξ) = 0, ∂+∂−ν − Λ = 0,

for Ξ = ψ(±1/2) and log g, where m̂2 is the mass operator

m̂2(Ξ) = e−η0
(
adE(−1)

− ◦ adE(+1)
+

)
◦ (Ξ) = m2IΞ.

We have used e−η0
[
E

(+1)
+ , E

(−1)
−

]
= ΛC. Then, the Higgs-like field η0 sets the mass scale of the

theory. The massless limit corresponds to η0 → ∞. Note that all fields have the same mass
which is what we would expect in a supersymmetric theory. Taking η = η0, the free fermion
equations of motion reads

∂±ψ
(±1/2) = ∓m̂±(ψ(∓1/2)),

where m̂±(∗) = e−η0/2adE(±1)
± ◦ (∗). These equations show that fermions of opposite ‘chirality’

are mixed by the mass term and that in the massless limit they decouple. This means that
positive/negative flows are naturally related to the two chiralities in the field theory. In most
of the literature, only the positive set of times is usually considered.

The role of the fields ν and η associated to the central term C (of the Kac–Moody algebra ĝ)
and grading operator Q is to restore the conformal symmetry of the models associated to the
Loop algebra g̃ (which are non-conformal) so we are actually dealing with conformal affine Toda
models.

2.3 Non-Abelian flows: the odd Lax pairs L±1/2

Here we deduce the two lowest odd degree fermionic Lax operators giving rise to the ±1/2
supersymmetry flows, which are the ones we are mainly concerned in the body of the paper.
The negative part is the novelty here. From (3) and (7) we have

Definition 3. The non-Abelian evolution equations of the Dressing matrices are defined by

δK(+)Θ = −
(
ΘK(+)Θ−1

)
<0

Θ, δK(+)Π = +
(
ΘK(+)Θ−1

)
≥0

Π,

δK(−)Θ = −
(
ΠK(−)Π−1

)
<0

Θ, δK(−)Π = +
(
ΠK(−)Π−1

)
≥0

Π, (13)

for some positive/negative degree generators K(+) and K(−) in the kernel of the operators
AdE(±1). Equivalently, we have

δK(+)Θ′ = −
(
Θ′K(+)Θ′−1

)
≤0

Θ′, δK(+)Π′ = +
(
Θ′K(+)Θ′−1

)
>0

Π′,

δK(−)Θ′ = −
(
Π′K(−)Π′−1

)
≤0

Θ′, δK(−)Π′ = +
(
Π′K(−)Π′−1

)
>0

Π′. (14)

The consistency of all flows, as an algebra, is encoded in the following
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Proposition 1. The flows (13) and (14) satisfy[
δ
K

(±)
i

, δ
K

(±)
j

]
(∗) = δ

∓
[
K

(±)
i ,K

(±)
j

](∗), [
δ
K

(+)
i

, δ
K

(−)
j

]
(∗) = 0,

where (∗) = Θ, Π, Θ′, Π′. The map δ : K → δK is a homomorphism.

Proof. The proof is straightforward after noting that [X,Y ]± = [X±, Y±] + [X±, Y∓]± +
[X∓, Y±]±. �

The last relation above means that the symmetries generated by elements in K± commute
themselves. This can be traced back to be a consequence of the second Lie structure induced on ĝ

by the action of the dressing group which introduces a classical super r-matrix R = 1
2 (P+ − P−)

defined in terms of the projections P+ and P− of ĝ = ĝ+ + ĝ− along the positive/negative
subalgebras ĝ±, see also [9]. The map δ : K → δK is actually a map (up to a global irrelevant
sign) to the R-bracket (see [7]) [δK , δK′ ] = δ[K,K′]R

, where [K,K ′]R = [K,R(K ′)] + [R(K),K ′].
Hence, all the symmetries generated by K are chiral as a consequence of the second Lie structure.
In particular, this imply the commutativity of the 2D rigid supersymmetry transformations
cf. (20) below, as expected.

The ±1/2 flows are generated by the elements ∓D(±1/2) ∈ K(±1/2)
F of grades ±1/2 in the

fermionic part of the kernel, where D(±1/2) depend on the infinitesimal constant grassmannian
parameters. They define the evolution equations (actually variations cf. (3), (7))

δ+1/2Θ = +
(
ΘD(+1/2)Θ−1

)
<0

Θ, δ+1/2Π = −
(
ΘD(+1/2)Θ−1

)
≥0

Π,

δ−1/2Θ = −
(
ΠD(−1/2)Π−1

)
<0

Θ, δ−1/2Π = +
(
ΠD(−1/2)Π−1

)
≥0

Π,

giving rise to the dressing expressions

Θ
(
δ+1/2 +D(+1/2)

)
Θ−1 = δ+1/2 +D(0) +D(+1/2) = L+1/2,

Π
(
δ−1/2 +D(−1/2)

)
Π−1 = δ−1/2 +BD(−1/2)B−1 = L−1/2,

where D(0) =
[
ψ(−1/2), D(+1/2)

]
∈ M(0)

B . The derivation of L−1/2 follows exactly the same lines
for the derivation of L+1/2 done in [3]. At this point we have four Lax operators L±1/2 and L±1.
The grade subspace decomposition of the relations

[
L±1/2, L+1

]
=

[
L±1/2, L−1

]
= 0 allows to

take the solution D(0) = −δ+1/2BB
−1. The compatibility of this system of four Lax operators

provides the 2D supersymmetry transformations among the field components. Indeed, using the
equations of motion we get their explicit form, see equation (17) and (18) below.

Finally, the odd Lax operators reads

L+1/2 = δ+1/2 − δ+1/2BB
−1 +D(+1/2), (15)

L−1/2 = δ−1/2 +BD(−1/2)B−1. (16)

The operator L+1/2 was already constructed in [3] and the L−1/2 is the novelty here.
Note that in (15) and (16) are in different gauges. This is the key idea for introducing the

Toda potential (superpotential) in the supersymmetry transformations which is also responsible
for coupling the two sectors.

2.4 Local supersymmetry flows δ±1/2

The equations (12) are invariant under a pair of non-Abelian fermionic flows (δSUSY = δ−1/2 +
δ+1/2) as a consequence of the compatibility relations

[
L±1/2, L+

]
=

[
L±1/2, L−

]
= 0 supple-

mented by the equations of motion [L+, L−] = 0 and the Jacobi identity. They are generated
by the elements in the fermionic kernel K(±1/2)

F and are explicitly given by

δ+1/2ψ
(−1/2)
− =

[
E

(−1)
− , B−1D(+1/2)B

]
, δ+1/2BB

−1 =
[
D(+1/2), ψ(−1/2)

]
,
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δ+1/2ψ
(+1/2)
+ =

[
δ+1/2BB

−1, ψ
(+1/2)
+

]
−

[
∂+BB

−1, D(+1/2)
]
. (17)

and

δ−1/2ψ
(−1/2)
− = −

[
B−1δ−1/2B,ψ

(−1/2)
−

]
−

[
B−1∂−B,D

(−1/2)
]
,

B−1δ−1/2B =
[
D(−1/2), ψ(+1/2)

]
, δ−1/2ψ

(+1/2)
+ =

[
E

(+1)
+ , BD(−1/2)B−1

]
. (18)

The physical degrees of freedom are parametrized by the image partM. To guarantee that the
variations of the fields remain in M we have to check that the kernel components of the above
transformations vanishes, i.e.[

δ+1/2BB
−1, ψ

(+1/2)
+

]
∈ K = 0,

[
B−1δ−1/2B,ψ

(−1/2)
−

]
∈ K = 0. (19)

We will see below in the examples that Q(0)
± = 0 imply (19) as a consequence of the absence

of the even graded (2n, n ∈ Z) part of the bosonic kernel KB in the mKdV hierarchy. These
conditions turn the lowest odd flows δ±1/2 local.

The Lax operators (15), (16) generating the odd flows (17), (18) are related to the rigid 2D
supersymmetry transformations of the type

N = (N+, N−) ,

where N± = dimK(±1/2)
F . As the map D(±1/2) → δ±1/2 obeys[

δ±1/2, δ
′
±1/2

]
(∗) = ∂∓[D±1/2,D′±1/2](∗) ∼ ∂±(∗),

[
δ+1/2, δ−1/2

]
(∗) = 0, (20)

we see that two fermionic transformations close into derivatives, which is by definition a su-
persymmetry. This is the case provided 1

2

{
F (±1/2), F (±1/2)

}
∼ E

(±1)
± for F (±1/2) ∈ K(±1/2)

F ,
which is significant for the supersymmetric structure of the models, see for instance [18]. For
simplicity, we take constant elements E(±1)

± which are dual
(
E

(+1)
+

)∗ = E
(−1)
− , giving rise to iso-

morphic subspaces K(+1/2)
F ' K(−1/2)

F and to N+ = N− in consistency with the pairing induced
by 〈Ki,Kj〉 ∼ δi+j . Note that the non-Abelian odd flows close into the isospectral even flows,
as expected, and that the central and gradation fields do not transform under δ±1/2 then, they
are not truly degrees of freedom of the model.

2.5 Recursion operators and higher odd flows

In computing the explicit expressions for odd Lax operators using (13) generating higher degree
fermionic flows we realize that this is considerably more involved than the ±1/2 cases. Instead
of that, we use the dressing map K → δK from the kernel algebra to the flow algebra in order
to introduce recursion operators. From the relations

[δK(±1) , δF (±1/2) ] (∗) = δ[K(±1),F (±1/2)](∗) = δF (±3/2)(∗),

we infer the following behavior

δF (±n±1/2)(∗) = adn
δ
K(±1)

(δF (±1/2)) (∗) =
(
R±1

)n (δF (±1/2)) (∗),

R±1(∗) = adδ
K(±1)

(∗) = [δK(±1) , ∗]

in terms of the recursion operators R±1. The aim is not to reproduce the well known super-
symmetry transformations but to develop a method to construct systematically all the Higher
graded odd symmetry flows in terms of its simplest symmetry structure. However, we have to
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recognize that the use of super pseudo-differential operators and associated scalar Lax operators,
seems to be more appropriated for computational purposes.

From this analysis, we have the following two chains of supersymmetry transformations

δ+1/2

δK+→ δ+3/2

δK+→ δ+5/2

δK+→ δ+7/2

δK+→ · · · ,

· · ·
δK−← δ−7/2

δK−← δ−5/2

δK−← δ−3/2

δK−← δ−1/2, (21)

where the ones corresponding to δ±1/2 are considered as starting points. The variations δK± are
given by (13) or (14). For example, for a degree +1 element K(+1) we have from (13) that

δK(+1)ψ
(+1/2)
+ = −

[
E

(+1)
+ ,

(
ΘK(+1)Θ−1

)
−1/2

∣∣
M

]
,

δK(+1)

(
∂+BB

−1
)

= +
[
E

(+1)
+ ,

(
ΘK(+1)Θ−1

)
−1

]
+

[
ψ

(+1/2)
+ ,

(
ΘK(+1)Θ−1

)
−1/2

∣∣
K
]
,

δK(+1)ψ
(−1/2)
− = −

[
E

(−1)
− , B−1

(
ΘK(+1)Θ−1

)
+1/2

B
∣∣
M

]
. (22)

The dressing matrix Θ factorizes as Θ = US, where U ∈ expM is local and S ∈ expK is
non-local in the fields [3], splitting the Dressing of the vacuum Lax operators

(
L± = ΘLV

±Θ−1
)

as a two step process. A U and an S rotation given respectively by

U−1L+U = ∂+ + E
(+1)
+ +K

(−)
+ , U−1L−U = ∂− +K

(−)
− , (23)

S−1
(
∂+ + E

(+1)
+ +K

(−)
+

)
S = ∂+ + E

(+1)
+ , S−1

(
∂− +K

(−)
−

)
S = ∂− + E

(−1)
− , (24)

where K(−)
± ∈ K involve expansions on the negative grades only. The components ψ(i), i =

−1/2,−3/2, . . . of U are extracted by projecting (23) along M and the components s(i), i =
−1/2,−3/2, . . . by projecting (24) along K. This allows to compute (22). The higher graded
supersymmetry transformations are inevitably non-local because of the presence of the kernel
part S appearing in the definition of the transformations δK(±1) used to construct them. Thus,
the best we can do is to restrict ourselves to a reduced manifold (defined by Q(0)

± = 0) in which
δ±1/2 are local. From (13) we have[

δK(+1) , δ−1/2

]
(∗) = δ[K(+1),D(−1/2)]

R

(∗) = 0

and we cannot connect δ−1/2 and δ+1/2 through a δK(+1) flow, reflecting the chiral independence
of the δ±1/2 transformations as a consequence of the R-bracket. This is why in (21) the sectors
are treated separately. Although the higher graded odd flows are non-local, their square always
give a local even flow. A similar conclusion for this behavior was found in [8] by using superspace
formalism.

2.6 Generalized relativistic-like current identities

In this section we derive an infinite set of identities associated to the flows generated by K(±1/2)
F .

The word relativistic is used in the sense that each t±n is coupled to its opposite counterpart t∓n.

Proposition 2. The infinite set of fermionic local currents defined by

J
(+1/2)
+n =

〈
D(+1/2)ΘE(+n)Θ−1

〉
, J

(+1/2)
−n =

〈
D(+1/2)ΠE(−n)Π−1

〉
,

J
(−1/2)
+n =

〈
D(−1/2)Θ′E(+n)Θ′−1

〉
, J

(−1/2)
−n =

〈
D(−1/2)Π′E(−n)Π′−1

〉
, (25)

satisfy the following identities

∂+nJ
(±1/2)
−n − ∂−nJ

(±1/2)
+n = 0. (26)

The D(±1/2) ∈ K(±1/2)
F are the generators of the fermionic kernel.
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Proof. The proof is extremely simple and is based only on the relations (4) and (6). Start with

∂+nJ
(+1/2)
−m =

〈
D(+1/2)

[(
ΘE(+n)Θ−1

)
≥0
,
(
ΠE(−m)Π−1

)
<0

]〉
,

∂−nJ
(+1/2)
+m =

〈
D(+1/2)

[(
ΘE(+m)Θ−1

)
≥0
,
(
ΠE(−n)Π−1

)
<0

]〉
to get

∂+nJ
(±1/2)
−n − ∂−nJ

(±1/2)
+n =

〈
D(+1/2)

[(
ΘE(+n)Θ−1

)
≥0
,
(
ΠE(−m)Π−1

)
<0

]〉
−

〈
D(+1/2)

[(
ΘE(+m)Θ−1

)
≥0
,
(
ΠE(−n)Π−1

)
<0

]〉
.

This sum vanishes for m = n. For J (−1/2) the proof is analogous. �

These identities mixes the two sectors corresponding to positive and negative isospectral
times in a relativistic manner. They can be written in a covariant form ηij ∂

∂ti
J

(±1/2)
j = 0 if we

define a constant ‘metric’ η = ηijdtidtj for each pair of positive/negative times. However, the
interpretation of this higher graded ‘light-cone coordinates’ deserves further study.

Consider now the lowest isospectral flows t±1 = −x±. The current components (25) are given
by

J
(+1/2)
+ = −

〈
D(+1/2)

[
ψ(−1/2), ∂+BB

−1
]〉
, J

(+1/2)
− = +

〈
D(+1/2)Bψ

(−1/2)
− B−1

〉
,

J
(−1/2)
+ = +

〈
D(−1/2)B−1ψ

(+1/2)
+ B

〉
, J

(−1/2)
− = +

〈
D(−1/2)

[
ψ(+1/2), B−1∂−B

]〉
.

Then, there are N = dimK(±1/2)
F associated relativistic conservation laws (for each sector) given

by ∂+J
(±1/2)
− − ∂−J (±1/2)

+ = 0. More explicitly, we have

∂−
([
ψ(−1/2), ∂+BB

−1
]∣∣
K
)

+ ∂+

(
Bψ

(−1/2)
− B−1

∣∣
K
)

= 0,

−∂−
(
B−1ψ

(+1/2)
+ B

∣∣
K
)

+ ∂+

([
ψ(+1/2), B−1∂−B

]∣∣
K
)

= 0. (27)

This time, the identities provide supercharge conservation laws due to the fact that the flows t±1

are identified with the light-cone coordinates x± = 1
2

(
x0 ± x1

)
. It is not clear if the identities

associated to the higher flows t±n, n ≥ +1 provide new conserved quantities because one is not
supposed to impose boundary conditions or integrate along these directions. For higher times
they are taken as simple identities consequence of the flow relations above.

Now that we have N = dimK(±1/2)
F supercurrents associated to K(±1/2)

F , let’s compute their
corresponding supercharges by the Noether procedure in order to check that they really generate
the supersymmetry transformations (17) and (18).

2.7 Supercharges for the SUSY flows δ±1/2

The action for the affine supersymmetric Toda models was deduced in [15] and it is given by

SToda[B,ψ] = SWZNW[B]− k

4π

∫
Σ

〈
ψ

(+1/2)
+ ∂−ψ

(−1/2) + ψ
(−1/2)
− ∂+ψ

(+1/2)
〉

+
k

2π

∫
Σ

〈
E

(+1)
+ BE

(−1)
− B−1 + ψ

(+1/2)
+ Bψ

(−1/2)
− B−1

〉
. (28)

This corresponds to the situation when we restrict to the sub-superalgebras solving the condition
Q

(0)
± = 0. In this case the potential ends at the second term providing a Yukawa-type term turning

the model integrable and supersymmetric. The light-cone notation used for the flat Minkowski
space Σ is x± = 1

2

(
x0 ± x1

)
, ∂± = ∂0 ± ∂1, η+− = η−+ = 2, η+− = η−+ = 1

2 , ε+− = −ε−+ = 2,
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ε−+ = −ε+− = 1
2 corresponding to the metric η00 = 1, η11 = −1 and antisymmetric symbol

ε10 = −ε01 = +1. A coupling constant is introduced by setting E(±1)
± → µE

(±1)
± and ψ(±1/2) →

µ−1/2ψ(±1/2).
An arbitrary variation of the action (28) is given by

2π
k
δSToda =

∫
Σ

〈
δBB−1F

(0)
+−

〉
−

∫
Σ

〈
δψ(+1/2)B−1F

(−1/2)
+− B

〉
−

∫
Σ

〈
δψ(−1/2)F

(+1/2)
+−

〉
and the equations of motions are exactly the super Leznov–Saveliev equations, cf. (12) above.

Taking δ → δSUSY = δ−1/2 + δ+1/2, using (17), (18) and considering D(±1/2) as functions of
the coordinates x±, we have the supersymmetric variation of the action

2π
k
δSUSYSToda =

∫
Σ

〈
∂−D

(−1/2)
(
B−1ψ

(+1/2)
+ B

)
− ∂+D

(−1/2)
[
ψ(+1/2), B−1∂−B

]〉
−

∫
Σ

〈
∂−D

(+1/2)
[
ψ(−1/2), ∂+BB

−1
]
+ ∂+D

(+1/2)
(
Bψ

(−1/2)
− B−1

)〉
.

This allows to obtain two conservation laws

0 =
∫

Σ

〈
D(∓1/2)

(
∂−j

(±1/2)
+ + ∂+j

(±1/2)
−

)〉
,

which are exactly the ones derived by using the extended Riemann–Hilbert approach (26) for
the lowest flows (27). Then, there are dimKF supercurrents and supercharges given by

flow δ+1/2:

j
(−1/2)
+ =

[
ψ(−1/2), ∂+BB

−1
]∣∣
K, j

(−1/2)
− = Bψ

(−1/2)
− B−1|K,

Q+ =
∫
dx1

([
ψ(−1/2), ∂+BB

−1
]
+Bψ

(−1/2)
− B−1

)∣∣
K, (29)

flow δ−1/2:

j
(+1/2)
+ = −B−1ψ

(+1/2)
+ B

∣∣
K, j

(+1/2)
− =

[
ψ(+1/2), B−1∂−B

]∣∣
K,

Q− =
∫
dx1

([
ψ(+1/2), B−1∂−B

]
−B−1ψ

(+1/2)
+ B

)∣∣
K. (30)

The variation above is the same when (19) are zero or not, this is because all the fields
are defined in M and the kernel part does not affect the variation at all. These two ways of
extracting the supercharges show a deep relation between the algebraic dressing formalism and
the Hamiltonian reduction giving (28).

Now specialize the construction done above to the simplest toy examples. The supercharges
are computed from the general formulas (29) and (30). We want to emphasize that the sub-
superalgebras solving the condition Q

(0)
± = 0 have no bosonic kernel KB of degree zero in

consistency with the absence of positive even isospectral flows t+2n in the mKdV hierarchy.

3 Examples

These examples show how the superspace notion of supersymmetry can be embedded consistently
into the infinite-dimensional flow approach. The usual SUSY transformations corresponds to
the flow algebra spanned by the times (t−1, t−1/2, t+1/2, t+1). We can have several pairs of odd

times t±1/2 depending on the dimension of K(±1/2)
F as shown above.
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3.1 The N = (1, 1) sinh-Gordon model reloaded

Take the sl(2, 1)(2)
[1] superalgebra (see Appendix A for details). The Lagrangian is

L = − k

2π
[∂+φ∂−φ+ ψ−∂+ψ− + ψ+∂−ψ+ − V ] ,

V = 2µ2 cosh[2φ] + 4µψ+ψ− cosh[φ] (31)

and the equations of motion are

∂+∂−φ = −2µ2 sinh[2φ]− 2µψ+ψ− sinh[φ],
∂−ψ+ = 2µψ− cosh[φ], ∂+ψ− = −2µψ+ cosh[φ]. (32)

With D(+1/2) = ε−F
(+1/2)
2 , D(−1/2) = ε+F

(−1/2)
1 and ψ± → 1

2ψ±, the supersymmetry flows
are

δ±1/2φ = ±ε∓ψ±, δ±1/2ψ± = ∓ε∓∂±φ, δ±1/2ψ∓ = 2µε∓ sinh[φ],

where we have used the parametrizations

B = exp[φH1], ψ(+1/2) = ψ−G
(+1/2)
1 , ψ(−1/2) = ψ+G

(−1/2)
2 ,

ψ
(−1/2)
− = 2ψ−G

(−1/2)
2 , ψ

(+1/2)
+ = −2ψ+G

(+1/2)
1 .

We can check (20) by applying the variations twice giving[
δ±1/2, δ

′
±1/2

]
= 2ε∓ε′∓∂±,

[
δ+1/2, δ−1/2

]
= 0.

Then, we have two real supercharges N = (1, 1) because of dimK(±1/2)
F = 1. They are

given by

δ±1/2 : Q(∓1/2) = Q1
±F

(∓1/2)
1,2 , Q1

± =
∫
dx1

(
ψ±∂±φ∓ ψ∓h′(φ)

)
,

where h(φ) = 2µ cosh[φ] and h′(φ) is its functional derivative respect φ.
Now rotate the fermions by the phase exp (iπ/4) in order to write (31) in a more familiar

form

L = −k
π

[
1
2
∂+φ∂−φ+

i

2
ψ−∂+ψ− +

i

2
ψ+∂−ψ+ − V

]
,

V =
1
2

(
h′(φ)

)2 + ih′′(φ)ψ+ψ− + µ2,

which is known to be invariant under the N = (1, 1) superspace transformations for a real
bosonic superfield. The area term comes from squaring h′(φ) = 2µ sinh[φ].

Note 1. The Poisson brackets are defined by

{A,B}PB = −(−1)εAεB

(
∂A

∂f

∂B

∂πf
− (−1)εAεB

∂A

∂πf

∂B

∂f

)
,

where ε = 1, 0 for bosonic-fermionic quantities and πf = ∂L
∂(∂tf) . The Dirac bracket is defined by

{A,B}DB = {A,B}PB − {A,φi}PB

(
C−1

)
ij
{φj , B}PB ,

where Cij ={φi, φi}PB and φi are the second class constraints.
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With the Dirac brackets {φ, ∂tφ} = 1, {ψ±, ψ±} = −i and Q1
±f =

{
Q1
±, f

}
we have, after

replacing Q1
± → iQ1

±, the action of the supercharges on the field components

Q1
±φ = −iψ±, Q1

±ψ± = +∂±φ, Q1
±ψ∓ = ∓h′(φ).

Finally, the total flow can be written as δSUSY = −iε−Q1
+ + iε+Q

1
−

δSUSYφ = +iε−ψ+ − iε+ψ−, δSUSYψ± = ∓ε∓∂±φ+ ε±h
′(φ),

which are the ordinary N = (1, 1) supersymmetry transformations obtained by using a super-
space approach.

Now, construct the δ+3/2 transformations starting from δ+1/2 by applying δK(+1) as shown
in (21). From [3] we have

δK(+1)φ = −1
2
αψ+Q(x+), δK(+1)ψ+ = +

1
2
α

(
∂+ψ+ − ∂+φQ(x+)

)
,

δK(+1)ψ− = −1
2
α

(
ψ+h(φ)− h′(φ)Q(x+)

)
,

where Q(x+) =
∫ x+

(ψ+∂+φ). From the relation
[
K

(+1)
2 , F

(+1/2)
2

]
= F

(+3/2)
1 we have that

δ+3/2 =
[
δK(+1) , δ+1/2

]
and the transformations are given by

δ+3/2φ = ε−

(
1
2
∂+ψ+ − ∂+φQ(x+) +

1
2
ψ+H(x+)

)
,

δ+3/2ψ+ = ε−

(
1
2
∂2

+φ+ ∂+ψ+Q(x+)− 1
2
∂+φH(x+)

)
,

δ+3/2ψ− = ε−

(
−1

2
∂+φh(φ)− ψ+Q(x+)h(φ) +

1
2
h′(φ)H(x+)

)
, (33)

where H(x+) =
∫ x+ (

(∂+φ)2 + ψ+∂+ψ+

)
. We also find the variations

δ+1/2Q(x+) = −ε−H(x+),

δ+3/2Q(x+) = ε−

(
1
4

(∂+φ)2 − 1
2
ψ+∂+ψ+ + ∂+φψ+Q(x+)− 1

4
H2(x+)

)
,

δ+3/2H(x+) = ε−

(
∂+φ∂+ψ+ −

1
2
∂2

+φψ+ +
1
2
∂+φψ+H(x+)−Q(x+)∂+H(x+)

)
.

Applying δ+3/2 twice we get a local flow description of the hierarchy for t+1 and t+3 in terms
of the sinh-Gordon variables used to described it in terms of t+1 and t−1, cf. equation (32)

4∂+3φ = ∂3
+φ− 2 (∂+φ)3 − 3∂+φψ+∂+ψ+, 4∂+3ψ+ = ∂3

+ψ+ − 3∂+φ∂+ (∂+φψ+) ,

4∂+3ψ− =
(
2 (∂+φ)2 ψ+ − ∂2

+ψ+

)
h(φ), (34)

where
[
δ+3/2, δ

′
+3/2

]
(∗) = −2ε1ε2∂+3(∗) in agreement with

{
F

(+3/2)
1 , F

(+3/2)
1

}
= −2E(+3)

+ . In-
troducing u = ∂+φ (the space variable x is described by t+1) we recover the super mKdV
equations

4∂+3u = u′′′ − 6u2u′ − 3ψ+

(
uψ′+

)′
, 4∂+3ψ+ = ψ′′′+ − 3u (uψ+)′ ,

4∂+3ψ− =
(
2u2ψ+ − ψ′′+

)
h(∂−1u).

The ψ− equation is non-local and is remnant from the negative part of the hierarchy. The
supersymmetry has to be reduced to the usual N = (1, 0) in order to have a local description in
terms of the mKdV variables u and ψ+. Note that Q(x+) and H(x+) resembles a piece of the
supercharge and a component of the stress tensor.
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Remark 3. The higher grade fermionic transformation are some sort of ‘square root’ of the
isospectral flows, this can be seen also in [8] where Poisson brackets were used (compare
with (21)).

The positive and negative parts of the extended mKdV hierarchy carries exactly the same
information when considered separately and to obtain relativistic equations we combine their
Lax pairs in different gauges as explained above by general arguments. The potential couples
the two sectors and enters through the functional h(φ). We check this explicitly by considering
(t+1, t+3), (t−1, t−3) and compute L±3 in order to construct a 1-soliton solution which solves any
equation of the hierarchy mixing the four times (t+1, t+3, t−1, t−3). We keep the name soliton
solution for simplicity but strictly speaking we need to have a multi-vacuum theory in order to
define the asymptotic boundary values of the field solution.

The algebraic dressing technique (recall equation (4) and (6)) suggest the following forms for
the Lax operators

L+3 = ∂+3 +D(0) +D(+1/2) +D(+1) +D(+3/2) +D(+2) +D(+5/2) + E(+3),

L−3 = ∂−3 −B
(
D(−1/2) +D(−1) +D(−3/2) +D(−2) +D(−5/2) + E(−3)

)
B−1. (35)

From [L+, L+3] = 0 we get for the positive part of the hierarchy, following [3], the solution

D(+5/2) = (−2ψ+)G(+5/2)
1 , D(+2) = (−∂+φ)M (+2)

1 ,

D(+3/2) = (−ψ+∂+φ)F (+3/2)
1 + (∂+ψ+)G(+3/2)

2 ,

D(+1) = (−2ψ+∂+ψ+)K(+1)
1 +

(
1
2

(∂+φ)2 + 2ψ+∂+ψ+

)
K

(+1)
2 +

(
1
2
∂2

+φ

)
M

(+1)
2 ,

D(+1/2) = −1
2

(
∂2

+φψ+ − ∂+φ∂+ψ+

)
F

(+1/2)
2 +

(
−1

2
∂2

+ψ+ + ψ+ (∂+φ)2
)
G

(+1/2)
1 ,

D(0) =
(
−1

4
∂3

+φ+
1
2

(∂+φ)3 + 3∂+φψ+∂+ψ+

)
M

(0)
1 .

The equation of motion are given by the degree zero component and are, as expected, given the
first two equations of (34), after taking ψ+ → 1

2ψ+. Now, performing a gauge transformation
with B−1 in order to eliminate the B conjugation on L−3 and L− we change to

L− = ∂− +B−1∂−B −
(
E

(−1)
− + ψ

(−1/2)
−

)
,

L−3 = ∂−3 +B−1∂−3B −
(
D(−1/2) +D(−1) +D(−3/2) +D(−2) +D(−5/2) + E(−3)

)
and from [L−, L−3] = 0 we get for the negative part of the hierarchy, the solutions

D(−5/2) = (2ψ−)G(−5/2)
2 , D(−2) = (−∂−φ)M (−2)

1 ,

D(−3/2) = (ψ−∂−φ)F (−3/2)
2 + (∂−ψ−)G(−3/2)

1 ,

D(−1) = (−2ψ−∂−ψ−)K(−1)
1 +

(
1
2

(∂−φ)2 + 2ψ−∂−ψ−

)
K

(−1)
2 +

(
−1

2
∂2
−φ

)
M

(−1)
2 ,

D(−1/2) = −1
2

(
∂2
−φψ− − ∂−φ∂−ψ−

)
F

(−1/2)
1 +

(
1
2
∂2
−ψ− − (∂−φ)2 ψ−

)
G

(−1/2)
2 .

The equations of motion are now

4∂−3φ = ∂3
−φ− 2 (∂−φ)3 − 3∂−φψ−∂−ψ−, 4∂−3ψ− = ∂3

−ψ− − 3∂−φ∂− (∂−φψ−)

after taking ψ− → 1
2ψ−. With v = ∂−φ (the space variable x is described by t−1) we get

4∂−3v = v′′′ − 6v2v − 3ψ−
(
vψ′−

)′
, 4∂−3ψ− = ψ′′′− − 3v (vψ−)′ .
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From the solution of the equation (43), i.e. D(0) = −∂+3BB
−1 we confirm that 4∂+3φ =

∂3
+φ−2 (∂+φ)3−3∂+φψ+∂+ψ+, after taking ψ+ → 1

2ψ+. This is the N = (0, 1) mKdV equation
with opposite chirality.

The simplest example of a relativistic equation is provided by the sinh-Gordon model which
corresponds to the lowest t±1 times. Now compute [L+3, L−3] = 0 with L−3 in the form (35), i.e.
in its original gauge because the two copies are to be taken in different gauges. The generalized
relativistic system of equations is given in the Appendix B, equation (44), and is a generalization
to the t±3 times. The two sectors of the extended hierarchy are identical, thus we complete the
system (34) with the following set of equations

4∂−3φ = ∂3
−φ− 2 (∂−φ)3 − 3∂−φψ−∂−ψ−, 4∂−3ψ− = ∂3

−ψ− − 3∂−φ∂− (∂−φψ−) ,

4∂−3ψ+ =
(
2 (∂−φ)2 ψ− − ∂2

−ψ−
)
h(φ) (36)

and due to this symmetric behavior we can easily read off the δ−3/2 transformations directly
from (33) simply by replacing all + sub-indexes by − sub-indexes.

Now consider for simplicity the bosonic limit of the generalized equations (44). It is given by

∂+3∂−3φ = −2 sinh[2φ] +
1
2
(
(∂+φ)2 (∂−φ)2 + ∂2

+φ∂
2
−φ

)
sinh[2φ]

− 1
2
(
∂2

+φ (∂−φ)2 + (∂+φ)2 ∂2
−φ

)
cosh[2φ],

∂±3(∂∓φ) = (∂±φ)2 sinh[2φ]− ∂2
±φ cosh[2φ],

∂±3 (∂∓φ)2 = 2∂∓φ (∂±φ)2 sinh[2φ]− 2∂∓φ∂2
±φ cosh[2φ],

∂±3

(
∂2
∓φ

)
= 4∂±φ+ 2∂∓φ (∂±φ)2 cosh[2φ]− 2∂∓φ∂2

±φ sinh[2φ] (37)

and describe the behavior of the ‘φ-descendants’ ∂±φ, (∂±φ)2 and ∂2
±φ in terms of opposite t∓3

times. The equation (37) can be obtained alternatively by using the basic non-linear relations
∂±3φ = 1

4∂
3
±φ− 1

2 (∂±φ)3, and the lowest relativistic equation ∂+∂−φ = −2 sinh[2φ]. The whole
set of equations associated to the times (t−3, t−1, t+1, t+3) is completed by the equations ex-
tracted from the relations [L+, L−3] = 0 and [L−, L+3] = 0. They are given by the sinh-Gordon
equation itself, the equations on the third line of (37) and

4∂∓φ = ∂± (∂∓φ)2 sinh[2φ]− ∂±∂2
∓φ cosh[2φ],

0 = ∂±∂
2
∓φ sinh[2φ]− ∂± (∂∓φ)2 cosh[2φ]. (38)

Now take K±(n) = E(±n) in (13) and conjugate them with the grading operator Q as follows

E′(±n) = exp(αQ)E(±n) exp(−αQ) = exp(±n)E(±n) = Λ±nE(±n),

where Λ = exp(α). The equations are invariant under these rescalings and the Lorentz transfor-
mations, i.e. x′± = Λ±1x± can be generalized to the whole set of flows by taking t′±n = Λ±nt±n.

To find the 1-soliton solution of the equation (37) we use the dressing method which is
another application of the formalism given above in Section 2.1, see also [16] for computational
details. The four vacuum Lax operators involved are

L± = ∂± ± E(±1)
± , L±3 = ∂±3 ± E(±3)

and the zero curvature conditions imply they are pure gauge AV
i = T−1

0 ∂iT0. Hence we have as
usual

AV
+ = E

(+1)
+ − x−C, AV

− = −E(−1)
− , AV

+3 = E(+3) − 3t−3C, AV
−3 = −E(−3),
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T0 = exp
(
t+3E

(+3) + x+E
(+1)
+

)
exp

(
− x−E(−1)

− − t−3E
(−3)

)
,

where we have used
[
E(m), E(n)

]
= 1

2(m − n)δm+n,0C for (m,n) odd integers. The dressing of
a vacuum Lax connections AV

i is the gauge transformation Ai = (Θ±)−1AV
i Θ±+ (Θ±)−1 ∂iΘ±,

satisfying Θ−Θ−1
+ = T−1

0 gT0, where g is an arbitrary constant group element. Assuming that
Θ−1
− = ep(−1)ep(−2) · · · , Θ−1

+ = eq(0)eq(1)eq(2) · · · , where p(−i) and q(i) are linear combinations
of grade (−i) and (+i) respectively, the zero grade component of Ai leads to the solution

eq(0) = B−1e−νC , B = exp (φH) .

From this we have〈
λ′

∣∣B−1
∣∣λ〉

e−ν =
〈
λ′

∣∣T−1
0 gT0

∣∣λ〉
,

where |λ〉 and 〈λ′| are annihilated by the grade (−i) and (i) generators. Taking the highest
weight states |λi〉, i = 0, 1 of sl(2)(1) we get the following tau-functions

τ1 = e−φ−ν =
〈
λ1

∣∣T−1
0 gT0

∣∣λ1

〉
, τ0 = e−ν =

〈
λ0

∣∣T−1
0 gT0

∣∣λ0

〉
.

The so called solitonic specialization corresponds to the situation when g is given by the
exponential of an eigenvalue F (z), z ∈ C of the operator adE(k). In this case we have[

E(n), F (z)
]

= −2znF (z),

where F (z) is the vertex operator

F (z) =
+∞∑

n=−∞

[(
M

(2n)
1 − 1

2
δn,0C

)
z−2n +M

(2n+1)
2 z−2n−1

]
.

With the following result

T−1
0 gT0 = exp {ρ(z)F (z)} , ρ(γ) = exp 2

{
−t−3z

−3 − x−z−1 + x+z + t+3z
3
}
, (39)

we get the 1-soliton solution depending on the first four times of the hierarchy

φ(t−3, x
−, x+, t+3) = − log

(
τ1
τ0

)
, (40)

where τ1 = 1+ b
2ρ(z), τ0 = 1− b

2ρ(z) and b = const. The field (40) is a simultaneous solution of the
bosonic limits (with µ = 1) of the equations (32), (34), (36) and the whole set of equations (37)
and (38). The interesting point is that the second and third terms of the RHS of (37) cancel
each other and the field φ has to obey

∂+3∂−3φ = −2 sinh[2φ],

which is the case. Then, the solution (40) behaves under t±3 like a sinh-Gordon soliton solution
but with a cubic rapidity. For higher grade times the extension in (39) is direct. At this point
we can notice that each chirality of the extended hierarchy is attached separately to the poles
z = +∞ (positive flows) and z = 0 (negative flows) of the Lax pair with spectral parameter z,
see for instance [7]. This is exactly the pole structure entering the definition of the sinh-Gordon
Lax pair.

We end by giving the fermionic currents for the times t±3 and D(+1/2). After a lengthly but
straightforward computation, the equation (26) becomes ∂+3J

(+1/2)
−3 + ∂−3J

(+1/2)
+3 = 0 with the

current components

−1
8
j
(+1/2)
+3 = ∂−φ∂−ψ− − ψ−∂2

−φ,

−1
8
j
(+1/2)
−3 = −2ψ+ sinh[φ]−

(
1
2
∂2

+ψ+∂+φ− ψ+ (∂+φ)3 − 1
2
∂+ψ+∂

2
+φ

)
cosh[φ].
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3.2 The N = (2, 2) Landau–Ginzburg Toda model

Take the psl(2, 2)(2)
[3] superalgebra (see Appendix A for details). The Lagrangian is given by

L = − k

2π
[
∂+φ1∂−φ1 + ∂+φ3∂−φ3 + ψ1∂+ψ1 + ψ3∂+ψ3 + ψ2∂−ψ2 + ψ4∂−ψ4 − V

]
,

V = 2 cosh[2φ1]− 2 cos[2φ3]− 4
(
ψ1ψ2 + ψ3ψ4

)
cosh[φ1] cos[φ3]

+ 4
(
ψ1ψ4 − ψ3ψ2

)
sinh[φ1] sin[φ3].

Taking D(+1/2) = D
(+1/2)
1 + D

(+1/2)
2 with D

(+1/2)
1 = ε1F

(+1/2)
1 , D

(+1/2)
2 = ε2F

(+1/2)
4 and

D(−1/2) = D
(−1/2)
1 +D

(−1/2)
2 with D(−1/2)

1 = ε1F
(−1/2)
2 , D

(−1/2)
2 = ε2F

(−1/2)
3 , the supersymmetry

transformations (17) and (18) with ψi, ψi → 1
2ψi, 1

2ψi are

δ+1/2φ1 = +2
(
ε1ψ4 − ε2ψ2

)
, δ+1/2φ3 = −2

(
ε2ψ4 + ε1ψ2

)
,

δ+1/2ψ2 = +(ε2∂+φ1 + ε1∂+φ3) , δ+1/2ψ4 = − (ε1∂+φ1 − ε2∂+φ3) ,

δ+1/2ψ1 = −2ε1 cosh[φ1] sin[φ3]− 2ε2 sinh[φ1] cos[φ3],

δ+1/2ψ3 = +2ε1 sinh[φ1] cos[φ3]− 2ε2 cosh[φ1] sin[φ3],

δ−1/2φ1 = +2 (ε1ψ3 − ε2ψ1) , δ−1/2φ3 = +2 (ε1ψ1 + ε2ψ3) ,

δ−1/2ψ1 = +(ε2∂−φ1 − ε1∂−φ3) , δ−1/2ψ3 = − (ε1∂−φ1 + ε2∂−φ3) ,

δ−1/2ψ2 = −2ε1 cosh[φ1] sin[φ3] + 2ε2 sinh[φ1] cos[φ3],

δ−1/2ψ4 = −2ε1 sinh[φ1] cos[φ3]− 2ε2 cosh[φ1] sin[φ3]. (41)

We can check (20) by applying (41) twice giving[
δ+1/2, δ

′
+1/2

]
= +4

(
ε1ε

′
1 + ε2ε

′
2

)
∂+,

[
δ−1/2, δ

′
−1/2

]
= +4

(
ε1ε

′
1 + ε2ε

′
2

)
∂−,[

δ+1/2, δ−1/2

]
= 0.

We have four real supercharges N = (2, 2) because dimK(±1/2)
F = 2. They are extracted

from (29) and (30) and are given by
flow δ+1/2:

Q(−1/2) = Q1
+F

(−1/2)
2 +Q2

+F
(−1/2)
3 ,

Q1
+ =

∫
dx1

(
ψ2∂+φ3 − ψ4∂+φ1 − 2ψ1 cosh[φ1] sin[φ3] + 2ψ3 sinh[φ1] cos[φ3]

)
,

Q2
+ =

∫
dx1

(
ψ4∂+φ3 + ψ2∂+φ1 − 2ψ1 sinh[φ1] cos[φ3]− 2ψ3 cosh[φ1] sin[φ3]

)
,

flow δ−1/2:

Q(+1/2) = Q1
−F

(+1/2)
1 +Q2

−F
(+1/2)
4 ,

Q1
− =

∫
dx1

(
ψ1∂−φ3 + ψ3∂−φ1 + 2ψ2 cosh[φ1] sin[φ3] + 2ψ4 sinh[φ1] cos[φ3]

)
,

Q2
− =

∫
dx1

(
ψ3∂−φ3 − ψ1∂−φ1 − 2ψ2 sinh[φ1] cos[φ3] + 2ψ4 cosh[φ1] sin[φ3]

)
.

Now introduce the complex fields

ψ− = ψ1 + iψ3, ψ+ = −ψ2 + iψ4, φ = φ3 + iφ1
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and the superpotential W (φ) = 2µ cosφ in order to write the lagrangian in a more familiar
form. Then, we have

L = − k

2π
[
∂+φ∂−φ

∗ + ψ∗−∂+ψ− + ψ∗+∂−ψ+ − V
]
,

V =
∣∣W ′ (φ)

∣∣2 − [
W ′′ (φ)ψ−ψ+ +W ∗′′ (φ∗)ψ∗−ψ

∗
+

]
, (42)

where |W ′ (φ)|2 = 2µ2 cosh[2φ1]− 2µ2 cos[2φ3]. This Lagrangian is invariant under the common
N = (2, 2) superspace transformations for a complex chiral bosonic superfield. In terms of the
new complex fields we have for (41) with ε− = −(ε1 + iε2) and ε+ = ε1 − iε2 that

δ+1/2φ = −2ε−ψ+, δ−1/2φ = +2ε+ψ−,

δ+1/2ψ+ = +ε∗−∂+φ, δ−1/2ψ+ = −iε+W ′∗ (φ∗) ,

δ+1/2ψ− = −iε−W ′∗ (φ∗) , δ−1/2ψ− = −ε∗+∂−φ

plus their complex conjugates. Define now the following complex combinations of the super-
charges 1

2Q± = ∓Q1
± + iQ2

±

Q± = 2
∫
dx1

(
ψ±∂±φ

∗ ∓ iψ∗∓W ′∗ (φ∗)
)
, Q± = 2

∫
dx1

(
ψ∗±∂±φ± iψ∓W ′ (φ)

)
.

Now, with the Dirac brackets {φ, ∂tφ
∗} = {φ∗, ∂tφ} = +1 and

{
ψ+, ψ

∗
+

}
=

{
ψ−, ψ

∗
−
}

= +1/2
we have with Q±f = {Q±, f}

Q+φ = −2ψ+, Q+φ = 0,

Q+ψ+ = 0, Q+ψ+ = ∂+φ,

Q+ψ− = −iW ′∗ (φ∗) , Q+ψ− = 0,

Q−φ = −2ψ−, Q−φ = 0,

Q−ψ+ = iW ′∗ (φ∗) , Q−ψ+ = 0,

Q−ψ− = 0, Q−ψ− = ∂−φ

plus their complex conjugates.
Finally, the total variation becomes δSUSY = ε−Q+ − ε+Q− + ε∗−Q+ − ε∗+Q− with

δSUSYφ = +2ε+ψ− − 2ε−ψ+, δSUSYφ
∗ = +2ε∗+ ψ∗− − 2ε∗−ψ

∗
+,

δSUSYψ+ = +ε∗−∂+φ− iε+W ′∗ (φ∗) , δSUSYψ
∗
+ = +ε−∂+φ

∗ + iε∗+ W ′ (φ) ,
δSUSYψ− = −ε∗+∂−φ− iε−W ′∗ (φ∗) , δSUSYψ

∗
− = −ε+∂−φ∗ + iε∗−W

′ (φ) ,

which are the usual N = (2, 2) supersymmetry transformations obtained by using a superspace
approach. As in the case of the N = (1, 1) model, we expect the existence of higher non-local
fermionic flows for this model.

Remark 4. The action (42) is a Landau–Ginzburg model on a flat non-compact trivial Calabi–
Yau manifold X, i.e. X = C. As is well known this model is B-twistable. It would be interesting
to see the relation of its chiral ring and the chiral ring of a topologically twisted version of
a superstring on AdS2 × S2 where the action (42) is extracted as a Pohlmeyer reduction [17].
This would be in principle, a simple way to test up to what point the Pohlmeyer reduction
can be understood as an equivalence of quantum field theories, at least at the level of ground
states and by eliminating conformal anomaly issues. It would be also interesting to trace back
(if possible) the role played by the extended conformal symmetries of W-type in terms of sigma
model variables.
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Remark 5. In the relativistic sector of the AKNS hierarchy which is associated to the Ho-
mogeneous gradation, the Toda potential has a symmetry, i.e. K(0)

B 6= ∅. In this case further
reduction of the model can be performed, eliminating the flat directions. This is done by cou-
pling to a quadratic gauge field A and is equivalent to the introduction of singular metrics
defining the non-Abelian Toda models also known as singular Toda models. The minimal cou-
pling of the fermions with the gauge field gives two terms proportional to Q(0)

± . After integration
of A, the action will have a potential term which is quartic in the fermions, roughly of the form

V =
〈
Q

(0)
+ BQ

(0)
− B−1

〉
∼ R(B)ψ1

+ψ
2
+ψ

1
−ψ

2
−,

which is possibly related to the curvature R of the background metric. This hierarchy is relevant
from the point of view of Pohlmeyer reductions where reductions of non-linear sigma models
inside this hierarchy are quite common [17].

4 Concluding remarks

By coupling two identical supersymmetric integrable hierarchies we have shown that the usual
notion of superspace/supersymmetry is embedded and alternatively described by the symmetry
algebra spanned by the subset of flows (t−1, t−1/2, t+1/2, t+1) ⊂

(
t±1/2, t±1, t±3/2, . . .

)
. We have

given the explicit form of the supercharges generating these extended (N,N) supersymmetry
flows and also shown that the higher grade fermionic flows are inevitably non-local on both chiral
sectors. In particular, when the (t−1, t−1/2, t+1/2, t+1) flows are supplemented by the algebraic

conditions Q(0)
± = 0, the integrable model is restricted to a reduced group manifold spanned

by the invariant subalgebra of a reductive automorphism τred, see Appendix A for an explicit
example. We do not supersymmetrize the fields, i.e. the ‘angles’ that parametrize the group
elements Ĝ as usually done in the literature. The reduction by τred should be, in the general
case, a natural extension to superalgebras of the automorphism used to define the bosonic affine
(Abelian) Toda models, see [2] for an example applied to the Lie algebra ĝ = sl(m+ 1,C). The
reduction provides a well defined connection between the dressing elements and the physical
degrees of freedom cf. equation (11), as well as the right number of terms in the potential
appearing in the action functional by truncating it at the second term, thus the natural affine
superalgebras involved in the supersymmetric affine (Abelian) Toda models are the twisted
ones.

What remains to be done in general terms is a formal proof of the statement that the in-
troduction of τred is responsible for the locality (Q(0)

± = 0) of the lowest supersymmetry flows
(δ±1/2). This is equivalent to an explicit construction of a reductive automorphism τred in which

the invariant subalgebra ĝred has no bosonic kernel of grade zero, i.e. K(0)
B = ∅. Such τred will

define in principle, all supersymmetric affine Abelian Toda models attached to the mKdV hier-
archy (in the A series) and it would be interesting to construct it also for other series of affine
superalgebras. The next step is to introduce a super tau-function formulation which we expect
to be a natural generalization of the one introduced in [21] for the bosonic affine Toda models,
where an infinite number of conserved charges Q±n were written in terms of the boundary va-
lues B of a single tau function τ , in the form Q±n ∼ ∂±n log τ |B. As we are using a fermionic
version of the Toda models coupled to matter fields constructed in [13], it is possible that one
has to consider a ‘matrix’ of tau functions τmn when solving the whole system (12). In this case,
the interpretation of the single τ function as a classical limit of the partition function of some
quantum integrable system will change or will have to be modified in an appropriate way. The
point is that quantization can be done, in principle, by quantizing τmn, i.e. by using a quantum
group of dressing transformations. This obviously deserves a separate study.



Supersymmetry Flows of Affine Toda Models 21

A potential application for our supersymmetric affine Toda models is related to the Pohlmeyer
reduction of supersymmetric sigma models. In the present construction we needed to impose the
conditions Q(0)

± = 0 in order to have K(0)
B = ∅. This means that the corresponding supersymmet-

ric reduced models belong to the mKdV hierarchy and that no gauge symmetries are involved,
thus having Toda models of Abelian type (see equation (42) for an example). To apply these re-
sults in the most general situation we need to find a way of coupling two supersymmetric AKNS
hierarchies in which K(0)

B 6= ∅, i.e. the reduced models will have gauge symmetries, thus being
Toda models of non-Abelian type. We expect to deduce the action functional for the supersym-
metric non-Abelian affine Toda models similar to the one constructed in [17, equation (6.49)]
in the particular case of the reduction of the AdS5×S5 superstring coset sigma model. We also
expect to deduce the supersymmetry transformations by treating them as fermionic symmetry
flows in the AKNS hierarchy in the same way as it was done for the action (28) and (17), (18)
in the mKdV hierarchy. It is worth to compare our supersymmetry transformations with the
ones proposed in [17, equations (7.21), (7.22)]. We also comment that our Lax pair and action
functional naturally includes a spectral parameter and that it is also conformal invariant as a
consequence of the two-loop nature of the affine algebras used. The study of the ‘off shell’
supersymmetric AKNS hierarchy and its symmetries is already under investigation [23].

A Used superalgebras solving Q
(0)
± = 0

We consider the reductive automorphism τred for sl(2, 1)(1) only [3]. It is defined by

τred
(
E(n)

α

)
= −(−1)q

(
E

(n)
α

)
E

(n+ηEα )
−α for α ∈ bosonic root,

τred
(
E(n)

α

)
= i(−1)q

(
E

(n)
α

)
E

(n+ηEα )
−α for α ∈ fermionic root,

where q
(
E

(n)
α

)
is the grade of E(n)

α , i.e.
[
Q,E

(n)
α

]
= q

(
E

(n)
α

)
E

(n)
α , ηEα is defined by [α ·H,Eα] =

ηEαEα and α are the roots of the underlying finite-dimensional Lie superalgebra.
Invariance under τred define a twisted superalgebra sl(2, 1)(2) ⊂ sl(2, 1)(1). This twisted

superalgebra solve the conditions Q(0)
± = 0. In [15], two sub-superalgebras of sl(2, 1)(1) solving

the conditions Q(0)
± = 0 where found by another method. The first algebra solution was denoted

by sl(2, 1)(2)
[1] and coincides with the subalgebra invariant under τred above. The second algebra

solution was denoted by sl(2, 1)(2)
[2] . These two subalgebras gives rise to integrable models of

sinh-Gordon and sine-Gordon type which are related by analytic continuation in the fields.
Similarly, in the case of psl(2, 2)(1), four sub-superalgebras solving the conditions Q(0)

± = 0 were
found. they were denoted as psl(2, 2)(2)

[i] , i = 1, 2, 3, 4 and give rise to integrable field theories
coupling models of (sinh-sinh), (sine,sine), (sinh,sine) and (sine, sinh) Gordon type respectively,
all of them related by analytic continuation. The subscript [i] is just a label used to denote
a particular subalgebra solving the locallity conditions Q(0)

± = 0. The reason of using these
subalgebras is to turn local the lowest supersymmetry flows. The explicit difference, for the
case sl(2, 1)(1) (non-local) and sl(2, 1)(2)[1] (local) was worked out in detail in [3].

In this paper we consider, for the sake of simplicitly and with the aim of not being repetitive,
only the superalgebras sl(2, 1)(2)

[1] and psl(2, 2)(2)[3] whose definitions are as follows

sl(2, 1)(2)
[1] :

Q = 2d+
1
2
H1, E

(±1)
± = λ2 ·H(±1/2) −

(
E

(0)
±α1

+ E
(±1)
∓α1

)
and

KB =
{
K

(2n+1)
1 = λ2 ·H(n+1/2), K

(2n+1)
2 = E(n)

α1
+ E

(n+1)
−α1

}
,
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MB =
{
M

(2n)
1 = H

(n)
1 , M

(2n+1)
2 = E(n)

α1
− E(n+1)

−α1

}
,

KF =

 F
(2n+3/2)
1 =

(
E

(n+1)
α2 + E

(n+1/2)
α1+α2

)
+

(
E

(n+1/2)
−α2

+ E
(n+1)
−α1−α2

)
,

F
(2n+1/2)
2 =

(
E

(n+1/2)
α2 + E

(n)
α1+α2

)
−

(
E

(n)
−α2

+ E
(n+1/2)
−α1−α2

)
 ,

MF =

 G
(2n+1/2)
1 =

(
E

(n+1/2)
α2 − E(n)

α1+α2

)
+

(
E

(n)
−α2
− E(n+1/2)

−α1−α2

)
,

G
(2n+3/2)
2 =

(
E

(n+1)
α2 − E(n+1/2)

α1+α2

)
−

(
E

(n+1/2)
−α2

− E(n+1)
−α1−α2

)
 .

sl(2, 2)(2)
[3] :

Q = d+
1
2

(H1 +H3) , E
(±1)
± =

(
E

(0)
±α1

+ E
(±1)
∓α1

)
+

(
E

(0)
±α3

+ E
(±1)
∓α3

)
+ I and

KB =
{
K

(2n+1)
1 = I(2n+1), K

(2n+1)
2 = E(2n)

α1
+ E

(2n+2)
−α1

, K
(2n+1)
3 = E(2n+2)

α3
+ E

(2n)
−α3

}
,

MB =

 M
(2n)
1 = H

(2n)
1 , M

(2n+1)
2 = E

(2n)
α1 − E

(2n+2)
−α1

,

M
(2n+1)
3 = H

(2n+1)
3 , M

(2n)
4 = E

(2n+1)
α3 − E(2n−1)

−α3

 ,

KF =



F
(2n+1/2)
1 =

(
E

(2n+1/2)
α2 + E

(2n+1/2)
α1+α2+α3

)
+

(
E

(2n−1/2)
α1+α2

+ E
(2n+3/2)
α2+α3

)
+

+
(
E

(2n+1/2)
−α2

+ E
(2n+1/2)
−α1−α2−α3

)
+

(
E

(2n+3/2)
−α1−α2

+ E
(2n−1/2)
−α2−α3

)
,

F
(2n+3/2)
2 =

(
E

(2n+3/2)
α2 + E

(2n+3/2)
α1+α2+α3

)
+

(
E

(2n+1/2)
α1+α2

+ E
(2n+5/2)
α2+α3

)
−

−
(
E

(2n+3/2)
−α2

+ E
(2n+3/2)
−α1−α2−α3

)
−

(
E

(2n+5/2)
−α1−α2

+ E
(2n+1/2)
−α2−α3

)
,

F
(2n+3/2)
3 =

(
E

(2n+3/2)
α2 + E

(2n+3/2)
α1+α2+α3

)
−

(
E

(2n+1/2)
α1+α2

+ E
(2n+5/2)
α2+α3

)
+

+
(
E

(2n+3/2)
−α2

+ E
(2n+3/2)
−α1−α2−α3

)
−

(
E

(2n+5/2)
−α1−α2

+ E
(2n+1/2)
−α2−α3

)
,

F
(2n+1/2)
4 = −

(
E

(2n+1/2)
α2 + E

(2n+1/2)
α1+α2+α3

)
+

(
E

(2n−1/2)
α1+α2

+ E
(2n+3/2)
α2+α3

)
+

+
(
E

(2n+1/2)
−α2

+ E
(2n+1/2)
−α1−α2−α3

)
−

(
E

(2n+3/2)
−α1−α2

+ E
(2n−1/2)
−α2−α3

)



,

MF =



G
(2n+1/2)
1 =

(
E

(2n−1/2)
α1+α2

− E(2n+3/2)
α2+α3

)
+

(
E

(2n+1/2)
α2 − E(2n+1/2)

α1+α2+α3

)
+

+
(
E

(2n+3/2)
−α1−α2

− E(2n−1/2)
−α2−α3

)
+

(
E

(2n+1/2)
−α2

− E(2n+1/2)
−α1−α2−α3

)
,

G
(2n+3/2)
2 =

(
E

(2n+1/2)
α1+α2

− E(2n+5/2)
α2+α3

)
+

(
E

(2n+3/2)
α2 − E(2n+3/2)

α1+α2+α3

)
−

−
(
E

(2n+5/2)
−α1−α2

− E(2n+1/2)
−α2−α3

)
−

(
E

(2n+3/2)
−α2

− E(2n+3/2)
−α1−α2−α3

)
,

G
(2n+3/2)
3 =

(
E

(2n+1/2)
α1+α2

− E(2n+5/2)
α2+α3

)
−

(
E

(2n+3/2)
α2 − E(2n+3/2)

α1+α2+α3

)
+

+
(
E

(2n+5/2)
−α1−α2

− E(2n+1/2)
−α2−α3

)
−

(
E

(2n+3/2)
−α2

− E(2n+3/2)
−α1−α2−α3

)
,

G
(2n+1/2)
4 = −

(
E

(2n−1/2)
α1+α2

− E(2n+1/2)
α2+α3

)
+

(
E

(2n+1/2)
α2 − E(2n+1/2)

α1+α2+α3

)
+

+
(
E

(2n+3/2)
−α1−α2

− E(2n−1/2)
−α2−α3

)
−

(
E

(2n+1/2)
−α2

− E(2n+1/2)
−α1−α2−α3

)



.

B Relativistic equations for t±3

The decomposition of the zero curvature equation [L+3, L−3] = 0 on the different graded sub-
spaces reads

∂±3D
(∓5/2) = ±

[
E(∓3), B∓1D(±1/2)B±1

]
,

∂±3D
(∓2) = ±

[
D(∓5/2), B∓1D(±1/2)B±1

]
±

[
E(∓3), B∓1D(±1)B±1

]
,

∂±3D
(∓3/2) = ±

[
D(∓2), B∓1D(±1/2)B±1

]
±

[
D(∓5/2), B∓1D(±1)B±1

]



Supersymmetry Flows of Affine Toda Models 23

±
[
E(∓3), B∓1D(±3/2)B±1

]
,

∂±3D
(∓1) = ±

[
D(∓3/2), B∓1D(±1/2)B±1

]
±

[
D(∓2), B∓1D(±1)B±1

]
±

[
D(∓5/2), B∓1D(±3/2)B±1

]
±

[
E(∓3), B∓1D(±2)B±1

]
,

∂±3D
(∓1/2) = ±

[
D(∓1), B∓1D(±1/2)B±1

]
±

[
D(∓3/2), B∓1D(±1)B±1

]
±

[
D(∓2), B∓1D(±3/2)B±1

]
±

[
D(∓5/2), B∓1D(±2)B±1

]
±

[
E(∓3), B∓1D(±5/2)B±1

]
,

∂−3

(
∂+3BB

−1
)

=
[
D(+1/2), BD(−1/2)B−1

]
+

[
D(+1), BD(−1)B−1

]
+

[
D(+3/2), BD(−3/2)B−1

]
+

[
D(+2), BD(−2)B−1

]
+

[
D(+5/2), BD(−5/2)B−1

]
+

[
E(+3), BE(−3)B−1

]
,

where we have replaced the solution D(0) = −∂+3BB
−1 for the degree −3 equation

0 =
[
D(0) + ∂+3BB

−1, BE(+3)B−1
]
. (43)

For the sl(2, 1)(2)
[1] algebra set

D(+5/2) = ψ1
+G

(+5/2)
1 , D(−5/2) = ψ1

−G
(−5/2)
2 ,

D(+2) = φ1
+M

(+2)
1 , D(−2) = φ1

−M
(−2)
1 ,

D(+3/2) = ψ2
+F

(+3/2)
1 + ψ3

+G
(+3/2)
2 , D(−3/2) = ψ2

−F
(−3/2)
2 + ψ3

−G
(−3/2)
1 ,

D(+1) = φ2
+K

(+1)
1 + φ3

+K
(+1)
2 + φ4

+M
(+1)
2 , D(−1) = φ2

−K
(−1)
1 + φ3

−K
(−1)
2 + φ4

−M
(−1)
2 ,

D(+1/2) = ψ4
+F

(+1/2)
2 + ψ5

+G
(+1/2)
1 , D(−1/2) = ψ4

−F
(−1/2)
1 + ψ5

−G
(−1/2)
2 ,

D(0) = φ5
+M

(0)
1

then, the above equations of motion are

∂±3ψ
1
∓ = 2ψ4

± sinh[φ]± 2ψ5
± cosh[φ],

∂±3φ
1
∓ = 2ψ1

∓ψ
4
± cosh[φ]± 2ψ1

∓ψ
5
± sinh[φ]− 2φ3

± sinh[2φ]± 2φ4
± cosh[2φ],

∂±3ψ
2
∓ = −φ1

∓ψ
4
± sinh[φ]∓ φ1

∓ψ
5
± cosh[φ] + ψ1

∓φ
3
± sinh[2φ]∓ ψ1

∓φ
4
± cosh[2φ],

∂±3ψ
3
∓ = ∓

(
φ1
∓ψ

4
± − 2ψ3

±
)
cosh[φ]−

(
φ1
∓ψ

5
± − 2ψ2

±
)
sinh[φ]± φ3

±ψ
1
∓ cosh[2φ]

− ψ1
∓φ

4
± sinh[2φ]± ψ1

∓φ
2
±,

∂±3φ
2
∓ = 2

(
−ψ2

∓ψ
4
± + ψ3

∓ψ
5
± − ψ1

∓ψ
3
±
)
cosh[φ]± 2

(
−ψ2

∓ψ
5
± + ψ3

∓ψ
4
± − ψ1

∓ψ
2
±
)
sinh[φ],

∂±3φ
3
∓ = 2

(
−ψ2

∓ψ
4
± − ψ3

∓ψ
5
± + ψ1

∓ψ
3
±
)
cosh[φ]∓ 2

(
ψ2
∓ψ

5
± + ψ3

∓ψ
4
± − ψ1

∓ψ
2
±
)
sinh[φ]

− 2φ1
∓φ

3
± sinh[2φ]± 2φ1

∓φ
4
± cosh[2φ],

∂±3φ
4
∓ = ±2

(
ψ2
∓ψ

4
± + ψ3

∓ψ
5
± − ψ1

∓ψ
3
±
)
sinh[φ] + 2

(
ψ2
∓ψ

5
± + ψ3

∓ψ
4
± − ψ1

∓ψ
2
±
)
cosh[φ]

± 2φ1
∓φ

3
± cosh[2φ]− 2φ1

∓φ
4
± sinh[2φ]± 2φ1

±,

∂±3ψ
4
∓ = ∓

(
φ2
∓ψ

4
± − φ3

∓ψ
4
± − φ4

∓ψ
5
± + φ1

∓ψ
3
±
)
cosh[φ]

+
(
φ4
∓ψ

4
± − φ2

∓ψ
5
± + φ3

∓ψ
5
± − φ1

∓ψ
2
±
)
sinh[φ]

∓
(
φ3
±ψ

2
∓ + φ4

±ψ
3
∓
)
cosh[2φ] +

(
ψ2
∓φ

4
± + ψ3

∓φ
3
±
)
sinh[2φ]± ψ1

∓φ
1
± ± ψ2

∓φ
2
±,

∂±3ψ
5
∓ = ∓

(
φ4
∓ψ

4
+ + φ2

∓ψ
5
± + φ3

∓ψ
5
± + φ1

∓ψ
2
± − 2ψ1

±
)
cosh[φ]

−
(
φ2
∓ψ

4
± + φ3

∓ψ
4
± + φ4

∓ψ
5
± + φ1

∓ψ
3
±
)
sinh[φ]−

(
ψ2
∓φ

3
± + ψ3

∓φ
4
±
)
sinh[2φ]

±
(
ψ2
∓φ

4
± + ψ3

∓φ
3
±
)
cosh[2φ]± ψ3

∓φ
2
±,
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∂+3∂−3φ = 2
(
ψ4

+ψ
4
− − ψ5

+ψ
5
− − ψ2

+ψ
2
− + ψ3

+ψ
3
− − ψ1

+ψ
1
−
)
sinh[φ]

+ 2
(
ψ4

+ψ
5
− + ψ4

−ψ
5
+ − ψ2

+ψ
3
− − ψ2

−ψ
3
+

)
cosh[φ]

− 2
(
1− φ3

+φ
3
− + φ4

+φ
4
−
)
sinh[2φ]− 2

(
φ3

+φ
4
− − φ3

−φ
4
+

)
cosh[2φ]. (44)

The generalized equations of motion are found by replacing above the following solutions

ψ1
± = ∓2ψ±, ψ2

± = ∓ψ±∂±φ, ψ3
± = ∂±ψ±, ψ4

± = −1
2

(
ψ±∂

2
±φ− ∂±φ∂±ψ±

)
,

ψ5
± = ∓1

2
∂2
±ψ± ± ψ± (∂±φ)2 , φ1

± = −∂±φ, φ2
± = −2ψ±∂±ψ±,

φ3
± =

1
2

(∂±φ)2 + 2ψ±∂±ψ±, φ4
± = ±1

2
∂2
±φ,

φ5
+ = −1

4
∂3

+φ+
1
2

(∂+φ)3 + 3∂+φψ+∂+ψ+.
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