FREDHOLM THEORY AND SEMILINEAR EQUATIONS WITHOUT RESONANCE INVOLVING NONCOMPACT PERTURBATIONS, I.

P. S. Milojević

Dedicated to Academician Duško Kupera, on the occasion of his eightieth birthday, in gratitude.

1. Introduction. Nonlinear Fredholm theory began with the works of Lasota [9] and Lasota-Opial [10] for (multivalued) compact maps and has attracted the attention of many authors. Since then, extensions of the first Fredholm theorem and of the Fredholm alternative in a weaker form (i.e., without the dimension assertion) have been obtained for various classes of nonlinear maps, like compact, (set) condensing, of types (S) and (S_+), monotone and A-proper ones (cf. [3, 4, 5, 6, 18, 19, 23]). In contrast to the works of other authors, in [11-15] we began developing a Fredholm theory for (pseudo) A-proper type of maps that are asymptotically close to a suitable map (cf. (2.2)) and, in particular, have a positive quasinorm (cf. (2.2)).

The purpose of this paper is twofold. First, in Section 2, we prove a rather general extension of the first Fredholm theorem for equations of the form

\begin{equation}
Tx = f \quad (x \in X, \ f \in Y)
\end{equation}

where X and Y are normed, linear spaces and $T : X \to Y$ is either (pseudo) A-proper or a uniform limit of A-proper maps. When $T = A + N$ is pseudo A-proper with $A : D(A) \subset X \to Y$ linear and N nonlinear with quasinorm $N \geq 0$, we also prove a weaker form of the Fredholm alternative for semilinear equations

\begin{equation}
Ax + Nx = f \quad (x \in D(A), \ f \in Y).
\end{equation}

In case when $A + N$ is a continuous A-proper map, we prove a complete Fredholm alternative (Theorem 2.3). Second, in Section 3, using these results, we study the solvability of Eq. (1.2) with $\text{dimker}(A) \leq \infty$ when there is no resonance at infinity.

AMS Subject Classification (1980): Primary 47H15.
Moreover, the case of nonlinear A is also studied. Due to the generality of the A-proper like maps, the obtained results are applicable to many different classes of nonlinear maps mentioned above. We also note that, using a degree theory for multivalued maps, the results of this paper are also valid for multivalued maps T and N. Applications of the theory to integral and partial differential equations are given in Part II (this issue).

2. Fredholm theory. Let $\{E_n\}$ and $\{F_n\}$ be sequences of finite dimensional spaces and $\{V_n\}$ and $\{W_n\}$ be sequences of continuous linear maps with V_n mapping E_n into X injectively and W_n mapping Y onto E_n. Suppose that $\text{dist}(x, V_n E_n) \to 0$ as $n \to \infty$ for each $x \in X$, dim $X_n = \text{dim } Y_n$ for each n and $\delta = \max \|Q_n\| < \infty$. Then $\Gamma = \{E_n, V_n; F_n, W_n\}$ is said to be an admissible scheme for (X, Y). In particular, let $\{X_n\}$ and $\{Y_n\}$ be finite dimensional subspaces of X and Y respectively, and $P_n : X \to X_n$ and $Q_n : Y \to Y_n$ be linear projections onto X_n and Y_n with $P_n x \to x$ and $Q_n y \to y$ for each $x \in X$ and $y \in Y$. If $V_n = P_n | X_n = I_n$, then $\Gamma_0 = \{X_n, P_n; Y_n, Q_n\}$ is a projectively complete scheme for (X, Y).

Let $D \subset X$, $T : D \to Y$ and $T_n \equiv W_n T Y_n : D_n = V^{-1}(D) \to F_n$. Recall [21].

Definition 2.1. A map $T : D \to Y$ is A-proper (pseudo A-proper) w.r.t. Γ if T_n is continuous for each n and, whenever $\{V_n u_{nk} | u_{nk} \in D_n\}$ is bounded and $\|T_{nk} u_{nk} - W_{nk} f\| \to 0$ as $k \to \infty$ for some $f \in Y$, then some subsequence $V_{nk(i)} u_{nk(i)} \to x$ (there is an x, respectively) with $T x = f$.

We say that the equation $T x = f$ is feebly approximation (f. a.) solvable w.r.t. Γ if $T_n u_n = W_n f$ for some $u_n \in D_n$, $n \geq 1$, and some subsequence $V_{nk} u_{nk} \to x$ with $T x = f$. The theory of (pseudo) A-proper maps is well developed and we refer to, e.g., [14–16, 21–23], where one can find also many examples of such maps.

Our first result is the following generalized first Fredholm theorem.

Theorem 2.1. Let A, $T : X \to Y$ be nonlinear maps such that

(2.1) There are an $n_0 \geq 1$ and a function $c : R^+ \to R^+$ such that $c(r) \to \infty$ as $r \to \infty$ and $\|W_n A x_n\| \geq c(\|x\|)$ for $x \in V_n (E_n)$ and $n \geq n_0$.

(2.2) T is asymptotically close to A, i.e.

$$|T - A| = \limsup_{\|x\| \to \infty} \frac{\|T x - A x\|}{c(\|x\|)} < 1/\delta.$$

(2.3) There is an $R > 0$ such that either A is odd on $X \setminus B(0, R)$ or, for each $r \geq R$, the Brouwer degree $\deg(T_n + \mu G_n, B_n(0, r), 0) \neq 0$ for all large n, some bounded map $G : X \to Y$ and all $\mu \in (0, \mu_0)$ with μ_0 small. Then

(a) If T is A-proper w.r.t. Γ and $\mu = 0$ in (2.3), Eq. (1.1) is f.a. solvable for each $f \in Y$.

(b) If $T + \mu G$ is A-proper w.r.t. Γ for each $\mu \in (0, \mu_0)$ and T satisfies condition (*) (i.e. whenever $Tx_n \to f$ with $\{x_n\}$ bounded, then $Tx = f$ for some x), then T is surjective, i.e. $T(X) = Y$.

Milosević
(c) If T is pseudo A-proper w.r.t. Γ and $\mu = 0$ in (2.3), then $T(X) = Y$.

Proof. We shall first consider the case when A is odd on $X \setminus B(0, R)$ in (2.3). Then parts (a) and (c) have been proved in [11, 12] and [15], respectively. The validity of part (b) has already been named in [12, 15] (cf. also [14]) without proof and we shall prove it now using a finite dimensional antipodes theorem of Borsuk.

Let $f \in Y$ be fixed. Then, since the map $Bx = Tx - f$ has the same properties as T, it suffices to show that $Tx = 0$ is solvable. Let $\varepsilon \geq 0$ be such that $|T - A| + 2\varepsilon < 1/\delta$ and $r \geq R$ such that $c(r) \geq 1$ and $\|Tx - Az\| \leq ((T - A) + \varepsilon) c(|z|)$ for each $|z| \geq r$. Since G is bounded, there is $\mu_1 \in (0, \mu_0)$ such that $\mu_1 \|Gz\| < \varepsilon$ for all $|z| = r$. Then, for each $\mu \in (0, \mu_1)$ and $|z| = r$, we have

$$\|Tx + \alpha Gz - Az\| \leq (|T - A| + 2\varepsilon) c(r) < c(r)/\delta.$$

Let $\mu \in (0, \mu_1)$ be fixed. Then, for each $n \geq 1$,

$$(2.4) \quad T_n(u) + \mu G_n(u) \neq \lambda T_n(-u) + \mu G_n(-u) \quad \text{for} \quad u \in \partial B_n(0, r), \; \lambda \in [0, 1].$$

If not, then there would exist an $u_n \in \partial B_n(0, r)$ and $\lambda \in [0, 1]$ such that $(T_n + \mu G_n)(u_n) = \lambda (T_n + \mu G_n)(-u_n)$ for some n. Hence,

$$\frac{1}{1 + \lambda} (A_n - T_n - \mu G_n)(u_n) = \frac{\lambda}{1 + \lambda} (T_n + \mu G_n - A_n)(-u_n) = A_n u_n$$

and therefore

$$c(\|V_n u_n\|) \leq \|A_n u_n\| \leq \frac{\delta}{1 + \lambda} \|T + \mu G - A\| V_n u_n\| + \frac{\delta \lambda}{1 + \lambda} \|T + \mu G - A\| (-V_n u_n\|) < c(\|V_n u_n\|),$$

a contradiction. Hence, (2.4) holds and consequently, for each $n \geq 1$ there is an $u_n \in \partial B_n(0, r)$ such that $T_n u_n + \mu G_n u_n = 0$ by the Borsuk antipodes theorem. Since $T + \mu G$ is A-proper, a subsequence $V_n u_{n_k} \rightarrow x \in \overline{B}(0, r)$ with $Tx + \mu Gx = 0$. Next, let $\mu_k \rightarrow 0$ and $T x_k + \mu_k G x_k = 0$ for some $x_k \in \overline{B}(0, r)$. Since G is bounded, $T x_k \rightarrow 0$ and $Tx = 0$ for some $x \in X$ by condition (*).

Next, let us suppose in (2.3) that for each $r \geq R$ and $\mu \in [0, \mu_0]$, $\deg (T_n + \mu G_n, B(0, r), 0) \neq 0$ for all large n. When $\mu = 0$, this happens if, for example, T is odd on $X \setminus B(0, R)$ or if $(T x, K x) \geq 0$ for $|x| \geq R$ and some additional conditions on $K : X \rightarrow Y$ and Γ (cf., e.g., [14, 21]). Part (a) has been proved in [12] in these special cases and, using similar arguments, we shall now give a unified proof of the parts (a)-(c).

Let $f \in Y$ be fixed and define $Bx = Tx - f$, $x \in X$. Then B satisfies (2.2) and let $\beta > 0$ be such that $|B - A| + 2\varepsilon < (1 - \beta)/\delta$. Then there is an $r \geq R$ such that $c(r) \geq \max \{1, 2\delta (|f|/\beta)\}$ and $\|Bx - Az\| \leq (|B - A| + \varepsilon) c(|z|)$ for each $|z| \geq r$. Let $\mu_1 \in (0, \mu_0)$ be such that $\mu_1 \|Bx\| < \varepsilon$ for all $|x| = r$. Then, for each $\mu \in [0, \mu_1)$ and $|x| = r$ we have

$$\|Bx - Az\| \leq \varepsilon + \frac{|B - A| + 2\varepsilon}{1 - \beta} (1 - \beta) c(r)/\delta.$$
Let $\mu \in [0, \mu_1)$ be fixed. Then, for $\|x\| = r$,

\begin{equation}
|W_n(T + \mu G - A)x - tw_nf| \leq |W_n(T + \mu G - A)x - W_nf| + |W_nf|
\end{equation}

\[\leq \delta (|B - A| + 2\varepsilon) c(r) + c(r)\beta/2 < (1 - \beta/2)c(r). \]

For $B_n = V_{n}^{-1}(B(0,r)) \subset E_n$ we have that $\overline{B} \subset V_{n}^{-1}(\overline{B}(0,r))$ and $\partial B_n \subset V_{n}^{-1}(\partial B(0,r))$. It follows from (2.1) and (2.5) that for each $\mu \in [0, \mu_1)$ fixed, each $u \in \partial B_n$, $n \geq 1$, and $t \in [0,1]$ we have that

\[||(T_n + \mu G_n) - tw_nf|| \geq ||A_nu|| - ||(T_n + \mu G_n - A_n)u - tw_nf|| \]

\[\geq c(||V_n u||) - (1 - \beta/2)c(||V_n u||) = \beta c(||V_n u||)/2 > 0. \]

Hence, for each $\mu \in [0, \mu_1)$ fixed, $(T_n - \mu G_n)u \neq tw_nf$ for $u \in \partial B_n$, $t \in [0,1]$ and $n \geq 1$, and therefore the Brouwer degree $\text{deg}(T_n + \mu G_n, B_n, W_n f) \neq 0$ for each $n \geq 1$.

Now, if $\mu = 0$, it follows that the equation $T_nu = W_nf$ is solvable in B_n for each n and the conclusion of (a) (c), respectively) follows from the A-properness (pseudo A-properness, respectively) of T. In case (b) we have that for each $\mu \in [0, \mu_1)$ fixed the equation $T_nu + \mu G_nu = W_nf$ is solvable in B_n for each n, and therefore the equation $T_nu + \mu G_nu = W_nf$ is solvable in B_n for each n, and therefore the equation $T_nu + \mu G_nu = W_nf$ is solvable in B_n for each n.

The following special cases are useful in applications.

Corollary 2.1. Let $T = A + N : X \to Y$, A satisfy (2.1) and

\begin{equation}
|N| = \limsup_{||x|| \to \infty} \frac{||Nx||}{c(||x||)} < 1/\delta.
\end{equation}

Then the conclusions of Theorem 2.1 hold.

Corollary 2.2. Let $T = A + N : X \to Y$ with $Q_nAx = Ax$ for $x \in V_nE_n$ and

\begin{equation}
||Ax_n|| \to \infty \quad \text{as} \quad ||x_n|| \to \infty \quad \text{for} \quad x_n \in X;
\end{equation}

\begin{equation}
|N| = \limsup_{||x|| \to \infty} \frac{||Nx||}{||Ax||} < 1/\delta.
\end{equation}

Then the conclusions of Theorem 2.1 hold.

Proof. It follows from Corollary 2.1 by taking $c(||x||) = ||Ax||$ on X. □

Regarding condition (2.1), the following lemma is useful [cf. 12, 23].

Lemma 2.1. Let $A : X \to Y$ be A-proper at $f = 0$ w.r.t. Γ and α-positively homogeneous (i.e., $A(tx) = t^\alpha Ax$ for $x \in X$, $t > 0$ and some $\alpha > 0$). Then, if $Ax = 0$ implies $x = 0$, there is a constant $c > 0$ and $n_0 > 1$ such that

\begin{equation}
||W_nAz|| \geq c||z||^\alpha \quad \text{for} \quad x \in V_n(E_n), \ n \geq n_0
\end{equation}
Remark 2.1. Theorem 2.1 and Corollaries 2.1–2.2 are applicable to many classes of nonlinear maps and, in particular to (generalized) pseudo monotone ones from X to X^* (cf. [4]). This will be discussed in detail elsewhere.

Next, we shall prove a Fredholm alternative in a weaker form for maps of the form $T = A + N$, where A is a linear Fredholm map of index zero i.e., the kernel $X_0 = N(A)$ and cokernel of A are of the same finite dimension and the range $R(A)$ is closed. We have the direct sums $X = X_0 \oplus \tilde{X}$ and $Y = Y_0 \oplus \tilde{Y}$, $\tilde{Y} = R(A)$, and let $L : X_0 \to Y_0$ be a linear isomorphism and $P : X \to X_0$ be a linear projection onto X_0. Then $C = LP : X \to Y_0$ is completely continuous.

Theorem 2.2. [17] (Fredholm alternative). Let $A : V \subset X \to Y$ be a linear Fredholm map of index zero with $N(A) \neq \{0\}$ and A-proper w.r.t. Γ for (V, Y). Let $T : X \to Y$ be nonlinear and such that its range $R(T) \subset R(A)$ and $|T - A| < c/\delta$ for c sufficiently small. Suppose that either

(a) T satisfies condition (*) and $T + \mu G$ is A-proper w.r.t. Γ for each $\mu \in (0, \mu_0)$ and some bounded map $G : X \to Y$; or

(b) $T + C : V \to Y$ is pseudo A-proper w.r.t. Γ.

Then the equation $Tx = f$ is solvable if and only if $f \in R(A) = N(A^*)^\perp$.

Proof. Since $A_1 = A + C$ is injective and A-proper w.r.t. Γ, there is a constant $c > 0$ such that (2.9) holds. Then $T_1 = T + C$ is such that $|T_1 - A_1| < c/\delta$. If (a) holds, then $T_1 + \mu G$ is A-proper w.r.t. Γ for each $\mu \in (0, \mu_0)$ by the compactness of C. In either case, the equation $T_1x = f$ is solvable for each $f \in Y$ by Theorem 2.1. Moreover, if $f \in R(A)$ and $T_1x = f$, then $Cx = f - Tx \in R(A)$ and consequently $Cx = 0$ and $Tx = f$. Conversely, if $Tx = f$ is solvable, then $f \in R(A)$ since $R(T) \subset R(A)$. \square

Finally, we shall establish a complete extension of the classical Fredholm alternative for A-proper maps of the form $T = A + N$. Recall that the covering dimension of a normal topological space is equal to n, provided n is the smallest integer with the property that whenever U is an open covering of X, there exist a refinement U' of U, which also covers X, and no more than $n + 1$ members of U' have nonempty intersection.

Theorem 2.3. [17] (Fredholm alternative). Let $A : X \to Y$ be a continuous linear Fredholm map of index zero and $\text{codim}(R(A)) = m > 0$ and $N : X \to Y$ be continuous and such that $|N| < c/\delta$, $R(N) \subset R(A)$ and $T = A + N$ is A-proper w.r.t. $\Gamma_0 = \{X_n, P_n; Y_n, Q_n\}$ with $X_0 \subset X_n$ and $Y_0 \subset Y_n$. Then, for each $f \in R(A)(= N(A^*)^\perp)$, and only such ones, there is a connected closed subset K of $T^{-1}(f)$ whose dimension at each point is at least m and the projection P maps K onto Y_0.

Proof. Let $V_n = Y_n \cap \tilde{Y}$, $X_n = X_0 \oplus U_n$ with $\dim U_n = \dim V_n$ and $\tilde{Q}_n = Q_n[\tilde{Y}]$. Then $T = A + N : X \to Y$ is A-proper w.r.t. $\Gamma_m = \{X_n, P_n; V_n, Q_n\}$ with $\dim X_n - \dim V_n = m, n \geq 1$. For a given $f \in R(A)$, let $Bx = Nx - f$. Let $\varepsilon > 0$ be such that $|N| + \varepsilon < c/\delta$ and $R = R(E) > 0$ such that

$$||Nx|| \leq (|N| + \varepsilon)||x||$$

for all $||x|| \geq R$.

We need to show that $A + B : X_0 \oplus \tilde{X} \rightarrow \tilde{Y}$ is complemented by P. To that end it suffices to show (see [2]) that $\deg(Q_n(A + B)|_{U_n}, U_n, 0) \neq 0$ for all large n. Define the homotopy $H_n : [0, 1] \times U_n \rightarrow V_n$ by $H_n(t, x_1) = \bar{Q}_n A x_1 + \bar{Q}_n B(x_1)$ We claim that there are $n_0 \geq 1$ and $r \geq R$ such that if, $H_n(t, x_1) = 0$ for some $x_1 \in U_n$ with $n \geq n_0$ and $t \in [0, 1]$ then $||x_1|| < r$. If not, then there would exist $x_{1n_k} \in U_{n_k}$ with $||x_{1n_k}|| \rightarrow \infty$ and $t_k \in [0, 1]$ such that $H_n(t_k, x_{1n_k}) = 0$ for each k. Hence,

$$c||x_{1n_k}|| \leq ||\bar{Q}_{n_k} A x_{1n_k}|| \leq \delta(||N|| + \varepsilon)||x_{1n_k}|| + \delta||f||$$

and, dividing by x_{1n_k} and passing to the limit, we arrive at a contradiction to $|N| + \varepsilon < c/\delta$. Thus, the claim is valid and for each $n \geq n_0$, and $\deg(Q_n(A + B)|_{U_n}, U_n, 0) = \deg(Q_n A|_{U_n}, U_n, 0) \neq 0$.

Next, we need to show that $P : X_0 \oplus \tilde{X} \rightarrow X_0$ is proper on $(A + B)^{-1}(0)$. To see this, it suffices to show that if $\{x_n\} \subset X$ is such that $A x_n + B x_n \rightarrow 0$ and $\{P x_n\}$ is bounded, then $\{x_n\}$ is bounded since the A-proper map $A + B$ is proper restricted to bounded sets ([21]). We have that $x_n = x_{0n} + x_{1n}$ with $x_{0n} \in X_0$ and $x_{1n} \in \tilde{X}$, and $c||x_{1n}|| \leq ||A x_{1n}|| \leq ||N|| + \varepsilon||x_{1n}|| + ||f||$ for some $\varepsilon > 0$ with $|N| + \varepsilon < c$ if $||x_{1n}|| \geq R$. This implies that $\{x_{1n}\}$ is bounded as before. Since $\{x_{0n}\} = \{P x_n\}$ is bounded, it follows that $\{x_n\}$ is also bounded. Hence, the conclusions of the theorem follow from Theorem 1.2 in Fitzpatrick-Massabó-Pejsachowicz [2]. □

Analogously, a dimension assertion on the solution set of the corresponding “adjoint” equation treated in Theorem 2.3 in [23] can be proven when the involved maps are A-proper.

Remark 2.2. Theorem 2.2 extends a result of Petryshyn [23] dealing with weakly A-proper maps. Moreover, Theorem 2.3 includes the weaker form of the Fredholm alternative (not dealing with the dimension of the solution set) of Kachurovsky [5, 6] for compact maps and of Nečas [18, 19] and Hess [3] for maps of type (S), (S_+) and monotone ones, respectively.

Remark 2.3. Using similar arguments, it can be shown that Theorem 2.3 holds for nonlinearities N of superlinear growth, i.e. if $N = N_1 + N_2$ with N_1, A-proper, odd, α-homogeneous for some $\alpha > 1$ and $N_1 x = 0$ implies $x = 0$, and $||N_2 x|| \leq a + b ||x||^k$ for some $a, b, k < \alpha$ and all $x \in X$.

3. Applications

We begin by looking at some applications of the abstract results in Section 2 to semilinear equations of the form (1.2) with dimker $A \leq \infty$ when there is no resonance at infinity. By this we mean that there is some linear map $C : V \subset X \rightarrow Y$ such that $0 \notin \sigma(A - C)$, the spectrum of $A - C$, and $N - C$ stays away from $\sigma(A - C)$ at infinity (e.g., (3.1) holds).

Let H denote a real Hilbert space and X and Y be Banach spaces. In the self-adjoint case we have

Theorem 3.1. Let $A : D(A) \subset H \rightarrow H$ be self-adjoint, $V = (D(A), ||\cdot||_0)$ be a Banach space density and continuously embedded in H, $C : D(C) \subset H \rightarrow H$ be bounded and symmetric with $V \subset D(C)$ and $0 \notin \sigma(A - C)$. Suppose that $N : V \rightarrow H$ is nonlinear and such that
(3.1) There are positive constants a, b, c, r and $k \in (0, 1)$ such that

$$||Nx - Cz|| \leq a||x|| + b||x||^k + c \text{ for } ||x||_0 \geq r$$

(3.2) $0 < a < \min\{\lambda | \lambda \in \sigma(A - C)\}$.

Then, if $A - N : V \to H$ is pseudo A-proper w.r.t. $\Gamma_0 = \{X_n, P_n, Y_n, Q_n\}$ for (V, H) with $Q_n(A - C)x = (A - C)x, x \in X_n, n \geq 1$, it is surjective.

Proof. Note first that $B = (A - C)^{-1} : H \to V$ is continuous. Indeed, by the closed graph theorem, it suffices to show that it is closed. Let $x_n \to x$ in H and $Bx_n \to y$ in V. Then $Bx_n \to y$ in H and $Bx = y$ by the closedness of B in H. Hence, for each $x \in V$

$$||A - C||x|| \geq ||B||^{-1}||x||_0.$$

Next, since C is bounded and symmetric, $A - C$ is self-adjoint (see Kato [7, Thm. V. 4.3]) and therefore $\min\{||A|| | \lambda \in \sigma(A - C)\} = ||(A - C)^{-1}||$ and $a||(A - C)^{-1}|| < 1$ by (3.2). Moreover, for each $||x_0|| \geq r$, we have $x = (A - C)^{-1}y$ for some $y \in H$ and

$$||Nx - Cz|| \leq a||(A - C)^{-1}y|| + b||(A - C)^{-1}y||^k + c$$

or

$$\frac{||Nx - Cz||}{||(A - C)||} \leq a||(A - C)^{-1}|| + b||B||^k ||(A - C)x||^{k-1} + c||(A - C)x||^{-1}.$$

Hence,

$$|N - C| = \limsup_{||x_0||_0 \to \infty} \frac{||Nx - Cz||}{||(A - C)||} \leq a||(A - C)^{-1}|| < 1$$

and the conclusion follows from Corollary 2.2. □

Remark 3.1. If there are real numbers $\alpha < \beta$ such that a $\sigma(A) \cap (\alpha, \beta)$ consists of at most finitely many eigenvalues, then we can take $C = \lambda I, \lambda = (\lambda_k + \lambda_{k+1})/2$, in Theorem 3.1 for some consecutive eigenvalues $\lambda_k < \lambda_{k+1}$ in (α, β). Then (3.2) holds if $a < \gamma = (\lambda_{k+1} - \lambda_k)/2$. Indeed, the spectral gap for $A - \lambda I$ induced by the gap $(\lambda_k, \lambda_{k+1})$ is (γ, γ) and therefore $(A - \lambda I)^{-1} : H \to H$ is a bounded self adjoint map whose spectrum lies in $(-1/\gamma, 1/\gamma)$. Hence, $||(A - \lambda I)^{-1}|| = 1/\gamma$. Moreover, the scheme $\Gamma_0 = \{(A - \lambda I)^{-1}(Y_n), P_n; Y_n, Q_n\}$ for (V, H) has the required property in Theorem 3.1.

Analyzing the proof of Theorem 3.1, we see that the following more general result holds when A is not selfadjoint.

Theorem 3.2. Let $(V, || \cdot ||_0)$ be density and continuously embedded in X, $A : V \to Y$ and $C : X \to Y$ be closed linear maps with $A - C : V \to Y$ bijective. Suppose that $N : V \to Y$ is nonlinear and

(3.3) There are positive constants a, b and r, with a sufficiently small such that

$$||Nx - Cz|| \leq a||x||_0 + b \text{ for } ||x|| \geq r.$$
Then, if $A - N : V \to Y$ is pseudo A-proper w.r.t. Γ for (V, Y) with $Q_n(A - C)x = (A - C)x$, $x \in X_n$, $n \geq 1$, it is surjective.

Next, we shall look at Eq. (1.2) with nonlinearities of the form $Nx = B(x)x - Mx$, where $B(x) : X \to X$ is a continuous linear map for each $x \in V$ such that for some $\lambda \not\in \sigma(A)$, $A_{\lambda} = A - \lambda I$ and $B_{\lambda}(x) = B(x) - \lambda I$ satisfy

(3.4) \[m = \limsup_{||x||_0 \to \infty} ||B_{\lambda}(x)|| < \frac{1}{||A_{\lambda}^{-1}||}. \]

Theorem 3.3. Let $A : D(A) \subset X \to X$ be a closed linear map, $V = (D(A), || \cdot ||_0)$ be a Banach space densely continuously embedded in X and (3.4) hold. Suppose that $M : V \to X$ is nonlinear and $T : V \to X$, $Tx = A(x) - B(x)x - Mx$, is pseudo A-proper w.r.t. $\Gamma = \{X_n, P_n; Y_n, Q_n\}$. Then

(a) If $Q_n A_{\lambda} x = A_{\lambda} x$, $x \in X$, $n \geq 1$, and there are positive constants a, b, c, r and $k \in (0, 1)$ such that $\delta(a + m) \cdot ||A_{\lambda}^{-1}|| < 1$ and

\[||Mx|| \leq a||x|| + b||x||^k_0 + c \quad \text{for} \quad ||x||_0 \geq r, \]

then T is surjective.

(b) If $T_1 x = Ax - B(x)x$ is A-proper w.r.t. Γ_0 and

\[|M| = \limsup_{||x||_0 \to \infty} \frac{||Mx||}{||x||_0} < \infty \]

is sufficiently small, then T is surjective.

Proof. (a) As in Theorem 3.1, we obtain that

\[||A_{\lambda} x|| \geq ||A_{\lambda}^{-1}||^{-1}_{X \to Y} ||x||_0, \quad x \in X. \]

Moreover, for $\varepsilon > 0$ small with $(m + a + \varepsilon)||A_{\lambda}^{-1}|| < 1$ there is an $R > 0$ such that for $||x||_0 \geq R$

\[||B_{\lambda}(x)x + Mx|| \leq (m + a + \varepsilon)||x|| + b||x||^k_0 + c. \]

Then, setting $Nx = B(x)x + Mx$ and $C = \lambda I$, the conclusion follows from Corollary 2.2 as in Theorem 3.1.

(b) By (3.4), there is an $R > 0$ such that $||B_{\lambda}(x)|| < 1/||A_{\lambda}^{-1}||$ for all $||x||_0 \geq R$. Hence, for such x's, the map $B_{\lambda}(x)A_{\lambda}^{-1} : X \to X$ satisfies

\[||B_{\lambda}(x)A_{\lambda}^{-1}|| \leq ||B_{\lambda}(x)|| ||A_{\lambda}^{-1}|| < \theta < 1 \]

for some θ independent of x. Consequentially, $I - B_{\lambda}(x)A_{\lambda}^{-1} : X \to X$ is invertible and

\[||(I - B_{\lambda}(x)A_{\lambda}^{-1})^{-1}|| < 1/(1 - \theta) \quad \text{for} \quad ||x||_0 \geq R. \]

As before, $A_{\lambda}^{-1} : X \to V$ is continuous and therefore $c||x||_0 \leq ||A_{\lambda}x||$ for $x \in V$ and some $c > 0$. Moreover, for $||x||_0 \geq R$

\[c_1||x||_0 \leq ||[I - B_{\lambda}(x)A_{\lambda}^{-1}][I - B_{\lambda}(x)A_{\lambda}^{-1}]A_{\lambda}x|| \leq ||A_{\lambda}(x) - B_{\lambda}(x)||/(1 - \theta). \]
or

\begin{equation}
(3.5) \quad c_1 \|x\|_0 \leq \|A_\lambda x - B_\lambda(x)x\| \quad \text{for} \quad \|x\|_0 \geq R, c_1 = (1 - \theta)c.
\end{equation}

Since \(T_1 x = A_\lambda x - B_\lambda(x)x = Ax - B(x)x \) is \(A \)-proper, arguing by contradiction and using \((3.5)\), we obtain an \(n_0 \) \geq 1 and \(c_0 \geq 0 \) such that

\begin{equation}
(3.6) \quad c_0 \|x\|_0 \leq \|Q_n(\lambda, B(x))x\| \quad \text{for all} \quad x \in X_n \setminus \overline{B}(0, R), \quad n \geq n_0.
\end{equation}

Since \(|M| \) is sufficiently small, the conclusion follows from Corollary 2.1, where one needs only to assume \((2.1)\) on \(X_n \setminus \overline{B}(0, R) \). \(\square \)

To give some conditions for the \(A \)-properness of \(T_1 \) and \(T \), we recall that a

ball-measure of noncompactness of a set \(D \subset X \) is defined by

\[\chi(D) = \inf \{ r > 0 | D = \bigcup_{i=1}^{n} B(x_i, r), x_i \in X \text{ and some } n \} \].

A map \(T : D \rightarrow Y \) is \(k \)-ball-contractive if \(\chi(T(Q)) \leq k \chi(Q) \) for each \(Q \subset D \). We have

Proposition 3.1. Let \(U(x, y) = B(x) y \) for \((x, y) \in V \times V \) and

\begin{equation}
(3.7) \quad \text{For each } x \in V, \ U(x, \cdot) : V \rightarrow X \text{ is } k_1 \text{-ball-contractive;}
\end{equation}

\begin{equation}
(3.8) \quad \text{For each } y \in V, \ U(\cdot, y) : V \rightarrow X \text{ is completely continuous.}
\end{equation}

Suppose that \(A : V \rightarrow X \) is Fredholm of index zero and \(M : V \rightarrow X \) is \(k \)-ball-contractive with \(k = k_1 + k_2 \) sufficiently small. Then \(T_1, T : V \rightarrow X \) are \(A \)-proper w.r.t. \(\Gamma_0 \) for \((V, X) \) with \(Q_nAx = Ax \) on \(X_n \).

Proof. It is known that the map \(B_1 : V \rightarrow X, B_1(x) = U(x, x) \) is \(k_1 \)-ball-contractive by \((3.7),(3.8)\). Since \(B_1 + M : V \rightarrow X \) is \(k \)-ball-contractive, \(T_1 \) and \(T \) are \(A \)-proper w.r.t. \(\Gamma_0 \) (cf. [15]). \(\square \)

Remark 3.2. Condition \((3.7)\) is implied by the compactness of the embedding of \(V \) into \(X \) or by \(\|B(x)\|_{(V \rightarrow X)} \leq k_1 \) for all \(x \in V \). In applications various natural conditions imply \((3.7),(3.8)\).

So far we have studied Eq. \((1.2)\) with nonlinearities \(N \) asymptotically close to linear maps (i.e. when condition of type \((3.1)\) holds). It turns out that when \(A = I \), we can allow more general nonlinearities studied first by Perov [20] and Krasnoselskii-Zabreiko [8]. To introduce this class, we consider a pair of self adjoin maps \(B_1, B_2 : H \rightarrow H \) such that \(B_1 \leq B_2 \), i.e. \((B_1 x, x) < (B_2 x, x) \) for \(x \in H \), and 1 is not in their spectrum \(\sigma(B_1) \cup \sigma(B_2) \). Let \(\sigma(B_1) \cap (1, \infty) = \{ \lambda_1, \ldots, \lambda_k \} \) and \(\sigma(B_2) \cap (1, \infty) = \{ \mu_1, \ldots, \mu_m \} \), where the \(\lambda_i \)’s and \(\mu_j \)’s are eigenvalues of \(B_1 \) and \(B_2 \), respectively, of finite multiplicities and assume that the sum of the multiplicities of the \(\lambda_i \)’s is equal to the sum of the \(\mu_j \)’s. Then we say that \(B_1 \) and \(B_2 \) form a regular pair.

Recall that \((8)\) a (nonlinear) map \(K : H \rightarrow H \) is said to be \(\{B_1, B_2\}\)-quasilinear on a set \(S \subset H \) if for each \(x \in S \) there exists a linear selfadjoint map \(B : H \rightarrow H \) such that \(B_1 \leq B \leq B_2 \) and \(Bx = Kx \). A map \(N : H \rightarrow H \) is said to be **asymptotically** \(\{B_1, B_2\}\)-quasilinear if there is a \(\{B_1, B_2\}\)-quasilinear outside some ball map \(K \) such that

\begin{equation}
(3.9) \quad |N - K| = \limsup_{\|x\| \to \infty} \frac{\|Nx - Kx\|}{\|x\|} < \infty.
\end{equation}
It has been shown in [8] that if B_1 and B_2 form a regular pair, then there is a constant $c > 0$ such that for each self-adjoint map B with $B_1 \leq B \leq B_2$ we have that

$$\|x - Bx\| \geq c|x| \quad \text{for each} \quad x \in H.$$

(3.10)

For example, if $N : H \to H$ is such that $N(x)$ is self-adjoint for each x in H and satisfies

$$B_1 \leq N'(x) < B_2 \quad \text{for} \quad x \in H,$$

then N is asymptotically $\{B_1, B_2\}$-quasilinear since we can represent $Nx = B(x)x + N(0)$, where $B(x) = \int_0^1 N'(tx) dt$. Moreover, if $Nx = B(x)x + Mx$ for some nonlinear M with $|M| < \infty$ and $B(X) : H \to H$ is self-adjoint and $B_1 \leq B(x) \leq B_2$ for each x in H, then N is asymptotically $\{B_1, B_2\}$-quasilinear (cf. [20] for some other criteria). For equations with such nonlinearities we have

Theorem 3.4. [17]. Let $\{B_1, B_2\}$ form regular pair, $M, N : H \to H$ be bounded and N be asymptotically $\{B_1, B_2\}$-quasilinear with $|M + N - K| < c$. Let $B_0 : H \to H$ be self-adjoint with $B_1 \leq B_0 \leq B_2$ and $H_t = I - t(M + N) - (1 - t)B_0$, $0 \leq t \leq 1$. Then

(a) If H_t, is A-proper w.r.t. $\Gamma_0 = \{H_n, P_n\}$ for each $t \in [0, 1]$, then the equation $x - Mx - Nx = f$ is f.a. solvable for each $f \in H$.

(b) If H_t, is A-proper w.r.t. Γ_0 for each $t < 1$ and H_1 is either pseudo A-proper w.r.t. Γ_0 or satisfies condition *(c), then $(I - M - N)(H) = H$.

(c) Let $G : H \to H$ be such that $\|Gx\| < a\|x\|$ on H for some a, and for each large r, deg$(P_nB_0 + \mu P_nG, B(0, r) \cap X, 0) \neq 0$ for each large n and $\mu > 0$ small. Suppose that $H_1 + \mu G$ is A-proper w.r.t. Γ_0 for each $t \in [0, 1]$ and $\mu > 0$ small and H_1 satisfies condition *(a). Then $(I - M - N)(H) = H$.

Proof. Since $N_f x = Nx - f$ has the same properties as N for any t in H, it suffices to study the equation $x - Mx - Nx = f$. Let $\mu_0 > 0$ and $\varepsilon > 0$ be such that $\|M + N - K\| \varepsilon + a\mu_0 < c$. Then there is an $r > 0$ such that $\|Mx + N x - K x\| \leq (\|M + N - K\| + \varepsilon) \|x\|$ for each $\|x\| \geq r$. Moreover, $H(t, x) + \mu Gx \neq 0$ for $\|x\| = r$, $t \in [0, 1]$ and $\mu \in [0, \mu_0]$. If not, there are $t \in [0, 1]$, $\|x\| = r$ and $\mu \in [0, \mu_0]$ such that $H(t, x) + \mu Gx = 0$. Hence,

$$\|x - tKx - (1 - t)B_0x\| \leq t\|Mx + N x - K x\| + \mu\|Gx\| < c.$$

Since K is $\{B_1, B_2\}$-quasilinear, there is a self-adjoint map $B_\ast : H \to H$ such that $Kx = B_\ast x$ and therefore

$$\|x - tB_\ast x - (1 - t)B_0x\| < c\|x\|$$

(3.12)

But $B_1 \leq B \leq B_2$ for $B = tB_\ast + (1 - t)B_0$ and consequently (3.10) holds. This contradicts (3.12) and our claim is valid. Hence, the conclusions of (a), (b) and (c) follow from Theorems 1 and 3.1 [16], respectively. □
Remark 3.3. Theorem 3.4 is applicable if B_0 is compact and $M+N$ is the sum of a k-ball-contraction and a monotone map, $k < 1$, or N is compact and $(Mx - My, x - y) \geq -||x - y||^2$, etc. When B_0 and N are compact, $M = 0$ and $|N - K| = 0$, the solvability of $x - Nx = f$ in part (a) has been proven by Krasnoel’skii-Zabreiko [8] and in a less general form by Perov [20], using completely different arguments.

Finally, we shall consider Eq. (1.2) when $D(\Lambda)$ is not a linear subset of X and $\Lambda : D(\Lambda) \subset X \to Y$ is such that

$$ (A+C)^{-1} : Y \to D(\Lambda) \subset X \text{ is surjective and } \|(A+C)^{-1}y\| \leq K(||y|| + 1) \quad (3.13) $$

for some bounded map $C : X \to Y$, each $y \in Y$ and some constant $K > 0$. Condition (3.13) is satisfied if, e.g., $Y = X$ and $C = \lambda I$, $\lambda > 0$, and A is m-accretive (cf. [1]). In applications considered in part II (3.13) holds with $Y \neq X$.

Theorem 3.5. [17]. Let (3.13) hold and $N : D(\Lambda) \subset X \to Y$ be such that for some constants $a > 0$, $b > 0$ with $\delta K a < 1$, $\delta = \max ||P_n||$, (3.14)

$$ ||Nx - Cx|| \leq a||x|| + b \quad \text{for} \quad x \in D(\Lambda). \quad (3.14) $$

Suppose that $T = I + (N - C)(A + C)^{-1} - \mu C(A + C)^{-1}$ is A-proper w.r.t. $\Gamma_0 = \{X_n, P_n\}$ for Y and $\mu \in [0, 1)$ and T_0 satisfies condition (*). Then $(A + N)(D(\Lambda)) = Y$.

Proof. It is easy to see that Eq. (1.2) is solvable if and only if so is the equation $T_0y = f$ in Y. In view of Corollary 2.1, with $A = I$ and $G = -C(A + C)^{-1}$, it suffices to show that $||(N - C)(A + C)^{-1}|| < 1/\delta$. But, this follows easily from (3.13)–(3.14) since

$$ \limsup_{||y|| \to \infty} \frac{||(N - C)(A + C)^{-1}y||}{||y||} \leq \limsup_{||y|| \to \infty} \frac{b + a||(A+C)^{-1}y||}{||y||} \leq aK < 1/\delta. \quad \square $$

Next, we shall give an extension of Theorem 3.5 when (3.13) does not hold. We need

Definition 3.1. A homotopy $H : [0, 1] \times D \to Y$, $D \subset X$, is said to satisfy condition (+) if $\{x_n\}$ is bounded in X whenever $H(t_n, x_n) \to f$, $t_n \in [0, 1]$.

Theorem 3.6. [17]. Let $A, N : D(\Lambda) \subset X \to Y$ and $C : X \to Y$ be nonlinear maps, C and N be bounded and $(A + C)^{-1} : Y \to D(\Lambda)$ be bounded and surjective. Suppose that $H(t, x) = Ax + tNx + (1 - t)Cz$, $t \in [0, 1]$ satisfies condition (+), $F_t = I + t(N - C)(A + C)^{-1}$ is A-proper w.r.t. $\Gamma_0 = \{Y_n, P_n\}$ for each $t \in [0, 1)$ and F_t satisfies condition (*). Then $(A + N)(D(\Lambda)) = Y$.

Proof. Let $f \in Y$ be fixed. Condition (+) implies that the set $U = \{x \in D(\Lambda) | H(t, x) = tf \text{ for some } t \in [0, 1]\} \subset B(0, R_1)$ for some $R_1 > 0$. Then $x = (A+C)^{-1}y \in U$ whenever $F(t, y) = tf$ and, since C and N are bounded, there is an $R > 0$ such that

$$ ||y|| \leq ||(N+C)(A+C)^{-1}y|| \leq R.$$
Hence, $F(t,y) \neq tf$ for $(t,y) \in [0,1] \times \partial B(0,R)$. Next, let $\varepsilon_k \in (0,1)$ and $\varepsilon_k \to 1$. By the A-properness of F_t for $t \in [0,\varepsilon_k]$, there is an $n_k = n(\varepsilon_k) \geq 1$ such that

$$P_n F(t,y) \neq tP_n f \quad \text{for} \quad t \in [0,\varepsilon_k], \ y \in Y_n \cap \partial B(0,R), n \geq n_k$$

and $n_{k_1} \geq n_k$ if $k_1 \geq k_2$. Hence, for each k fixed and each $n \geq n_k$

$$\text{deg}(P_n H(\varepsilon_k), B(0,R) \cap Y_n, P_n f) = \text{deg}(I, B(0,R) \cap Y_n, 0) \neq 0$$

and therefore $P_n F(\varepsilon_k, y_n) = \varepsilon_k P_n f$ for some $y_n \in B(0,R) \cap Y_n$ and each $n \geq n_k$. Since F_{ε_k} is A-proper, there is an $y_k \in \overline{B}(0,R)$ such that $F(\varepsilon_k, y_k) = \varepsilon_k f$. Then $y_k + (N - C)(A + C)^{-1} y_k = \varepsilon_k f + (1 - \varepsilon_k)(N - C)(A + C)^{-1} y_k \to f$ as $k \to \infty$. Thus by condition (*) for F_1, there is an $y \in Y$ such that $F(1, y) = f$ and so $x = (A + C)^{-1} y$ is a solution of $Ax + N x = f$. □

REFERENCES

Department of Mathematics
New Jersey Institute of Technology
Newark, N. J. 07102, U. S. A.

(Received 06. 04. 1986)