UNIONS AND INTERSECTIONS OF ISOMORPHIC IMAGES
OF NONSTANDARD MODELS OF ARITHMETIC

Aleksandar Ignjatović

Abstract. We consider those initial segments of a nonstandard model \(M \) of Peano arithmetic (abbreviated by \(P \)) which can be obtained as unions or intersections of initial segments of \(M \) isomorphic to \(M \). For any consistent theory \(T \supseteq P \) we find models of \(T \) having collections of initial segments densely ordered by inclusion so that for any segment \(I \) from such collection and any \(k \in \omega \) the family \(A^M_k = \{ M \mid M \subseteq M, M \prec_\Sigma_k M, M \equiv M \} \) can be partitioned into two disjoint parts \(A_1 \), and \(A_2 \) satisfying \(I = \bigcup A_1 = \bigcap A_2 \) i.e. \(I \) is a "point of accumulation" for all families \(A^M_k \). We investigate the order type of such collections of segments in the case of recursively saturated models of \(P \).

We denote nonstandard models of \(P \) by \(M, N \) and \(\mathfrak{A} \) and their domains by \(|M|, |N| \) and \(|\mathfrak{A}| \), respectively; \(L_p \) denotes the language of \(P, N \) denotes the structure of natural numbers and \(\omega \) stands for its domain. If \(M \) is a model of \(P \) and \(\mathfrak{A} \) a structure for \(L_p \) such that \(\mathfrak{A} \subseteq M \), then by \(M \) we denote the smallest initial segment of \(M \) containing \(\mathfrak{A} \). \(M \subseteq \mathfrak{A} \) means that \(M \) is an end extension (elementary end extension) of \(\mathfrak{A} \), while \(M \prec_\Sigma_k \mathfrak{A} \) means that for all \(\Sigma_k \) formulas \(\varphi \) and all \(a_1, \ldots, a_n \in |M| \), \(M \models \varphi[a_1, \ldots, a_n] \) holds iff \(\mathfrak{A} \models \varphi[a_1, \ldots, a_n] \) holds. For any \(M \models P \) and \(a \in M \), let \(I_a = \{ b \in |M| \mid b < a \} \). We use the consequence of Matijasevič’s theorem asserting that for any models \(M, N \) of \(P, M \subseteq N \) implies \(M \prec_\Sigma_k N \). Thus, \(A^0_0 = \{ M \mid M \subseteq N, M \equiv M \} \). If \(\Gamma \) is a set of sentences of \(L_p \) then \(\text{Th}_P(\mathfrak{A}) \) denotes the set of all sentences from \(\Gamma \), which are true in \(M \). We use the fact that for any models \(M, N \) of \(P, M \subseteq N \) implies \(\text{SSy}(M) = \text{SSy}(N) \). The following hierarchical refinement of Gaifman’s Splitting Theorem is Theorem 1.2 from [3].

Proposition 0.1. Let \(M \) and \(\mathfrak{A} \) be models of \(P \) and \(M \prec_\Sigma_k \mathfrak{A} \). Then \(\mathfrak{A} \prec_\Sigma_k \mathfrak{A} \mathfrak{A} \mathfrak{A} \mathfrak{A} \) and \(\mathfrak{A} \prec_\Sigma_k M \).

This paper is a revised part of author’s master thesis. I would like to express my gratitude to Žarko Mijajlović, my advisor, for many helpful discussions on this subject.

AMS Subject Classification (1980): Primary 03H15
The following proposition is a hierarchical generalization of Theorem 2.4 (ii) from [5], and can be proved in the same way.

Proposition 0.2. The following are equivalent: (i) for arbitrary \(a \in \mathcal{M} \), \(\mathcal{M} \) is isomorphic to an initial segment of \(\mathcal{M} \) \(\Sigma_k \)-elementarily embedded in \(\mathcal{M} \) which contains \(a \). (ii) \(\text{Th}_{\Pi_{k+2}} \mathcal{M} \subseteq \text{Th}_{\Pi_{k+1}}(\mathcal{M}) \) and \(\text{SSy}(\mathcal{M}) = \text{SSy}(\mathcal{M}) \).

Let us consider those initial segments of a model \(\mathcal{M} \) of \(P \) which can be obtained as unions or intersections of initial segments of \(\mathcal{M} \) isomorphic to \(\mathcal{M} \). As it was shown in [3], (see also [1]) \(\bigcap A^\mathcal{M}_k \) is the smallest initial segment of \(\mathcal{M} \) containing all \(\Sigma_{k+1} \)-definable points of \(\mathcal{M} \) on the other hand \(\bigcup A^\mathcal{M}_k = \mathcal{M} \).

Lemma 1.1. Let \(I_1 \) and \(I_2 \) be initial segments of a nonstandard model \(\mathcal{M} \) of \(P \) such that \(\omega \subset I_2 \subset I_1 \). Then \(I_1 \) contains a model \(\mathcal{N} \) of \(P \) such that \(\mathcal{N} \subset \mathcal{M} \), \(\mathcal{N} \prec \mathcal{M} \), \(\mathcal{M} \models \mathcal{N} \models I_2 \) iff it contains a model \(\mathcal{R} \models \mathcal{N} \) such that \(\mathcal{R} \prec \mathcal{M} \), \(\text{Th}_{\Pi_{k+2}}(\mathcal{R}) \supseteq \text{Th}_{\Pi_{k+2}}(\mathcal{M}) \) and \(\mathcal{R} \not\subset I_2 \).

Proof. Suppose that there is a model \(\mathcal{R} \) satisfying the conditions from Lemma 1.1, and let \(a \in [\mathcal{R}] \setminus I_2 \). Proposition 0.1 implies \(\mathcal{R} \prec \mathcal{M} \), \(\mathcal{R} \subseteq \mathcal{M} \); thus \(\text{Th}_{\Pi_{k+2}}(\mathcal{R}) \supseteq \text{Th}_{\Pi_{k+2}}(\mathcal{M}) \) and \(\text{SSy}(\mathcal{R}) = \text{SSy}(\mathcal{M}) \) holds. According to Proposition 0.2, model \(\mathcal{M} \) is isomorphic to a submodel \(\mathcal{R} \) of \(\mathcal{M} \) such that \(\mathcal{R} \subseteq \mathcal{M} \), \(\mathcal{R} \prec \mathcal{M} \) and \(a \in [\mathcal{R}] \). Since \(\mathcal{R} \prec \mathcal{M} \), \(\mathcal{R} \subseteq \mathcal{M} \), and \(a \in [\mathcal{M}] \setminus I_2 \), we conclude that \(\mathcal{R} \) satisfies the conditions from Lemma 1.1. The converse is obvious.

Corollary 1.2. Let \(I \) be an initial segment of a nonstandard model \(\mathcal{M} \) of \(P \) and \(I \neq \omega \). Then:

(i) There is a subfamily \(\mathcal{A} \subseteq A^\mathcal{M}_k \) such that \(I = \bigcup \mathcal{A} \) iff for all \(a \in I \) there is a model \(\mathcal{R}_a \models \mathcal{M} \) such that \(\mathcal{R}_a \prec \mathcal{M} \) and \(\text{Th}_{\Pi_{k+2}}(\mathcal{R}_a) \supseteq \text{Th}_{\Pi_{k+2}}(\mathcal{M}) \).

(ii) There is a subfamily \(\mathcal{A} \subseteq A^\mathcal{M}_k \) such that \(I = \bigcap \mathcal{A} \) iff \(I \models \mathcal{M} \) or for all \(a \in [\mathcal{M}] \setminus I \) there is a model \(\mathcal{R}_a \subseteq \mathcal{M} \) such that \(\mathcal{R}_a \subseteq I \), \(\mathcal{R}_a \models P \), \(\mathcal{R}_a \prec \mathcal{M} \) and \(\text{Th}_{\Pi_{k+2}}(\mathcal{R}_a) \supseteq \text{Th}_{\Pi_{k+2}}(\mathcal{M}) \).

Proof. (i) We apply Proposition 2.1. to all pairs \(I, I_a, a \in I \).

(ii) \(I \models \mathcal{M} \), let \(\mathcal{A} = \{I\} \); otherwise, we apply Proposition 2.1. to all pairs \(I, I_a, a \in [\mathcal{M}] \setminus I \).

The following lemma, which is useful for applications of Corollary 1.2, can be proved easily.

Lemma 1.3. Let \(\mathcal{M} \) and \(\mathcal{N} \) be arbitrary models for the same language. Then \(\mathcal{M} \prec \mathcal{N} \) implies \(\text{Th}_{\Pi_{k+2}}(\mathcal{M}) \subseteq \text{Th}_{\Pi_{k+2}}(\mathcal{N}) \). □

Corollary 1.4. Let \(\mathcal{M} \) and \(\mathcal{N} \) be nonstandard models of \(P \) and \(\mathcal{M} \prec \mathcal{M} \), then there is a subfamily \(\mathcal{A} \subseteq A^\mathcal{M}_k \) such that \(\mathcal{M} = \bigcup \mathcal{A} \).

Proof. Immediately from Proposition 0.1, Corollary 1.2 (i) and Lemma 1.3.

As a consequence, we get the following proposition.

Proposition 1.5. Let \(I \) be an initial segment of a nonstandard model \(\mathcal{M} \) of \(P \) and \(B \) a family of initial segments of \(\mathcal{M} \) such that for any \(\mathcal{N} \) from \(B \), \(\mathcal{N} \models P \) and \(\mathcal{N} \prec \mathcal{M} \) holds. Then:
Axioms and Intersections of Isomorphic Images of Nonstandard Models

(i) If $I = \bigcup B$, then there is a subfamily $A \subseteq \mathcal{A}_k^\mathcal{M}$ such that $I = \bigcup A$;
(ii) If $I = \bigcap B$ and $I \notin B$, then there is a family $A \subseteq \mathcal{A}_k$ such that $I = \bigcap A_k^\mathcal{M}$.

Proposition 1.6. Let \mathcal{M} and \mathcal{N} be nonstandard models of P, such that $\mathcal{N} \subseteq \mathcal{M}$ and let $\mathcal{N}_1, \mathcal{N}_2, \ldots$, be a strictly decreasing Σ_{k+1}-elementary chain of initial segments, i.e. $\mathcal{N}_i \subseteq \mathcal{M}$, $\mathcal{N}_1 \supset \mathcal{N}_2 \supset \mathcal{N}_3 \supset \mathcal{N}_{k+1} \ldots$, such that $\bigcap_{i \in \omega} \mathcal{N}_i = \mathcal{M}$. Then, the family $A_{\mathcal{M}}^{\mathcal{M}}$ can be divided into two disjoint subfamilies $A_{\mathcal{M}}^1$ and $A_{\mathcal{M}}^2$ such that $\mathcal{M} = \bigcup A_{\mathcal{M}}^1 = \bigcap A_{\mathcal{M}}^2$.

Proof. Since P has definable Skolem functions, the hierarchal refinement of the Tarski-Vaught Theorem implies $\bigcap_{i \in \omega} \mathcal{N}_i = \mathcal{M} \supset \mathcal{N}_{k+1}$. Thus, letting $A_{\mathcal{M}}^1 = \{R | R \in A_{\mathcal{M}}^1, R \subseteq \mathcal{M}\}$ and $A_{\mathcal{M}}^2 = \{R | R \in A_{\mathcal{M}}^2, R \supset \mathcal{M}\}$, we get from Corollary 1.4 and Proposition 1.5 $\mathcal{M} = \bigcup A_{\mathcal{M}}^1 = \bigcap A_{\mathcal{M}}^2$.

Corollary 1.7. Let \mathcal{M} be a nonstandard model of P and $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \mathcal{N}_3 \ldots$, a strictly decreasing elementary chain of initial segments of \mathcal{M}, such that $\bigcap_{i \in \omega} \mathcal{N}_i = \mathcal{M}$. Then for all $n \in \omega$ the family $A_{\mathcal{M}}^{\mathcal{M}}$ can be divided into two disjoint subfamilies $A_{\mathcal{M}}^1$, $A_{\mathcal{M}}^2$ such that $\mathcal{M} = \bigcup A_{\mathcal{M}}^1 = \bigcap A_{\mathcal{M}}^2$.

Proof. Since P has definable Skolem functions, $\bigcap_{i \in \omega} \mathcal{N}_i \subset \mathcal{M}$ holds, and consequently, $\bigcap_{i \in \omega} \mathcal{N}_i \models P$. Since $\bigcap_{i \in \omega} \mathcal{N}_i \models P$, we can apply Proposition 1.6.

We now look for models having such chains.

Lemma 1.8. For any consistent extension T of P there is a countable model \mathcal{M} of T having a family of initial segments densely ordered by inclusion such that any member of this family is an intersection of a strictly decreasing elementary chain of initial segments of \mathcal{M}.

Proof. Let \ll be any recursive dense ordering on ω, and $U(x,y,z), V(x,y)$ two new predicate symbols. We consider the theory $T' = T \cup A_1 \cup A_2 \cup A_3 \cup A_4$ of the language $L = L_\ll \cup \{U, V\}$, where $A_1 \cdots A_4$ are defined as follows:

- $A_1 = \{\forall x \exists y (V(x,n) \land y < x \rightarrow V(y,n)) ; n \in \omega, \text{ and the same for } U(x,m,n)\};$
- $A_2 = \{\forall x_1 \cdots x_k V(x_1,n) \land \cdots \land V(x_k,n) \land \exists \varphi(x_1,\ldots,x_k) \rightarrow \exists \varphi(V(x,n) \land \varphi(x_1,\ldots,x_k)) \} \text{ for all } k,n \in \omega, \text{ all formulas } \varphi \text{ of } L_\ll, \text{ and the same for } U(x,m,n), m,n \in \omega\};$
- $A_3 = \{\forall z((V(x,n) \rightarrow U(x,n,m) \land U(x,n,m+1) \rightarrow U(x,n,m))) \land \exists x U(x,n,m) \land
- U(x,n,m+1), n,m \in \omega\};$
- $A_4 = \{\forall x U(x,n,1) \rightarrow V(x,m)) ; \text{ for all } m,n \in \omega, \text{ such that } n \gg m\}.$

Theory T' is consistent because any finite subtheory of T' is realized in a model \mathcal{M} obtained as a finite chain of elementary end extensions of any model \mathcal{M} of T. Any countable model of T', with the family of initial segments which are interpretations in this model of $U(x,n,m)$ and $\bigcap_{i \in \omega} U(x,n,m), n,m \in \omega$, obviously satisfies the conditions from Lemma 1.8.
Since T' is a recursive theory, the same argument shows that any resplendent countable model of T can be expanded to a model of T' because T' is consistent with $\text{Th}(\mathfrak{M})$ for any $\mathfrak{M}, \mathfrak{M} \models T$.

From Lemma 1.8 and Corollary 1.7 the following proposition immediately follows.

Proposition 1.9. For any consistent extension T of P there is a countable model \mathfrak{M} of T having a collection of initial segments densely ordered by inclusion, so that, for any segment I from the collection and any $k \in \omega$ the family $A^\mathfrak{M}_k$ can be divided into two disjoint parts $A^\mathfrak{M}_1$ and $A^\mathfrak{M}_2$ so that $I = \bigcup A^\mathfrak{M}_1 = \bigcap A^\mathfrak{M}_2$.

Using a Kotlarski's result [2] we can prove that in the case of recursively saturated countable models of P, we can find such a collection of initial segments of the power 2^ω. Namely, in that case, the set $Y = \{ \mathfrak{M} | \mathfrak{M} \prec \mathfrak{M} \}$ is of the order type of Cantor set 2^ω with its lexicographical ordering, and any \mathfrak{M} from Y is isomorphic to \mathfrak{M}. We call a pair (Y_1, Y_2) a cut in Y iff $Y_1 \cap Y_2 = \emptyset$, $Y_1 \cup Y_2 = Y$ and for all I_1, I_2 from Y, $I_1 \subseteq Y_1$ and $I_2 \subseteq Y_2$ implies $I_1 \subseteq I_2$. Since for two different cuts (I_1, I_2) and (I'_1, I'_2) the sets $\bigcap I_2 \setminus \bigcap I_1$ and $\bigcap I'_2 \setminus I'_1$ are disjoint and since \mathfrak{M} is countable, there are only countably many cuts (Y_1, Y_2) such that $\mathfrak{M} \setminus (\bigcap Y_2 \setminus \bigcup Y_1) \neq \emptyset$. It is easy to see that for any cut (Y_1, Y_2) such that $\mathfrak{M} \setminus (\bigcap Y_2 \setminus \bigcup Y_1) = \emptyset$, the segment $I = \bigcap Y_2 = \bigcup Y_1$ satisfies the conditions from Proposition 1.9, and that the family of such segments is of power 2^ω and is densely ordered by inclusion.

References

Prirodno-matematički fakultet

Univerziteta "Svetozar Marković"

Kragujevac, Jugoslavija

(Received 23 09 1985)