HYPERSURFACES OF C2-LIKE FINSLER SPACES

U. P. Singh and B. N. Gupta

Abstract. The notion of C2-like Finsler spaces has been introduced by Matsumoto and Numata [1]. The purpose of the present paper is to study the properties of hypersurfaces immersed in C2-like Finsler spaces. We prove that each non-Riemannian hypersurface of a C2-like Finsler space is C2-like. The condition under which a hypersurface of a C2-like Landsberg space is Landsberg is obtained. Finally, after using the so-called T-conditions [6] we explore the situation in which a hypersurface of a C2-like Finsler space F_n satisfying the T-conditions also satisfies the T-condition.

1. Introduction Let F_n be a Finsler space of dimension n with the fundamental function $F(x, y), (y^i = \dot{x}^i)$. The following are the two well-known properties of Finsler spaces:

$(P1)$ The Berwald connection parameter G^i_{jk} [3] is not, in general, independent on the direction element y^i.

$(P2)$ $g_{ij(k)} = -2C^i_{jk0} \neq 0$ in general, where (k) stands for Berwald's process of covariant derivation, $C^i_{jk} = 1/2 \cdot dg_{ij}(x, y)$ and suffix 0 stands for transvection with respect to y^i.

A Finsler space in which G^i_{jk} is independent on y is called a Berwald space. This space is characterized by the condition $C^i_{jk0} = 0$.

A Finsler space in which $g_{ij(k)} = 0$ is called a Landsberg space. This space is characterized by $C^i_{jk0} = 0$.

It is obvious that each Berwald space is a Landsberg space. Further, the relation $\Gamma^i_{jk} = G^i_{jk} - C^i_{jk0}$ [3] involving Cartan's connection parameter Γ^i_{jk} proves,

Lemma 1. In a Landsberg space, Cartan's and Berwald's connection parameters are identical and in Berwald's space the Cartan's connection parameter is independent on y.

Definition 1. Finsler space F_n ($n \geq 2$) with $C^2 = C^iC_i \neq 0$ is called C2-like [1], if the (h) hv-torsion tensor C_{ijk} can be written in the form

\begin{equation}
C_{ijk} = C_iC_jC_k/C^2 \quad \text{where} \quad C_i = g^{jk}C_{ijk}.
\end{equation}

AMS Subject Classification (1980): Primary 53B40.
The following lemma can be easily deduced with the help of the equation (1.1) and definition of Berwald and Landsberg spaces.

Lemma 2. The necessary and sufficient condition that a C2-like Finsler space be a Berwald space (or Landsberg space) is that $C_{ijkl} = 0$ (or $C_{ij0} = 0$).

2. **Hypersurfaces of a C2-like Finsler space.** Consider a non-Riemannian hypersurface F_{n-1} of F_n ($n \geq 3$), characterized by the equation $x^i = x^I(u^\alpha)$, where we assume that all the Latin indices i, j, \ldots take values $1, 2, \ldots n$, while all the Greek indices α, β, \ldots take values $1, 2, \ldots n-1$. The fundamental tensor of F_{n-1} is given by

$$g_{\alpha\beta}(u, \dot{u}) = g_{ij}(x, y)B^i_{\alpha}B^j_{\beta}, \quad \text{where} \quad B^i_{\alpha} = \partial x^i / \partial u^\alpha.$$

We shall use the notation, $B^{ij...k}_{\alpha\beta...\gamma} = B^i_{\alpha}B^j_{\beta} \ldots B^k_{\gamma}$.

Now in a hypersurface F_{n-1} of F_n we have

$$C_{\alpha\beta\gamma} = C_{ijkl}B^{ij...k}_{\alpha\beta...\gamma}.$$

If F_n is C2-like, then by means of the equation (1.1), the equation (2.2) reduces to

$$C_{\alpha\beta\gamma} = \frac{\overline{C}_\alpha}{\overline{C}_\beta} \overline{C}_\gamma / C^2,$$

where

$$\overline{C}_\alpha = C_iB^i_{\alpha} = C^2 / C^2 \cdot C_\alpha,$$

where we have put $\overline{C}^2 = \overline{C}_\alpha \overline{C}^\alpha \neq 0$ and $C_\alpha = g^{\beta\gamma}C_{\alpha\beta\gamma}$.

The equations (2.3) and (2.4) give the following

$$C_{\alpha\beta\gamma} = C^4 / \overline{C}^6 \cdot C_\alpha C_\beta C_\gamma$$

A direct calculation will give

$$C^4 / \overline{C}^6 = 1 / \overline{C}^2$$

where \overline{C} stands for $C_\alpha C^\alpha$ and this must be non-zero, for if it is zero then $C_\alpha = 0$. Therefore by Diecke’s theorem the hypersurface is Riemannian, which is a contradiction to our assumption. Thus (2.5) reduces to $C_{\alpha\beta\gamma} = C_\alpha C_\beta C_\gamma / \overline{C}^2$ which proves the following

Theorem 2.1. The hypersurface F_{n-1} of a C2-like Finsler space F_n is C2-like.

Throughout the paper it will be assumed that $\overline{C}^2 \neq 0$.

The differences between the intrinsic and induced connection parameters $\tilde{\Gamma}^{\alpha}_{\beta\gamma}$ and $\Gamma^{\alpha}_{\beta\gamma}$ of a hypersurface has been obtained by Rund [2]. If the space F_n is C2-like then this difference tensor $\Lambda^{\alpha}_{\beta\gamma} = \tilde{\Gamma}^{\alpha}_{\beta\gamma} - \Gamma^{\alpha}_{\beta\gamma}$ reduces to the form

$$\Lambda^{\alpha}_{\beta\gamma} = \rho C^2 / \overline{C}^4 \cdot [C_\beta C_\gamma \Omega_{\alpha0} + C_\alpha C_\beta \Omega_{\gamma0} - C_\gamma C_\beta \Omega_{\alpha0} - C_\gamma C_\alpha \Omega_{\beta0} - C_\alpha C_\beta C_\gamma \Omega_{00}]$$
where \(\rho = N^i C_i \), \(\Omega_{\alpha \beta} \) are the components of the second fundamental tensor of \(F_{n-1} \), and \(N^i \) are the components of the unit vector normal to \(F_{n-1} \). If we suppose that intrinsic and induced connection parameters of \(F_{n-1} \) are identical, then (2.7) gives either \(\rho = 0 \), or \(\Omega_{\alpha 0} = 0 \), or \(C_{\alpha} = 0 \). But \(C_{\alpha} = 0 \) gives that the hypersurface is Riemannian, which is a contradiction to our assumption. This proves the following.

Theorem 2.2. The necessary and sufficient condition that intrinsic and induced connection parameters of a hypersurface of a \(C^2 \)-like Finsler space be equal is that either \(\Omega_{\alpha 0} = 0 \) or the vector \(C_i \) is tangential to the hypersurface.

In order to derive a condition under which a hypersurface of a \(C^2 \)-like Landsberg space is a Landsberg space we note that the induced covariant differentiation of the relation \(C_{\alpha} = \overrightarrow{C}^2 / C^2 \cdot C_i B^{i \alpha} \) yields

\[
C_{\alpha i} = \overrightarrow{C}^2 / C^2 (C_{i0} B^{i \alpha} + \partial C_i / \partial \hat{u}^\alpha \cdot \Omega_{\beta 0} N^1 + \rho \Omega_{\alpha \beta}) + \overrightarrow{C} (\overrightarrow{C}^2 / C^2)_{|| \beta} \]

where we have used the fact that \(\partial C_i / \partial y^i \) is symmetric in the indices \(i, j \). (The double vertical bar stands for induced covariant derivative). The transvection of the relation (2.8) with respect to \(\hat{u}^\alpha \) gives

\[
C_{\alpha i} = \overrightarrow{C}^2 / C^2 (C_{i0} B^{i \alpha} + \partial C_i / \partial \hat{u}^\alpha \cdot \Omega_{\beta 0} N^1 \rho \Omega_{\alpha \beta}) + \overrightarrow{C} (\overrightarrow{C}^2 / C^2)_{|| \alpha} \]

If we take \(\rho = 0 \) then equation (1.1) shows that the tensor defined by, \(M_{\alpha \beta} = C_{ijk} B^{ij}_{\alpha \beta} N^k \) vanishes. The properties of the hypersurfaces in this case have been discussed by Brown [4]. He has shown that in this case

\[
\partial N^1 / \partial \hat{u}^\alpha = -M_{\alpha} N^1, \quad \text{where} \quad M_{\alpha} = C_{ijk} B^{ij}_{\alpha} N^j N^k.
\]

This relation and the condition \(\rho = C_1 N^1 = 0 \) give

\[
\frac{\partial C_1}{\partial \hat{u}^\alpha} N^1 = -C_1 \frac{\partial N_1}{\partial \hat{u}^\alpha} = C_1 N^1 M_{\alpha} = 0.
\]

A direct calculation will give \(\overrightarrow{C} = C^2 - \rho^2 \).

This shows that the condition \(\rho = 0 \) will reduce the equation (2.9) to \(C_{\alpha i} = C_{i0} B^{i \alpha}_{\alpha} \). Again, Brown [4] has shown that for \(M_{\alpha \beta} = 0 \), the intrinsic and induced connection parameters are identical. Hence and from Lemma 2 we obtain the following

Theorem 2.3. A hypersurface of a \(C^2 \)-like Landsberg space will be a Landsberg space if the vector \(C_i \) is tangential to the hypersurface.

Now we want to find the condition under which the induced connection parameter \(\Gamma^\beta_{\gamma \delta} \) of a hypersurface of a \(C^2 \)-like Berwald space is independent of \(\hat{u}^\alpha \). Rund [3] has given the following relation for induced connection parameter of \(F_{n-1} \),

\[
\Gamma^\beta_{\gamma \delta} = B^j_i \left(\frac{\partial^2 x^j}{\partial u^\delta \partial u^\gamma} + \Gamma^k_{ji} B^{jk}_{\beta} \right), \quad \text{where} \quad B^j_i = g^{\alpha \beta} g_{ij} B^{ij}_{\alpha \beta},
\]
If the Finsler space F_n is Berwald, then equation (2.10) by means of Lemma 1 gives that $\Gamma^\alpha_{\beta\gamma}$ is independent of \hat{u}^α if and only if B^{α}_{ρ} is independent of \hat{u}^α. Rund [3] has given the following relation
\[
\frac{\partial B^\alpha_{\rho}}{\partial \hat{u}^\lambda} = 2g^{\rho\delta}B^{\delta}_{\lambda k}C^{kl}_{\lambda i}N_i
\]
which in view of (1.1) and (2.4) reduces to
\[
(2.11) \quad \frac{\partial B^\alpha_{\rho}}{\partial \hat{u}^\lambda} = 2\rho C^2/\sqrt{\xi} \cdot C^\alpha C_{\lambda} N_i.
\]
Hence we have the following:

Theorem 2.4. The necessary and sufficient condition that the induced connection parameter of a hypersurface of a C2-like Berwald space be independent on the direction element is that the vector C_i is tangential to the hypersurface.

Theorems 2.2. and 2.4 give the following:

Theorem 2.5. If the included connection parameter of a hypersurface of a C2-like Berwald space is independent on the direction element then the induced and intrinsic connection parameters are equal.

The two normal curvature vectors denoted by I^α_β and \check{H}^α_β are given by Rund [3] and Davies [5]. These vectors are related by [3] as follows.

\[
(2.12) \quad \check{H}^\alpha_\beta = I^\alpha_\beta + N^i C^j_{hk} B - \beta^h \check{H}^\alpha_\lambda \hat{u}^\lambda
\]
The relation (2.12) after transvection with respect to \hat{u}^β gives
\[
(2.13) \quad \check{H}^\alpha_\beta \hat{u}^\beta = I^\alpha_\beta = \Omega_{\alpha\beta} N^i.
\]
The equations (1.1), (2.4), (2.12) and (2.13) give
\[
\check{H}^\alpha_\beta = I^\alpha_\beta + (\rho^2/\sqrt{\xi}) \Omega_{\alpha\beta} N^i
\]
which proves the following:

Theorem 2.6. The necessary and sufficient condition that Rund's and Davies's normal curvature vectors of the hypersurface of a C2-like Finsler space are identical is that either $\Omega_{\alpha\beta} = 0$, or the vector C_i is tangential to the hypersurface.

The following theorems is a consequence of theorems 2.2 and 2.6.

Theorem 2.7. A necessary and sufficient condition that Rund's and Davies's normal curvature vectors of the hypersurface of a C2-like Finsler space are identical is that their induced and intrinsic connection parameters, are identical.

Theorems 2.4 and 2.6 yield the following:

Theorem 2.8. If the induced connection parameter of a hypersurface of a C2-like Berwald space is independent on the direction element then Rund's and Davies's normal curvature vectors of hypersurface are identical.
3. T-Conditions. We now consider the T-tensor (Matsumoto [6] and Kawaguchi [7]) given by

\[T_{\alpha ijk} = FC_{\alpha ijk|k} + C_{\alpha ijk}l_k + C_{\alpha ijk}l_j + C_{\alpha ijk}l_i + C_{\alpha ijk}l_h \]

where \(C_{\alpha ijk} \) stands for the \(v \)-covariant derivative of \(C_n \) with respect to \(y^h \). The corresponding expression for the T-tensor \(T_{\alpha \beta \gamma \delta} \) in \(F_{n-1} \) can be written as

\[T_{\alpha \beta \gamma \delta} = FC_{\alpha \beta \gamma \delta} + l_{\alpha}C_{\beta \gamma \delta} + l_{\beta}C_{\alpha \gamma \delta} + l_{\gamma}C_{\alpha \beta \delta} + l_{\delta}C_{\alpha \beta \gamma} \]

The relation (2.2) yields

\[C_{\alpha \beta \gamma \delta} = C_{\alpha ijk|l}B_{\alpha \beta \gamma l}^{ijh} + C_{\alpha ijk}B_{\alpha \beta \gamma l}^{jkh} - C_{\alpha ijk}B_{\alpha \beta \gamma l}^{ihj} + C_{\alpha ijk}B_{\alpha \beta \gamma l}^{kij} - C_{\alpha ijk}B_{\alpha \beta \gamma l}^{ijh} \]

where \(Z_{\alpha l}^i = B_{\alpha l}^i = N^jM_{\alpha l} \). A direct calculation will give

\[\text{By virtue of the equations (1.1), (2.4), (3.4) and (3.5) the relation (3.3) reduces to the form} \]

\[C_{\alpha ijk|l} = C_{\alpha ijk}B_{\alpha \beta \gamma l}^{jkh} + 3\rho^2C^4/C \cdot C_{\alpha}C_{\beta}C_{\gamma}C_{\delta} \]

The equations (2.2), (3.1), (3.2), (3.6) and the well known relation \(l_\alpha = i_iB_{\alpha}^i \) give

\[T_{\alpha \beta \gamma \delta} = C_{\alpha ijk}B_{\alpha \beta \gamma l}^{jkh} + 3\rho^2C^4/C \cdot C_{\alpha}C_{\beta}C_{\gamma}C_{\delta} \]

The space \(F_n \) is said to satisfy the T-condition if and only if \(T_{\alpha ijk} = 0 \). Therefore we have the following theorem.

THEOREM 3.2. If a \(C^2 \)-like Finsler space \(F_n \) satisfies the T-condition then the necessary and sufficient condition for its hypersurface \(F_{n-1} \) to satisfy the T-condition is that the vector field \(C_i \) is tangential to the space \(F_{n-1} \).

The theorems 2.2, 2.3, 2.4, 2.6, and 3.1 yield the following:

THEOREM 3.7. If a \(C^2 \)-like Bernald space \(F_n \) and its hypersurface \(F_{n-1} \) satisfy the T-condition then the induced connection parameter of \(F_{n-1} \), is independent on the direction element, its intrinsic and induced connection parameters are identical, its Rund's and Davies's normal curvature vectors are identical and the hypersurface is a Landsberg space.

It can be easily shown that in a hypersurface of a \(C^2 \)-like space the \(v \)-curvature tensor \(S_{\alpha \beta \gamma \delta} \) = 0, which proves the following

THEOREM 3.3. The hypersurface of a \(C^2 \)-like Finsler space is a flat space.

REFERENCES

Department of Mathematics
University of Gorakhpur
Gorakhpur 273001 India

Department of Mathematics
Post Graduate College,
Ghazipur 233001 India

(Received 29 03 1985)