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Abstract. Short-wave perturbations in a relaxing medium, governed by a special reduction
of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the
gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability
of the corresponding dynamical system is stated and an infinite hierarchy of commuting to
each other conservation laws of dispersive type are found. The well defined regularization
of the model is constructed and its Lax type integrability is discussed. A generalized hyd-
rodynamical Riemann type system is considered, infinite hierarchies of conservation laws,
related compatible Poisson structures and a Lax type representation for the special case
N = 3 are constructed.
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1 Introduction

Many important problems of propagating waves in nonlinear media with distributed parameters,
for instance, invisible non-dissipative dark matter, playing a decisive role [9, 10] in the formation
of large scale structure in the Universe like galaxies, clusters of galaxies, super-clusters, can be
described by means of evolution differential equations of special type. It is also well known [2,
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17, 25, 28] that shortwave perturbations in a relaxing one dimensional medium can be described
by means of some reduction of the Ostrovsky equations, coinciding with the Whitham type
evolution equation

du/dt = 2uux +
∫

R
K(x, s)usds, (1.1)

discussed first in [28]. Here the kernelK : R×R → R depends on the medium elasticity properties
with spatial memory and can, in general, be a function of the pressure gradient ux ∈ C∞(R; R),
evolving with respect to equation (1.1). In particular, if the nonlinear medium is endowed still
with spatial memory properties, that is the wave amplitude depends on the orbit, swept by its
front, the propagation of the corresponding wave can be modeled by means of the so called
generalized Ostrovsky evolution equations [20]. Namely, if to put K(x, s) = 1

2 |x − s|, x, s ∈ R,
then equation (1.1) can be reduced to

du/dt = 2uux + ∂−1u,

which was, in particular, studied before in [17, 21, 22].
Since some media possess elasticity properties depending strongly on the spatial pressure

gradient ux, x ∈ R, the corresponding Whitham type kernel looks like

K(x, s) := −θ(x− s)us (1.2)

for x, s ∈ R, naturally modeling the relaxing spatial memory effects. The resulting equation (1.1)
with the kernel (1.2) becomes

du/dt = 2uux − ∂−1u2
x := K[u], (1.3)

which appears to possess very interesting mathematical properties. The latter will be the main
topic of the next sections below.

Owing to the results, obtained before in [25, 26], the dynamical system (1.3) appeared to be
a Lax type integrable bi-Hamiltonian flow, but with ill posed temporal evolution. As it was
demonstrated in [26], a suitable finite-dimensional reduction scheme, if applied to the correspon-
ding hierarchy of conservation laws for constructing explicit solutions to the Ostrovsky–Whitham
type nonlinear dynamical system (1.3) by means of quadratures, meets some technical problems.
Some of these integrability aspects were before presented in [2], where a suitable well posed
regularization of the equation (1.3) in the form

ut = 2uux − v
vt = 2uvx

}
:= K[u, v] (1.4)

for treating this nonlocality problem was proposed.
Below the well posed integrability problem for the Ostrovsky–Whitham type nonlinear and

nonlocal dynamical system (1.4) will be reanalyzed in detail making use of this regulariza-
tion scheme. The corresponding implectic structures and Lax type representations are found
by means of the differential-geometric tools, devised and extended in [7, 8, 15, 24]. A natu-
ral Riemann type generalization of the dynamical system (1.4) is proposed, owing to a recent
observation by D. Holm and M. Pavlov:

DN
t u = 0, N ∈ Z+, (1.5)

which at N = 2 is exactly equivalent to the system (1.4). The integrability properties of
equation (1.5) at N = 3 were analyzed in detail, the conservation laws, corresponding compatible
implectic structures and Lax type representation are constructed.
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It is worth to mention that the obtained in this work Lax type pair (3.6) for the regularized
dynamical system (1.4) was found first in work [4]. It coincides with those found later in [23],
making use of a very special bi-Lagrangian representation of the dynamical system (1.4). But
the existence of the singular co-implectic structure (3.14) in these references was not stated.
A detailed analysis of the relationships between solutions of dynamical systems (1.3) and (1.4),
based on a reciprocal transformation, suggested by M. Pavlov in [23], was presented recently
in [27]. Mention also work [14], where the geometric aspects of the equation like (2.1) were
studied.

Note also here that theory of integrable homogenous hydrodynamic type systems with distinct
characteristic velocities was constructed by S.P. Tsarev. In this paper we consider the first
example in a literature of nonhomogeneous integrable hydrodynamic type systems with a sole
characteristic velocity. Such a theory does not exist at this moment.

2 A regularization scheme and the geometric
integrability problem

Define a smooth periodic function v ∈ C∞2π(R; R), such that

v := ∂−1u2
x

for any x, t ∈ R, where the function u ∈ C∞2π(R; R) solves equation (1.3). Then it is easy to state
that the following regularized nonlinear dynamical system

ut = 2uux − v
vt = 2uvx

}
:= K[u, v] (2.1)

of hydrodynamic type, which was introduced before in [6], studied in [2, 4, 12, 13, 19] and
analyzed as a Gurevich–Zybin system in [23], and is already well defined on the extended
2π-periodic functional space M := C∞2π(R; R2) and equivalent on the functional submanifold
Mred := {(u, v) ∈ M : vx − u2

x = 0} to that given by expression (1.3), as it was mentioned
in [2] and discussed recently in [27]. The system (2.1) can be rewritten as the following set of
equations

ut = 2uux − v, vt = 2uvx,

ux = w, vx = uxw,

wt = vx + 2uwx, (2.2)

which is equivalent to a set of differential two-forms

{α} :=
{
α(1) = du ∧ dx+ 2udu ∧ dt− vdx ∧ dt, α(2) = dv ∧ dx+ 2udv ∧ dt,
α(3) = du ∧ dt− wdx ∧ dt, α(4) = dv ∧ dt− wdu ∧ dt,
α(5) = dw ∧ dx+ dv ∧ dt+ 2udw ∧ dt

}
. (2.3)

This set of two-forms generates the closed ideal I(α), since

d α(1) = −α(2) ∧ dt, dα(2) = 2du ∧ α(4), dα(3) = −α(5) ∧ dt,
dα(4) = −dw ∧ α(3) − wdt ∧ α(5), dα(5) = −2dw ∧ α(3) − 2wdt ∧ α(5).

The set of differential forms (2.3), being integrable, defines the integral submanifold M̄ by
means of the condition I(α) = 0. Making now use of the differential-geometric method devised



4 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky

in [11, 18, 24] and extending algorithmically the approach of [15], we will look for a reduced
upon the integral submanifold M̄ connection one-form Γ, belonging to some not yet determined
its holonomy Lie algebra G. This 1-form can be represented as follows:

Γ = A(u, v, w)dx+ B(u, v, w)dt, (2.4)

where the elements A,B ∈ G satisfy determining equations

Ω =
∂A
∂u

du ∧ dx+
∂A
∂v

dv ∧ dx+
∂A
∂w

dw ∧ dx+
∂B
∂u

du ∧ dt

+
∂B
∂v

dv ∧ dt+
∂B
∂w

dw ∧ dt+ [A,B]dx ∧ dt

⇒ g1(du ∧ dx+ 2udu ∧ dt− vdx ∧ dt) + g2(dv ∧ dx+ 2udv ∧ dt)
+ g3(du ∧ dt− wdx ∧ dt) + g4(dv ∧ dt− wdu ∧ dt)
+ g5(dw ∧ dx+ 2udw ∧ dt+ dv ∧ dt) ∈ I(α)⊗ G (2.5)

for some G-valued functions g1, . . . , g5 ∈ G on M. From (2.5) one finds that

∂A
∂u

= g1,
∂A
∂v

= g2,
∂A
∂w

= g5,

∂B
∂u

= 2ug1 + g3 − wg4,
∂B
∂v

= 2ug2 + g4 + g5,

∂B
∂w

= 2ug5, [A,B] = −vg1 − wg3. (2.6)

Thereby, from the obtained set of relationships (2.6) one can find that

B = 2uA+ C(u, v), g4 =
∂C
∂v

− ∂A
∂w

, g3 = 2A+
∂C
∂u

+ w
∂C
∂v

− w
∂A
∂w

,

[A, C] = −v∂A
∂u

− 2wA− w
∂C
∂u

− w2∂C
∂v

+ w2∂A
∂w

,

serving for final searching for connection (2.4).

3 The bi-Hamiltonian structure and Lax-type representation

Consider the following polynomial expansion of the element A(u, v;w) ∈ G with respect to the
variable w:

A = A0(u, v) +A1(u, v)w +A2(u, v)w2

and substitute it into the last equation of (2.6). As a result we obtain:

[A0, C] = −v∂A0

∂u
, [A1, C] = −v∂A1

∂u
− 2A0 −

∂C

∂u
,

[A2, C] = −v∂A2

∂u
− ∂C

∂v
−A1, (3.1)

or

A1 = [C,A2]− v
∂A2

∂u
− ∂C

∂v
. (3.2)

which can be substituted into the second equation of (3.1):

[[C,A2], C]− 2v
[
∂A2

∂u
,C

]
−
[
∂C

∂v
,C

]
= −v

[
∂C

∂u
,A2

]
− v2∂

2A2

∂u2
− v

∂2C

∂u∂v
− 2A0 −

∂C

∂u
.
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Thus, recalling (3.1) and (3.2), we have that

2A0 = [C, [C,A2]] + 2v
[
∂A2

∂u
,C

]
+
[
∂C

∂v
,C

]
− v

[
∂C

∂u
,A2

]
− v2∂

2A2

∂u2
− v

∂2C

∂u∂v
− ∂C

∂u
,

[A0, C] = −v∂A0

∂u
, A1 = [C,A2]− v

∂A2

∂u
− ∂C

∂v
. (3.3)

Now we will assume that the element C := C0 is constant and the elements A0 and A2 are linear
with respect to variables u and v, that is

A0 = A(0)
0 +A(1)

0 u+A(2)
0 v, A2 = A(0)

2 +A(1)
2 u+A(2)

2 v.

Whence and from (3.3) one gets:

2A(0)
0 = [C0, [C0,A(0)

2 ]], [A(1)
0 , C0] = 0, [A(2)

0 , C0] = −A(1)
0 ,

2A(1)
0 = [C0, [C0,A(1)

2 ]], 2A(2)
0 = [C0, [C0,A(2)

2 ]] + 2[A(1)
2 , C0]. (3.4)

To solve the algebraic system (3.4) we need to calculate [24] the corresponding holonomy Lie
algebra of the connection (2.4). As a result of simple, but slightly cumbersome calculations,
we derive that elements A(j)

2 , j = 0, . . . , 2, and C0 belong to the Lie algebra sl(2; C), whose
basis L0, L+ and L− can be taken to satisfy the following canonical commutation relations:

[L0, L±] = ±L±, [L+, L−] = 2L0.

Thereby, making use of the standard determining expansions

A(j)
2 =

∑
±
c
(j)
± L± + c

(j)
0 L0, C0 =

∑
±
k±L± + k0L0, (3.5)

where j = 0, . . . , 2, and substituting (3.5) into (3.4), we obtain some relationships on values
c
(j)
± , c

(j)
0 ∈ C, j = 0, . . . , 2, and k±, k0 ∈ C. Resolving by means of simple but slightly cumber-

some calculations these relationships, we find the searched for basic elements A and B of the
connection Γ, depending on a spectral parameter λ ∈ C, thereby giving rise to the correspon-
ding Lax type commutative spectral representation for dynamical system (2.1) in the following
(2× 2)-matrix form:

df

dx
= `[u, v;λ]f,

df

dt
= p(`)f, p(`) := 2u`[u, v;λ] + q, (3.6)

`[u, v;λ] :=
(
−λux −vx

λ2 λux

)
, q :=

(
0 0
λ 0

)
, p(`) =

(
−2λuxu −2vxu
λ+ 2λ2u 2λuxu

)
,

defining the generalized time-independent spectrum Spec(`) ⊂ C: λ ∈ Spec(`), if the correspon-
ding solution f ∈ L∞(R; C2). It is worth to remark here that the Lax type representation (3.6),
found for the dynamical system (2.1), is not unique. Moreover, making use of other imbeddings
of the connection form (2.4) into a suitable holonomy Lie algebra G, one can construct different
Lax type representations, which could appear to be more useful for finding exact solutions to
dynamical system (2.1) by means of, for instance, the inverse spectral transform method.

The standard Riccati equation, derived from (3.6), allows to obtain right away an infinite
hierarchy of local conservation laws:

γ̂−1 :=
∫ 2π

0

√
u2

x − vxdx, γ̂0 :=
∫ 2π

0

(uxvxx − vxuxx)
2vx

√
u2

x − vx

dx, . . . , (3.7)
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and so on. All of conservation laws (3.7) except γ−1, are singular at the Cauchy condition (2.2).
This means that we need to construct other hierarchy of polynomial conservation laws regular
on the functional submanifold

Mred :=
{

(u, v) ∈M : u2
x − vx = 0, x ∈ R/2πZ

}
. (3.8)

The latter exists owing to the results of [23, 24]. The simplest way to search for them consists
in determining the bi-Hamiltonian structure of flow (2.1). As it is easy to check, dynamical
system (2.1) is canonically Hamiltonian, that is

d

dt
(u, v)ᵀ := −ϑ̂ grad Ĥϑ = K̂[u, v],

where the corresponding co-symplectic structure ϑ̂ : T ∗(M) → T (M) is canonical, equals

ϑ̂ =
(

0 1
−1 0

)
(3.9)

and satisfies the Noether equation

LK̂ ϑ̂ = 0 = dϑ̂/dt− ϑ̂K̂ ′,∗ − K̂ ′ϑ̂.

To prove this, it is enough to find by means of the small parameter method, devised before
in [24] a non-symmetric (ϕ′ 6= ϕ′,∗) solution ϕ ∈ T (M) to the following Lie–Lax equation:

dϕ/dt+ K̂ ′,∗ϕ = gradL (3.10)

for some suitably chosen smooth functional L ∈ D(M). As a result of easy calculations one
obtains that

ϕ = (−v, 0)ᵀ, L = −
∫ 2π

0
uvdx. (3.11)

Making use of (3.11) and the classical Legendrian relationship for the suitable Hamiltonian
function

H := (ϕ, K̂)− L, (3.12)

and the corresponding symplectic structure

ϑ̂−1 := ϕ′ − ϕ′,∗ =
(

0 −1
1 0

)
(3.13)

one obtains the implectic structure (3.9) and the corresponding non-singular Hamilton function

Ĥϑ :=
∫ 2π

0
(v2/2 + vxu

2)dx.

It is here worth to mention that the determining Lie–Lax equation (3.10) possesses still another
solution

ϕ =
(
ux

2
,− u2

x

2vx

)
, L =

1
4

∫ 2π

0
uvxdx,

giving rise, owing to formulas (3.13) and (3.12) to the new co-implectic (singular “symplectic”)
structure

η̂−1 := ϕ′ − ϕ′,∗ =

(
∂ −∂uxv

−1
x

−uxv
−1
x ∂ 1

2(u2
xv
−2
x ∂ + ∂u2

xv
−2
x )

)
(3.14)
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and the Hamiltonian functional

Ĥη :=
1
2

∫ 2π

0
(uvx − vux)dx.

The co-implectic structure (3.14) is, evidently, singular since η̂−1(ux, vx)ᵀ = 0. Remark also
that, owing to the general symplectic theory results [1, 8, 11, 15, 16, 18, 24] for nonlinear
dynamical systems on smooth functional manifolds, operator (3.14) defines on the manifold M
a closed differential two-form. Thereby it is a priori co-symplectic, satisfying on M the standard
Jacobi brackets condition. Moreover, the implectic structure η̂ : T ∗(M) → T ∗(M) satisfies the
determining Noether equation

LK̂ η̂ = 0 = dη̂/dt− η̂K̂ ′,∗ − K̂ ′η̂,

whose solutions can also be obtained by means of the small parameter method, devised before
in [16, 24]. As a result, the second implectic operator has the form

η̂ :=
(

∂−1 2ux∂
−1

2∂−1ux 2vx∂
−1 + 2∂−1vx

)
, (3.15)

giving rise to a new infinite hierarchy of polynomial conservation laws

γ̂n :=
∫ 1

0
dλ〈(ϑ̂−1η̂)ngrad Ĥϑ[uλ}, u〉 (3.16)

for all n ∈ Z+.
In particular, one can easily observe that there hold representations

d

dt
(u, v)ᵀ = −η̂ grad Ĥη,

d

dx
(u, v)ᵀ = −ϑ̂ grad Ĥη,

where

Ĥη :=
1
2

∫ 2π

0
(uvx − vux)dx.

Thereby, one can formulate the following proposition.

Proposition 1. The Riemann type hydrodynamical system (2.1) is a Lax type integrable bi-
Hamiltonian flow on the functional manifold M. The corresponding implectic pairs are compa-
tible and given by matrix operators (3.9) and (3.15), the Lax type representation is presented in
the differential matrix form (3.6).

Now, making use of (3.16), one can apply the standard reduction procedure upon the corre-
sponding finite dimensional functional subspaces M2n ⊂M, n ∈ Z+, and obtain a large set of
exact solutions of special quasi-periodic and solitonic type to dynamical system (2.1) upon the
functional submanifold Mred, if the Cauchy data are taken to satisfy constraint (3.8). Here we
need to mention that a general solution to the system (2.1), obtained in [23, 27], is presented in
an unwieldy involved form, almost completely not feasible for practical applications.

4 A Riemann type hydrodynamical generalization

It is here interesting to mention (owing to recent observations by D. Holm for N = 2 and for
arbitrary N ∈ Z+ by M. Pavlov) that the dynamical system (2.1) can be equivalently rewritten
up to the time rescaling as

D2
t u = 0, Dt := ∂/∂t+ u∂, (4.1)
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under the flow velocity condition dx/dt := u, which is a partial case [5] of the generalized
Riemann type hydrodynamic system

DN
t u = 0 (4.2)

for any integer N ∈ Z+. If N = 3, having defined the new variables v := Dtu, z := Dtv, one
easily obtains the new dynamical system

ut = v − uux

vt = z − uvx

zt = −uzx

 := K[u, v, z] (4.3)

of hydrodynamical type, which proves also to possess infinite hierarchies of polynomial conser-
vation laws.

As we are interested first in the conservation laws for the system (4.3), the following propo-
sition holds.

Proposition 2. Let H(λ) :=
∫ 2π
0 h(x;λ)dx ∈ D(M) be an almost everywhere smooth func-

tional on the manifold M, depending parametrically on λ ∈ C, and whose density satisfies the
differential condition

ht = λ(uh)x (4.4)

for all t ∈ R and λ ∈ C on the solution set of equation (4.1). Then the following iterative
differential relationship

(f/h)t = λ(uf/h)x (4.5)

holds, if a smooth function f ∈ C∞(R; R) (parametrically depending on λ ∈ C) satisfies for all
t ∈ R the linear equation

ft = 2λuxf + λufx. (4.6)

Proof. We have from (4.4)–(4.6) that

(f/h)t = ft/h− fht/h
2 = ft/h− λfux/h− λfuhx/h

2 = ft/h+ λfu(1/h)x − λuxf/h

= λ(uf)x/h+ λuf(1/h)x = λ(uf/h)x,

proving the proposition. �

The obvious generalization of the previous proposition is read as follows.

Proposition 3. If a smooth function h ∈ C∞(R; R) satisfies the relationships

ht = kuxh+ uhx,

where k ∈ R, then

H =
∫ 2π

0
h1/kdx

is a conservation law for the Riemann type hydrodynamical system (2.1).
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The following polynomial dispersionless functionals, constructed by means of Proposition 3,
are conserved with respect to the flow (4.3):

H(1)
n :=

∫ 2π

0
dxzn

(
vux − vxu−

n+ 2
n+ 1

z

)
,

H(4) :=
∫ 2π

0
dx
[
− 7vxv

2u+ z
(
6zu+ 2vxu

2 − 3v2 − 4vuux

)]
,

H(5) :=
∫ 2π

0
dx
(
z2ux − 2zvvx

)
, H(6) :=

∫ 2π

0
dx
(
zzv

3 + 3z2vxu+ z3
)
,

H(7) :=
∫ 2π

0
dx
(
zxv

3 + 3z2vux − 3z3
)
,

H(8) :=
∫ 2π

0
dxz

(
6z2u+ 3zvxu

2 − 3zv2 − 4zvux − 2vxv
2u+ 2v3ux

)
,

H(9) :=
∫ 2π

0
dx
[
1001vxv

4u+
(
1092z2u2 + 364zvxu

3−

− 1092zv2u− 728zvuxu
2 − 364vxv

2u2 + 273v4 + 728v3uxu
)]
,

H(2)
n :=

∫ 2π

0
dxzxvz

n, H(3)
n :=

∫ 2π

0
dxzx

(
v2 − 2zu

)n
,

where n ∈ Z+. In particular, as n = 1, 2, . . . , from (4.3) one obtains that

H
(2)
0 :=

∫ 2π

0
dxzxv, H

(2)
1 :=

∫ 2π

0
dxzxzv, . . . ,

H
(3)
1 :=

∫ 2π

0
dxzx

(
v2 − 2uz

)
, H

(3)
2 :=

∫ 2π

0
dxzx

(
v4 + 4z2u2 − 4zv2u

)
, . . . ,

and so on. Similarly one can construct also infinite hierarchies of conservation laws for the
hydrodynamical system (4.3), which are both non-polynomial and dispersive:

H
(1/4)
1 =

∫ 2π

0
dx
(
− 2uxxuxzx + uxxv

2
x + 2u2

xzxx − uxvxxvx + 3vxxzx − 3vxzxx

)1/4
,

H
(1/3)
2 =

∫ 2π

0
dx(−vxxzx + vxzxx)1/3,

H
(1/3)
3 =

∫ 2π

0
dx(vxxux − vxuxx − zxx)1/3,

H
(1/2)
1 =

∫ 2π

0
dx
[
− 2vuxzx + v2

x + z(−uxvx + 3zx)
]1/2

,

H
(1/2)
2 =

∫ 2π

0
dx
(
8u3

xzx − 3u2
xv

2
x − 18uxvxzx + 6v3

x + 9zx
)1/2

,

H
(1/5)
1 =

∫ 2π

0
dx
(
− 2uxxxuxzx + uxxxv

2
x + 6u2

xxzx − 6uxxuxzxx

− 3uxxvxxvx + 2u2
xzxxx − uxvxxxvx + 3uxv

2
xx + 3vxxxzx − 3vxzxxx

)1/5
,

H
(1/3)
3 =

∫ 2π

0
dx
[
k1u(−vxxzx + vxzxx) + k1v(uxxzx − uxzxx)

+ z(k2uxxvx − k2uxvxx + k1zxx + k2zxx) + k3(−3uxvxzx + v3
x + 3z2

x)
]1/3

, . . . ,

and so on, where kj ∈ R, j = 1, 2, 3, are arbitrary real numbers. The problem which remains still
open consists in proving, if any, that the generalized hydrodynamical system (4.3) is a Lax type
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integrable bi-Hamiltonian flow on the periodic functional manifold M := C(∞)(R/2πZ; R3), as
it was proved above for the system (4.2) at N = 2. This problem will be analyzed in the Section
below.

5 The Hamiltonian analysis

Consider the system (4.3) as a nonlinear dynamical system

ut = v − uux

vt = z − uvx

zt = −uzx

 := K[u, v, z], (5.1)

on the 2π-periodic smooth functional manifold M and analyze it from the Hamiltonian point
of view. To tackle with this problem, it is enough to construct [7, 11, 24] exact non-symmetric
solutions to the Lie–Lax equation

dϕ/dt+K ′,∗ϕ = gradL, ϕ′ 6= ϕ′,∗, (5.2)

for some functional L ∈ D(M), where ϕ ∈ T ∗(M) is, in general, a quasi-local vector, such that
the system (4.3) allows the following Hamiltonian representation:

K[u, v, z] = −η gradH[u, v, z], H = (ϕ,K)− L, η−1 = ϕ′ − ϕ′,∗.

As a test solution to (5.2) one can take the one

ϕ =
(
ux/2, 0,−z−1

x u2
x/2 + z−1

x vx

)ᵀ
, L =

1
2

∫ 2π

0
(2z + vux)dx,

which gives rise to the following co-implectic operator:

η−1 := ϕ′ − ϕ′,∗ =


∂ 0 −∂uxz

−1
x

0 0 ∂zx

−uxz
−1
x ∂ zx∂

1
2(u2

xz
−2
x ∂ + ∂u2

xz
−2
x )

− (vxz
−2
x ∂ + ∂vxz

−2
x )

 . (5.3)

This expression is not strictly invertible, as its kernel possesses the translation vector field
d/dx : M→ T (M) with components (ux, vx, zx)ᵀ ∈ T (M), that is η−1(ux, vx, zx)ᵀ = 0.

Nonetheless, upon formal inverting the operator expression (5.3), we obtain by means of
simple enough, but slightly cumbersome, direct calculations, that the Hamiltonian function
equals

H :=
∫ 2π

0
dx(uxv − z). (5.4)

and the implectic η-operator looks as

η :=

 ∂−1 ux∂
−1 0

∂−1ux vx∂
−1 + ∂−1vx ∂−1zx

0 zx∂
−1 0

 . (5.5)

The same way, representing the Hamiltonian function (5.4) in the scalar form

H = (ψ, (ux, vx, zx)ᵀ), ψ =
1
2

(
−v, u+ · · · ,− 1√

z
∂−1√z

)ᵀ

, (5.6)
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one can construct a second implectic (co-symplectic) operator ϑ : T ∗(M) → T (M), looking up
to O(µ2) terms, as follows:

ϑ =



µ
(

(u(1))2

z(1) ∂ + ∂ (u(1))2

z(1)

) 1 + 2µ
3

(
u(1)v(1)

z(1) ∂

+ 2∂ u(1)v(1)

z(1)

) 2µ
3

(
∂ (v(1))2

z(1) + ∂u(1)
)

−1 + 2µ
3

(
∂ u(1)v(1)

z(1)

+ 2u(1)v(1)

z(1) ∂
) 2µ

3

(
(v(1))2

z(1) ∂ + ∂ (v(1))2

z(1)

)
+ 2µ

3

(
u(1)∂ + ∂u(1)

) 2µ∂v(1)

2µ
3

(
(v(1))2

z(1) ∂ + u(1)∂
)

2µv(1)∂ µ
(
∂z(1) + z(1)∂

)


+O(µ2), (5.7)

where we put, by definition, ϑ−1 := (ψ′ − ψ′,∗), u := µu(1), v := µv(1), z := µz(1) as µ→ 0, and
whose exact form needs some additional simple enough but cumbersome calculations, which will
be presented in a work under preparation.

The operator (5.7) satisfies the Hamiltonian vector field condition:

(ux, vx, zx)ᵀ = −ϑ gradH,

following easily from (5.6).
Now having applied to the pair of implectic operators the gradient-holonomic scheme [11,

16, 24] of constructing a Lax type representation for the dynamical system (5.1) we obtain
by means of slightly cumbersome and tedious calculations the following compatible Lax type
representation:

fx = `[u, v;λ]f, ft = p(`)f, p(`) := −u`[u, v;λ] + q(λ),

`[u, v, z;λ =

 λux −vx zx
3λ2 −2λux λvx

λ2r[u, v, z] −3λ λux

 , q(λ) :=

 0 0 0
λ 0 0
0 1 0

 ,

p(`) =

 −λuux uvx −uzx
−3uλ2 + λ 2λuux −λuvx

−λ2r[u, v, z]u 1 + 3uλ −λuux

 , (5.8)

where f ∈ C∞(R; C3), λ ∈ C\{0} is a spectral parameter and r : M→ R is a smooth mapping,
satisfying the differential equation

Dtr + uxr = 6.

The latter possesses a wide set R of different solutions, amongst which there are the following:

r ∈ R :=

{[(
6xv − 3u2

)
/z
]
x
, 3
(
2vx − u2

x

)
z−1
x ,

2u3
x − 6uxvx + 9zx

2uxzx − v2
x

,

(
vxv

3 − 3uxv
2z + uzx

(
uz − v2

)
+ 6vz2

)
z−3

}
. (5.9)

Thereby, the following proposition holds.

Proposition 4. The generalized Riemann type hydrodynamical equation (4.2) at N = 2 and
N = 3 is equivalent to Lax type integrable bi-Hamiltonian dynamical systems (2.1) and (5.1),
whose Hamiltonian structures and Lax type representations are given by expressions (3.13),
(3.15), (3.6), and (5.5), (5.7), (5.8), (5.9), respectively.
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Note here that only the third element from the set (5.9) allows the reduction z = 0 to the
case N = 2. Concerning the case N = 4 and the general case N ∈ Z+, applying successively the
method devised above, one can obtain [3] for the Riemann type hydrodynamical system (5.1)
both infinite hierarchies of dispersive and dispersionless conservation laws, their symplectic
structures and the related Lax type representations, which is a topic of the next work under
preparation.
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