NONEXISTENCE OF NONMOLECULAR GENERIC SETS

Donald D. Steiner and Alexander Abian

Abstract. Generic subsets of partially ordered sets play an important role in giving significant examples of Zermelo-Fraenkel set-theoretical models. The significance of these models lies in the fact that a generic subset \(G \) of a partially ordered set \(P \), in general, does not exist in a model \(M \) in which \(P \) exists. Thus, by adjoining \(G \) to \(M \) an interesting extended model may ensue which has properties not shared by \(M \). Thus, in considering generic extensions of set-theoretical models it is quite relevant to know whether or not a generic subset of a partially ordered set \(P \) exists in the same model in which \(P \) exists. In this paper, we give a necessary and sufficient condition for \(P \) to have a generic subset in the same model.

Let \((P, \leq) \) be a partially ordered set. As usual, when no confusion is likely to arise, we represent \((P, \leq) \) simply by \(P \). If \(P \) has a minimum (i.e., the smallest) element, we represent it by 0 and we call it the zero element of \(P \).

DEFINITION 1. A subset \(D \) of a partially ordered set \((P, \leq) \) is called a dense (or, a coinitial) subset of \(P \) if and only if for every nonzero element \(x \) of \(P \) there exists a nonzero element \(y \) of \(D \) such that \(y \leq x \).

It is an interesting fact that, as shown in [1], a partially ordered set \(P \) has either finitely many or else continuum many dense subsets. Clearly, every nonzero minimal element of \(P \) is an element of every dense subset of \(P \). Clearly, every nonzero minimal element of \(P \) is an element of every dense subset of \(P \). On the other hand, if 0 of \(P \) exists, 0 need not be an element of every dense subset of \(P \). However, if \(D \) is a dense subset of \(P \) then \(D - \{0\} \) as well as \(D \cup \{0\} \) is a dense subset of \(P \). Indeed, every superset of a dense subset of \(P \) is a dense subset of \(P \).

Based on the notion of a dense subset of a partially ordered set, we introduce the notion of a generic subset of a partially ordered set as follows:

DEFINITION 2. Let \((P, \leq) \) be a partially ordered set. A subset \(G \) of \(P \) is called a generic subset of \(P \) (or, simply generic) if and only if: (1) \(0 \notin G \) and \(G \) is nonempty; (2) For every element \(x \) and \(y \) of \(P \) if \(x \in G \) and \(x \leq y \) then \(y \in G \); (3) Every two elements of \(G \) have a lower bound in \(G \); (4) \(G \) has a nonempty intersection with every dense subset of \(P \).

AMS Subject Classification (1980): Primary 06A10.
We observe that by (1) and (3) every two elements of \(G \) have a nonzero lower bound in \(G \). Also, we observe that (1), (2) (3) imply that \(G \) is a filter. Therefore, a generic subset \(G \) of a partially ordered set \(P \) is a filter of \(P \) such that \(G \) has a nonempty intersection with every dense subset of \(P \).

As shown below, not every partially ordered set has a generic subset. In fact, according to Theorem 1 below, a partially ordered set has a generic subset if and only if it has a molecule. In the literature, a modified notion of a generic subset is usually considered where (4) is replaced by:

\((4a)\) \(G \) has a nonempty intersection with every dense subset of \(P \) belonging to a preassigned collection \(M \) of dense subsets of \(P \).

If in Definition 1, condition (4) is replaced by (4a), then \(G \) is called \emph{generic over} \(M \) and is denoted by \(G/M \). It can be readily verified \[3\], that if \(M \) is a denumerable collection \(\{D_0,D_1,D_2,D_3,\ldots\} \) of dense subsets \(D_i \) of \((P,\leq) \), then \(P \) always has a \emph{generic over} \(M \) subset \(G \) with \(p \in G \) for any nonzero element \(p \) of \(P \). Indeed, since \(D_i \)'s are dense in \(P \) there exists a nonincreasing sequence:

\[
\cdots \leq d_3 \leq d_2 \leq d_1 \leq d_0 \leq p
\]

where \(d_i \in D_i \). But then clearly \(G = \{x \mid x \in P \text{ and } d_i \leq x \text{ for some } i\} \) is a generic over \(M \) subset of \(P \).

Definition 3. A nonzero element \(m \) of a poset \(P \) is called a molecule of \(P \) if and only if every two nonzero elements of \(P \) which are less than or equal to \(m \) have a nonzero lower bound.

Clearly, every nonzero element of a simply ordered set \(S \) is a molecule of \(S \).

A typical partially ordered set without a molecule is provided with the following example. Let \(H \) be the set of all finite sequences of the natural numbers \(0,1,2,3,\ldots \). Let us consider the partial order \((H,\leq) \) where \(p \leq q \) if and only if \(p \) is an extension of \(q \). Thus, \((0,3,5,2,1) \leq (0,3,5) \) and \((0,3,5,7) \leq (0,3,5). \) It can be readily verified that \((H,\leq) \) has no molecule.

Definition 4. Let \(m \) be a molecule of a partially ordered set \((P,\leq) \). Then a subset \(G(m) \) of \(P \) is called molecular, or generated by the molecule \(m \) if and only if:

\[
G(m) = \{x \mid (x \in P) \land (\exists y)((y \neq 0) \land (y \in P) \land (y \leq m) \land (y \leq x))\}
\]

Accordingly, \(G(m) \) consists of those elements of \(P \) each of which is greater than or equal to some element of \(P \) which is less than or equal to \(m \).

From (5) it obviously follows that

\[
m \in G(m)
\]

Next, we prove \[cf. 4, p. 26\].

Theorem 1. A subset \(G \) of a partially ordered set \((P,\leq) \) is generic if and only if \(G \) is generated by a molecule of \(P \).
Proof. Let G be a generic subset of P. First, we show that there exists $m \in G$ such that

\[(7) \quad \{y \mid (y \in P) \land (0 \neq y) \land (y \leq m)\} \subseteq G \text{ and } m \text{ is a molecule of } P.\]

Assume on the contrary that for every $m \in G$ there exists a nonempty subset $N(m)$ of P such that $z \in N(m)$ if and only if $z \leq m$ and $z \in (P - G)$. But then clearly, $P - G$ is a dense subset of P which has an empty intersection with G, contradicting (4). Thus, the first part of (7) is established. Now, from this and (3) and the fact that G is generic, it follows that m is nonzero and that every two nonzero elements of P which are less than or equal to m have a nonzero lower bound in G (and a fortiori in P). Thus, m is a molecule of P, according to Definition 3 and the proof of (7) is complete. Next, we show that $G = G(m)$. Let $x \in G$. By (3), we see that x and m must have a lower bound, say, y in G. Thus, $y \leq x$ and $y \leq m$. But then, from (5) it follows that $x \in G(m)$. But then, from (5) and (7), it follows that $x \geq y$ for some $y \in G$ which by (2) implies that $x \in G$. Hence, indeed $G = G(m)$.

To complete the proof of the theorem, it remains to show that $G(m)$ as given by (5) is a generic subset of P.

We observe that (1) follows directly from (5). To establish (2), it is enough to observe that if $z \in G(m)$ then by (5) we see that $z \geq y$ for some nonzero $y \leq m$. Therefore, if $z \leq x$ then $z \leq y$ with $y \leq m$, which implies $x \in G(m)$. To establish (3), it is enough to observe that if $x_1 \in G(m)$ and $x_2 \in G(m)$, then by (5) we see that $y_1 \leq x_1$ and $y_2 \leq x_2$ for some nonzero $y_1 \leq m$ and nonzero $y_2 \leq m$. But since m is a molecule, y_1 and y_2 have a nonzero lower bound, which by (5) is an element of $G(m)$. Hence, x_1 and x_2 have a lower bound in $G(m)$. To establish (4), let D be a dense subset of P. But then D has a nonzero element d such that $d \leq m$. From (5) it follows that $d \in G(m)$ and therefore $G(m)$ has a nonempty intersection with every dense subset of P.

Corollary 1. If k is a nonzero minimal element of a partially ordered set (P, \leq) then k is a molecule of P and \(\{x \mid x \in P \text{ and } k \leq x\} \) is a generic subset of P.

Proof. Since k has no nonzero predecessors, k is trivially a molecule of P. But then the conclusion of the corollary follows from (5).

Corollary 2. A partially ordered set has a generic subset if and only if it has a molecule.

This is an immediate consequence of Theorem 1 and (6). Accordingly, the partial order (H, \leq) mentioned above, has no generic subset.

Let us recall the following:

Definition 5. A Boolean algebra (A, \leq) is a complemented distributive lattice with a minimum 0 and a maximum 1. Moreover, a nonzero element a of A is called an atom of A if and only if for every $x \in A$ it is the case that $x < a$ implies $x = 0$.

Nonexistence of nonmolecular generic sets
Furthermore, a subset U of A is called an ultrafilter of A if and only if:

(8) $0 \notin U$; (9) For every element x and y of A if $x \in U$ and $x \leq y$ then $y \in U$;
(10) Every two elements of U have a lower bound in U; (11) For every element x of A either $x \in U$ or else $x' \in U$ where x' is the complement of x.

The reader is advised to compare (8), (9), (10), (11) with (1), (2), (3), (4).

Clearly, $1 \in U$ by (11) so that U is nonempty.

Lemma 1. Let (A, \leq) be a Boolean algebra. An element a of A is an atom of A if and only if a is a molecule of A.

Proof. Let a be an atom of A. Clearly, a is a nonzero minimal element of A and therefore by Corollary 1, we see that a is a molecule of A. Conversely, let a be a molecule of A. To prove that a is an atom of A it is enough to show that $x < a$ for no nonzero element x of A. Assume on the contrary that $x < a$ for some nonzero element x of A. But then, since A is a Boolean algebra $a - x$ exists, is nonzero and $(a - x) < a$. However, from Definition 3 it follows that x and $a - x$ must have a nonzero lower bound. But this leads to a contradiction since the only lower bound of x and $a - x$ in A is 0. Thus, our assumption is false and a is an atom of A.

Definitions 2 and 5 indicate that an ultrafilter of a Boolean algebra somewhat resembles a generic subset of it. However, in view of the discrepancies between (4) and (11), we must not expect that every ultrafilter of a Boolean algebra is also a generic subset of it. Indeed, in view of Theorem 1 and Lemma 1, we have:

Theorem 2. A subset G of a Boolean algebra A is generic if and only if G is generated by an atom of A (i.e., if and only if G is a principal ultrafilter of A).

Proof. By Theorem 1 and Lemma 1, we see that G must be generated by an atom a of A which in view of (5) implies:

$$G = G(a) = \{x \mid x \in A \text{ and } a \leq x\}$$

But then it is a routine matter to verify that the above equality implies that $G(a)$ is an ultrafilter of A (as defined by (8), (9), (10), (11)) generated by the atom a of A.

The following lemmas show some significant properties of dense subsets of a Boolean algebra.

Lemma 2. Let (A, \leq) be a Boolean algebra and D a dense subset of A. Then $\text{hub } D = 1$.

Proof. Clearly, 1 is an upper bound of D. To prove the lemma we show that every upper bound u of D is equal to 1. Assume on the contrary that u is an upper bound of D and $u < 1$. But then $1 - u$ (i.e., the complement u' of u) is a nonzero element of A. However, no element of D is less than or equal to $1 - u$, contradicting the denseness of D. Hence $u = 1$, as desired.

Lemma 3. Let (A, \leq) be a Boolean algebra and H a subset of A such that $\text{hub } H = 1$. Then the subset D of A given by

$$D = \{x \mid x \in A \text{ and } x \leq h \text{ for some } h \in H\}$$

(12)
is a dense subset of A.

Proof. We must show that for every nonzero element p of A there exists a nonzero element d of D such that $d \leq p$. Since $\text{lub } H = 1$ and since (A, \leq) is a Boolean algebra, we see that

\begin{equation}
(13) \quad p = p \wedge (\text{lub } H) = \text{lub} (p \wedge h)
\end{equation}

Since $p \neq 0$, from (13) it follows that $(p \wedge h) \neq 0$ for some $h \in H$. Let $d = p \wedge h$. Thus, d is nonzero and since $d \leq h$, we see by (12) that $d \in D$. Clearly, $d \leq p$ as desired.

As mentioned earlier, we called a nonempty subset G of a partially ordered set a filter if and only if G satisfies (1), (2), (3). Very often, in the literature [2], condition (3) is replaced by “the greatest lower bound of every two elements of G exists and is an element of G”. However, this point is immaterial for our purposes.

Theorem. Let A be a Boolean algebra. Then a filter G of A is a generic subset of G if and only if for every family $(a_i)_{i \in E}$ of A it is the case that

\begin{equation}
(14) \quad \text{lub}_{i \in E} a_i = 1 \text{ implies } a_i \in G \text{ for some } i \in E
\end{equation}

Proof. Let G be a generic subset of A. But then by Theorem 2 we see that A has an atom a and $a \in G$. Now, let $\text{lub}_{i \in E} a_i = 1$. Since A is a Boolean algebra, we have:

\begin{equation}
(15) \quad a = a \wedge (\text{lub}_{i \in E} a_i) = \text{lub}(a \wedge a_i) \text{ with } i \in E
\end{equation}

However, since a is an atom, $a \wedge a_i = 0$ or $a \wedge a_i = a$. But then from (15) it follows that $a \wedge a_i = a$ for some $i \in E$. Hence, $a \leq a_i$ and since $a \in G$ and G is a filter, $a_i \in G$ by (2). Thus, (14) is established.

Conversely, let G be a filter of A satisfying (14). We show that G is a generic subset of A. To this end, in view of (4) it is enough to prove that G has a nonempty intersection with every dense subset of A. Now, let D be a dense subset of A. By Lemma 2 we see that $\text{lub } D = 1$ and by (14) we derive that $d \in G$ for some $d \in D$. Thus, indeed G has a nonempty intersection with every dense subset of G, as desired. In view of Theorem 2, clearly G in also a principal ultrafilter of A.

REFERENCES

MCC, 9430 Research Blvd., Austin, Texas 78759, U.S.A. (Received 14 11 1983)

Department of Mathematics, Iowa State University, Ames, Iowa 50011, U.S.A. (Revised 19 06 1984)