A CHARACTERIZATION OF FORMALLY SYMMETRIC UNBOUNDED OPERATORS

Danko Jocić

Abstract. We give necessary and sufficient conditions for an operator in a Hilbert space to be formally symmetric, symmetric or self-adjoint. This generalizes the well-known fact that a bounded operator T is self-adjoint if and only if $T^*T \leq (\text{Re } T)^2$. The proof is based on a well-behaved extension of the corresponding symmetric operator.

0. Introduction

Fong and Istratescu [1] and also Kittaneh [2] have proved the following:

Theorem A. A bounded operator T is self-adjoint if and only if $T^*T \leq (\text{Re } T)^2$.

They used Theorem A to investigate some classes of bounded operators — θ, WN and hyponormal operators. A large number of well-known and important operators, for example $x + i \frac{d}{dx}$, belongs to similar classes of unbounded operators. The aim of this note is to extend Theorem A to unbounded operators and to make it suitable for dealing with such situations. Our main result is Theorem 1 in which we present characterizations for an operator to be formally symmetric, symmetric or self-adjoint (Theorems 2, 3).

1. Preliminaries

Suppose that $(H, \langle \cdot | \cdot \rangle)$ is a separable, complex, infinite dimensional Hilbert space and let $(H \oplus H, \langle \cdot | \cdot \rangle)$ denote the usual product space. Throughout this paper we assume that all operators are linear. Let $D(A)$ denote the domain of an operator A. The operators $(A+A^*)/2$ and $(A+A^*)/2i$ (with $\Delta(A) = D(A) \cap D(A^*)$ as their domains) will be denoted by $\text{Re } A$ and $\text{Im } A$ respectively. If A is a restriction of B on $D(A)$, we will write $A \subset B$. Whenever $\Delta(A)$ is dense in H, we will denote the domains of $(\text{Re } A)^*$ and $(\text{Im } A)^*$ by $D(\text{Re } A)^*$ and $D(\text{Im } A)^*$ respectively. We recall

AMS Subject Classification (1980): Primary 47B25, Secondary 47B15
that a densely defined operator \(A \) is said to be symmetric iff \(\langle Ax|y \rangle = \langle x|Ay \rangle \) for all \(x, y \in D(A) \), i.e. if \(A \subset A^* \). It is said to be formally symmetric iff \(A^*x = Ax \) for all \(x \in \Delta(A) \) i.e. iff \(\text{Im } A \subset 0 \). Note that \(\text{Re } A \) and \(\text{Im } A \) are symmetric whenever \(\Delta(A) \) is dense in \(H \).

2. The construction

Lemma 1. For a closed, symmetric operator \(A \) in \(H \) we define the operator \(A^* \) by \(A^*(x,y) = (Ax,Ay) \). If the domain of \(A^* \) is given by \(D(A^*) = \{(x,y) \in D(A) \times D(A^*); x - y \in D(A)\} \) then \(A^* \) is one self-adjoint extension of \(A \oplus (-A) \).

Proof. For all \((x,y)\) and \((f,g)\) in \(D(A) \) we have that

\[
\langle A^*(x,y)|f,g \rangle = \langle A^*x|f \rangle - \langle A^*y|g \rangle = \langle A^*(x - y)|f \rangle + \langle A^*y|(f - g) \rangle.
\]

Since \(x - y \) and \(f - g \) are in \(D(A) \), it follows that

\[
\langle A^*(x - y)|f \rangle + \langle A^*y|(f - g) \rangle = \langle A(x - y)|f \rangle + \langle y|A(f - g) \rangle
\]

\[
= \langle (x,y)|A^*(f,g) \rangle.
\]

So \(A^* \) is symmetric.

Suppose that \(\lim_{n \to \infty} (x_n,y_n) = (x,y) \) and \(\lim_{n \to \infty} (A^*x_n,-A^*y_n) = (u,v) \) for some \((x_n,y_n) \in D(A) \) and some \(x, y, u, v \in H \). This implies that \(\lim_{n \to \infty} (x_n - y_n) = x - y \) and \(\lim_{n \to \infty} A(x_n - y_n) = \lim_{n \to \infty} A^*(x_n - y_n) = u + v \). Since \(A^* \) and \(A \) are closed and \(x_n - y_n \in D(A) \), it follows that \(x - y \in D(A) \) and \(x, y \in D(A^*) \). Moreover, \(A^*x = u \) and \(A^*y = -v \). Therefore \((x,y) \in D(A) \) and also \(A^*(x,y) = (A^*x - A^*y) = (u,v) \) is closed.

Finally, suppose that \((x,y) \in R(A^* + iI) \). Then it follows that \(\langle x|(A^* + iI)f \rangle = \langle y|(A^* - iI)g \rangle \) for all \((f,g) \in D(A) \) and, in particular \(\langle x|(A^* + iI)f \rangle = 0 \) for all \(f \in D(A) \). Therefore \(x \in (A^{**}) = D(A) \) and, moreover, \(x \in \text{Ker}(A - iI) \).

It now follows that \(2||x||^2 = \langle (A + iI)x|x \rangle = \langle x|(A - iI)x \rangle = 0 \), and hence \(x = 0 \). Analogously, we can prove that \(y = 0 \) and thus \(R(A^* + iI) = \{0\} \). The equality \(R(A^* - iI) = \{0\} \) follows similarly, and hence \(A^* \) is self-adjoint.

Remark 1. An alternative proof of Lemma 1 can be obtained by using von Neumann’s formulae for self-adjoint extensions of \(A \oplus (-A) \). The corresponding partial isometry \(V \) is given by

\[
V(x,y) = -(y,x), \text{ for all } (x,y) \in \text{Cl } (R(A \oplus (-A) + iI)) ,
\]

\[
V(x,y) = 0, \text{ for all } (x,y) \in \text{Ker } (A^* \oplus (-A^*) - iI) .
\]

Lemma 2. Let \(A \) and \(B \) be closed symmetric operators and assume that \(D(A) \subset D(B) \) and \(D(A^*) \subset D(B^*) \). Then there exist selfadjoint extensions \(A^* \) and \(B^* \) of \(A \oplus (-A) \) and \(B \oplus (-B) \) respectively, such that \(D(A^*) \subset D(B^*) \).

Proof. It is sufficient to take the extension constructed in Lemma 1. Then the required inclusion can be shown by a straightforward computation.
3. Main results

Theorem 1. Let A and B be symmetric operators and assume that $D(A) \subset D(B)$, $D(A^*) \subset D(B^*)$ and also
\[\|(A^* - iB^*)x\| \leq ||A^*x|| \] (a)
for all $x \in D(A^*)$. Then $B \subset 0$.

Proof. Without loss of generality we may assume that A and B are closed. To see this, note that (a) implies $\|Bx\| \leq 2\|Ax\|$ for all $x \in D(A)$ and hence $D(A^-) \subset D(B^-)$. Because of $A^* = A$ and $B^* = B^*$ it follows that $D(A^*) \subset D(B^*)$ and $\|(A^* - iB^-)x\| \leq ||A^*x||$ for all $x \in D(A^*)$. So, according to Lemma 2, let A and B be the corresponding self-adjoint extensions of $A \oplus (-A)$ and $B \oplus (-B)$, respectively. A simple calculation gives
\[\|(A - iB)(x, y)\| \leq ||A(x, y)|| \] (a')
for all $(x, y) \in D(A)$. Let E be the spectral measure induced by A and let $\gamma \in \delta \subset \mathbb{R}$, for some measurable bounded set γ and δ. We define $A(\delta) = E(\delta)AE(\delta)$ and $B(\delta) = E(\delta)BE(\delta)$. Since $E(\delta)h \in D(A)$, it follows by Lemma 2 that $E(\delta)h \in D(B)$, for an arbitrary $h \in H \oplus H$. Hence $D(B(\delta)) = H \oplus H$. Obviously $B(\delta)$ is symmetric and therefore self-adjoint. Then there exists a sequence $\{h_n\}_{n \in \mathbb{N}}$ of unit vectors in $H \oplus H$ such that $\lim_{n \to \infty} (B(\delta) - \lambda)h_n = 0$ for some $\lambda \in \mathbb{R}$ satisfying $|\lambda| = \|B(\delta)\|$. It follows from (a') that
\[\|B(\delta)h_n\| \leq -2 \operatorname{Re} \langle A(\delta)h_n, (B(\delta) - \lambda)h_n \rangle . \] (a'')
Letting $n \to \infty$ we get $\|B(\delta)\|^2 \leq 0$, and consequently $E(\delta)BE(\delta) = 0$. Since $\gamma \subset \delta$ we conclude that $E(\delta)BE(\gamma) = 0$. If $\bigcup \{\gamma_n: n \in \mathbb{N}\} = \bigcup \{\delta_n: n \in \mathbb{N}\}$ for some increasing sequences $\{\gamma_n\}_{n \in \mathbb{N}}$ and $\{\delta_n\}_{n \in \mathbb{N}}$, it follows that $BE(\gamma) = s\lim_{n \to \infty} E(\delta_n)BE(\gamma) = 0$ because $s\lim E(\delta_n) = I$. Moreover, $s\lim_{n \to \infty} E(\gamma_n) = I$ implies $B = s\lim_{n \to \infty} BE(\gamma_n) = 0$, since B is closed. Consequently, $B \subset 0$ as required.

Remark 2. If, in addition, A is (essentially) self-adjoint, then the assumption $D(A^*) \subset D(B^*)$ can be omitted and the proof of Theorem 1 simplified. Also, the use of lemmas becomes unnecessary.

As a consequence of Theorem 1, we give the following characterization.

Theorem 2. If $\Delta(T)$ is dense in H, then T is formally symmetric if and only if:
(1) $D(\operatorname{Re}T)^* \subset D(\operatorname{Im}T)^*$, \hspace{0.5cm} (2) $\|(\operatorname{Re}T)^*x - i(\operatorname{Im}T)^*x\| \leq ||(\operatorname{Re}T)^*x||$ for all $x \in D(\operatorname{Re}T)^*$.

Proof. If (1) and (2) are true, then $\operatorname{Im}T \subset 0$ by Theorem 1, and hence T is formally self-adjoint. The necessity of (1) is obvious.

Lemma 3. If $D(T) \subset D(T^*)$ for an operator T, then the following are equivalent:
(1) $D(\operatorname{Re}T)^* \subset D(\operatorname{Im}T)^*$; \hspace{0.5cm} (1') $D(\operatorname{Re}T)^* \subset D(T^*)$.
If the assumption (1) is satisfied, then \(T^* x = (\text{Re} T)^* x - i(\text{Im} T)^* x \) for every \(x \in D(\text{Re} T)^* \).

Proof. Since \(D(\text{Re} T) = D(\text{Im} T) = D(T) \) it follows that \(D(\text{Re} T)^* \cap D(\text{Im} T)^* \subset D(T^*) \) and \(D(\text{Re} T)^* \cap D(T^*) \subset D(\text{Im} T)^* \) and therefore the equivalence of (1) and (1') is obvious. Because of \(T = \text{Re} T + i \text{Im} T \) it follows that
\[T^* \supset (\text{Re} T)^* - i(\text{Im} T)^* \]
from which we derive the rest of the statement.

Theorem 3. An operator \(T \) is symmetric (resp. self-adjoint) iff
\[
\begin{align*}
(0') & \quad D(T) \subset D(T^*), \quad (\text{resp. } D(T) = D(T^*)) \\
(1') & \quad D(\text{Re} T)^* \subset D(T^*); \\
(2') & \quad ||T^* x|| \leq ||(\text{Re} T)^* x||
\end{align*}
\]
for all \(x \in D(\text{Re} T)^* \).

Proof. If (0'), (1') and (2') are true, then \(T \) is formally symmetric by Lemma 3 and Theorem 2. Because of (0'), \(T \) is symmetric (resp. self-adjoint). The necessity of (0'), (1') and (2') is obvious.

REFERENCES

