A FIXED POINT THEOREM IN REFLEXIVE BANACH SPACES

Ljubomir Ćirić

In this note we shall prove the following fixed-point theorem.

Theorem. Let B be a reflexive Banach space, K a nonempty bounded, closed and convex subset of B and let $T : K \to K$ be a map such that

$$
\text{diam } [T(D)] < \text{diam } (D)
$$

holds for every closed and convex subset D of K, containing more than one element and mapped into itself by T. Then T has a fixed point in K.

Proof. Let \mathcal{F} denote a family of all non-empty closed and convex subsets of K which T maps into itself. Then using the result of Smulian [7, p. 327] and Zorn's Lemma it follows that \mathcal{F} has a minimal element, say C. Since $T(C) \subseteq C \in \mathcal{F}$ it follows that $\text{Cl} [\text{co } T(C)] \subseteq C$ and hence

$$
T(\text{Cl} [\text{co } T(C)]) \subseteq T(C) \subseteq \text{Cl} [\text{co } T(C)].
$$

This implies $\text{Cl} [\text{co } T(C)] \in \mathcal{F}$ and by the minimality of C we have

$$
\text{Cl} [\text{co } T(C)] = C.
$$

As $\text{diam } (\text{co } S) = \text{diam } (S)$ for every subset S of K [5, p. 17], (2) implies

$$
\text{diam } [T(C)] = \text{diam } (C).
$$

Now, using (1) we conclude that C is a singleton, say $C = u$. Therefore, u is a fixed-point of T, and the proof is complete.

We remark that maps considered in [2], [4] and [6] satisfy the condition (1), and therefore our theorem is a certain generalization of corresponding fixed-point theorems. We shall illustrate this on a theorem given in [6].

AMS Subject Classification (1980): Primary 47H10; Secondary 54 E 35; 54 H 25.
Theorem A [6]. Let K and D be as in the previous theorem and $T : K \to K$ mapping satisfying the following conditions:

\[\|Tx - Ty\| \leq \max\{\|x - Tx\|, \|y - Ty\|, a\|x - Ty\| + b\|y - Tx\|, \}
\]

\[(\|x - y\| + \|x - Tx\| + \|y - Ty\|)/3; \]

\[x, y \in K, \ a \geq 0, \ b \geq 0, \ a + b < 1, \]

\[\sup_{z \in D} ||z - Tz|| < r \text{ diam } (D), \ 0 < r = r(D) < 1. \] (5)

Then T has a unique fixed point in K.

Proof. If $\text{diam } (D) > 0$, then by (4) and (5) for every $x, y \in D$ we have

\[||Tx - Ty|| \leq \max\{r, (a + b), (1 + 2r)/3\} \cdot \text{diam } (D) < \text{diam } (D). \]

Therefore, T satisfies (1), and by the previous theorem, T has a fixed point in K. Since condition (4) implies that T may have at most one fixed point, the proof is complete.

REFERENCES

