SOME SPECIAL PRODUCT SEMISYMMETRIC
AND SOME SPECIAL
HOLOMORPHICALLY SEMISYMMETRIC F-CONNECTIONS

Mileva Prvanović

Abstract. In the present paper we investigate two special product semisymmetric F-connections: PS-concircular and PS-coharmonic ones and we find the conditions for product semisymmetric connection to be PS-concircular or PS-coharmonic. In the same manner we investigate two special holomorphically semisymmetric F-connections.

Introduction. The connection of an n-dimensional differentiable manifold is termed semisymmetric if its torsion tensor S satisfies

\[S^i_{jk} = \delta^i_j S_k - \delta^i_k S_j. \]

A semisymmetric connection is generalized on a locally decomposable Riemannian space in [4] and [5]. In [4] the product semisymmetric metric F-connection is defined and studied. In [5] something similar is done for the holomorphically semisymmetric F-connection.

In the present paper we investigate two special holomorphically semisymmetric and two special product semisymmetric F-connections. In 1 we recall what is a product semisymmetric F-connection. In 2 we define PS-concircular connections and prove that each of the relations (2.7), (2.9) and (2.17) is a necessary and sufficient condition for a product semisymmetric connection to be PS-concircular. In 3 we define PS-coharmonic connections and prove that a product semisymmetric connection is PS-coharmonic iff (3.3) holds. In 4 we recall what is a holomorphically semisymmetric connection. In 5 we define HS-concircular connection and prove that each of the relations (5.6) and (5.8) is a necessary and sufficient condition for a holomorphically semisymmetric connection to be HS-concircular. In 6 we investigate another HS-connection.

These results generalize, for the locally decomposable Riemannian space, the results obtained by P. Strave in [6].

AMS Subject Classification (1980): Primary 53C15
1. **Product semisymmetric metric F-connection.** An n-dimensional differentiable manifold M_n of class C^∞ is called a locally decomposable Riemannian space [8] if in M^n a tensor field $F^i_j \neq \delta^i_j$ and a positive definite Riemannian metric $ds^2 = g_{ij}(x^k)dx^i dx^j$ are given, satisfying the conditions

(1.1) \[F^i_k F^k_j = \delta^i_j, \quad g_{ab} F^a_i F^b_j = g_{ij}, \quad \nabla_k F^i_j = 0, \]

where ∇_k is the operator of the covariant derivative with respect to the Riemannian metric. If we put $F^i_k g_{ab} = F_{abij}$, then $F_{bij} = F_{jib}$ and the condition $\nabla_k F^i_j = 0$ is equivalent to the condition $\nabla_k F_{ij} = 0$.

Locally decomposable space can be covered by a separating coordinate system, that is, by such a system of coordinate neighborhoods (x^i) that in any intersection of two coordinate neighborhoods (x^i) and $(x^\tilde{i})$ we get

\[x^a = x^a(x^i), \quad x^\tilde{b} = x^\tilde{b}(x^\tilde{i}), \]

where the indices a, b, c run over the range $1, 2, \ldots, p$ and the indices x, y, z run over the range $p + 1, \ldots, p + q = n$.

With respect to a separating coordinate system, the metric of the space has the form $ds^2 = g_{ab}(x^c)dx^a dx^b + g_{xy}(x^z)dx^x dx^y$, while the tensors F_{abij} and F_{aij} have the forms:

\[(F_{abij}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (\delta^0_0 \quad 0 \quad -\delta^0_y) \]

Therefore

(1.2) \[\varphi \equiv p - q. \]

In the following we suppose $p > 2, q > 2$.

The product semisymmetric metric F-connection (PS-connection) has the form [4]:

(1.3) \[\Gamma^i_{jk} = \Gamma^i_{jk} + \delta^i_j S_k - g_{jk} S^i + F^a_{ij} S^a_{jk} - S^a F^i_{jk}, \]

where S_i is a decomposable vector field in M_n, i.e. the field satisfying the condition

(1.4) \[F^a_{ij} \nabla_j S_i + i = F^a_{ij} \nabla_j S_a, \]

and $S^i = g^{ab} S_a$. This condition can be expressed in the form

(1.5) \[F^a_{ij} F^i_{jk} \nabla_k S_a = \nabla_j S_i. \]

Also, we suppose in the following that S_i is locally a gradient vector field.

With respect to a separating coordinate system, all the Γ^i_{jk} are zero except

\[\Gamma^a_{bc} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + 2S_i \delta^a_i - 2g_{bc} S^a, \quad \Gamma^x_{yz} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + 2S_i \delta^x_i - 2g_{xy} S^x, \]
that is, both connections Γ_{bc}^a and Γ_{b}^z are semisymmetric metric connections: the first with respect to the metric $g_{ab}(x^c)dx^a dx^b$, the second with respect to the metric $g_{xy}(x^z)dx^x dx^y$.

The curvature tensor R^i_{rjk} of the connection (1.3) can be expressed in the form [4]

$$
R^i_{rjk} = K^i_{rjk} + \delta^i_j \rho_{rk} - g_{jr} \rho_k^i + F^i_{jr} F^a_r \rho_{ak} - F^i_{jr} g^b_k F^a_b \rho_{ak} - \\
- \delta^i_k \rho_{rj} + g_{kr} \rho_j^i - F^i_{kr} F^a_r \rho_{aj} + F^i_{kr} g^b_r F^a_b \rho_{aj},
$$

where

$$
\rho_{rk} = \nabla_r S_k - S_r S_k + S^a S_a g_{r k}/2 - S_r S_k F^a_r F^b_k + S^a S_a F^b_k F_{r k}/2,
$$

and K^i_{rjk} is the curvature tensor of the Riemannian space having g_{ij} as a metric tensor. Since S_i is a gradient, tensor ρ_{rk} is symmetric. Also, it satisfies the condition

$$
\rho_{ab} F^a_i F^b_j = \rho_{ij},
$$

because of (1.5). If we put

$$
R_{rk} = R^a_{rka}, \quad R^*_r = R^a_{ra} F^a_r, \quad K_{rk} = K^a_{rka}, \quad K^*_r = K^a_{ra} F^a_r,
$$

we obtain from (1.6), using (1.8)

$$
R_{rk} = K_{rk} + (n - 4) \rho_{rk} + \varphi^a_r \rho_{ak} + g_{rk} \rho^a_a + F^a_r \rho^b_k + \\
F_{rk} F^b_k \rho^a_r,
$$

$$
R^*_r = K^*_r + (n - 4) \rho_{ra} F^a_r + \varphi^a_r \rho_{rk} + F^a_r \rho^b_a + g_{rk} F^b_k \rho^a_r.
$$

The Ricci tensor K_{ij} of the locally decomposable Riemannian space is a pure tensor, i.e. $K_{ab} F^a_i F^b_j = K_{ij}$, from which $K_{aj} F^a_i = K_{bj} F^b_j$, i.e. K^*_i is a symmetric tensor. The tensor $\rho_{ak} F^b_r$ is a symmetric tensor too, because of (1.8). Therefore, both R_{rk} and R^*_r are symmetric tensors.

We obtain from (1.6)

$$
R_{rjk} = K_{rjk} + g_{i j} \rho_{rk} - g_{jr} \rho_{ik} + F^a_{i j} F^a_r \rho_{ak} - F^a_{jr} F^a_r \rho_{ak} - \\
+ g_{ik} \rho_{rj} - F^a_{kr} \rho_{ij} + F^a_{kh} \rho_{aj} + F^a_{kr} \rho_{aj},
$$

and see that

$$
R_{rikj} = - R_{rjk}.
$$

Eliminating ρ_{ij} from (1.6), we obtain [4]

$$
R^{i}_{rjk} + b [s^{i}_{rjk} - 2(b R - a R^*) r^{i}_{rjk} + 2(a R - b R^*) r^{i}_{akj} F^a_r] - \\
- a [s^{i}_{akj} F^a_r - 2(b R - a R^*) r^{i}_{akj} F^a_r + 2(a R - b R^*) r^{i}_{rjk}] = \\
= K^{i}_{rjk} + b [s^{i}_{rjk} - 2(b K - a K^*) r^{i}_{rjk} + 2(a K - b K^*) r^{i}_{akj} F^a_r] - \\
- a [s^{i}_{akj} F^a_r - 2(b K - a K^*) r^{i}_{akj} F^a_r + 2(a K - b K^*) r^{i}_{rjk}],
$$
where we have put

\[R = R_a^a, \quad K = K_a^a, \quad R^* = R_a^a, \quad K^* = L_a^a, \]

\[s_{rkj} = \delta^i_j R_{rk} + g_{rk} R_{kj}^i + F_j^i R_{rk}^* - F_{rk} R_{kj}^i - \]

\[-\delta^i_j R_{rk} + g_{rk} R_{kj}^i - F_j^i R_{rk}^* + F_{rk} R_{kj}^i, \]

\[s_{rkj} = \delta^i_j K_{rk} - g_{rk} K_{kj}^i - F_j^i K_{rk}^* - F_{rk} K_{kj}^i - \]

\[-\delta^i_j K_{rk} + g_{rk} K_{kj}^i - F_j^i K_{rk}^* + F_{rk} K_{kj}^i, \]

\[r_{rk} = \delta^i_j g_{rk} - \delta^i_j g_{rk} + F_j^i F_{rk} - F_j^i F_{rk} \]

\[a = \frac{\varphi}{2[\varphi^2 - (n-2)^2]}, \quad b = \frac{n-2}{2[\varphi^2 - (n-2)^2]}, \]

\[a_i = \frac{\varphi}{\varphi^2 -(n-4)^2}, \quad b_i = \frac{n-2}{\varphi^2 -(n-4)^2}. \]

2. Product semisymmetric concircular connection. In this section we consider a special product semisymmetric metric F-connection, namely the connection (1.3) satisfying the condition

\[(2.1) \quad \rho_{ik} = f g_{ik} + h F_{ik}, \]

where \(f \) and \(h \) are some scalar functions. From (1.6) and (2.1) it results that

\[R_{rkj}^i = K_{rkj}^i + 2f[\delta^j_i g_{kr} - \delta^j_i g_{rk} + F_j^i F_{kr} - F_j^i F_{kr}] + \]

\[+ 2h(\delta^j_i F_{kr} - \delta^j_i F_{rk} + F_j^i g_{kr} - F_j^i g_{kr}). \]

Contracting (2.2) with respect to \(i \) and \(j \) we obtain

\[(2.3) \quad R_{rk} = K_{rk} + 2f[(n-2)g_{kr} + \varphi g_{kr}] + 2h((n-2)F_{kr} + \varphi F_{kr}). \]

It follows from (2.3) that

\[(2.4) \quad R^*_{rk} = K_{rk} + 2f[(n-2)F_{kr} + \varphi g_{kr}] + 2h((n-2)g_{kr} + \varphi F_{kr}). \]

Transvecting (2.3) and (2.4) with \(g^{rk} \), we find that

\[R - K = 2f[n(n-2) + \varphi^2] + 4h\varphi(n-1), \]

\[R^* - K^* = 4f\varphi(n-1) + 2h[n(n-2) + \varphi^2]. \]

Since \(p > 2 \) and \(q > 2 \), \(n(n-2) + \varphi^2 \neq 0 \), and the above relations give

\[(2.5) \quad 2f = -\alpha(R - K) - \beta(R^* - K^*), \quad 2h = -\beta(R - K) - \alpha(R^* - K^*), \]

where

\[\alpha = \frac{n(n-2) + \varphi^2}{[n(n-2) + \varphi^2]^2 - 4\varphi^2(n-1)^2}, \quad \beta = \frac{2\varphi(n-1)}{[n(n-2) + \varphi^2]^2 - 4\varphi^2(n-1)^2}. \]
Substituting (2.5) into (2.2) and taking into account the notation (1.14), we get
\[
R_{r k} - (\alpha R + \beta R^*) r_{r k} - (\beta R + \alpha R^*) R_{r k} F^a_r = K_{r k} - (\alpha K + \beta K^*) r_{r k} - (\beta K + K^*) r_{r k} F^a_r. \tag{2.7}
\]

Conversely, we suppose that for (1.3) we have (2.7). Then, substituting \(R_{r k} - K_{r k} \) from (2.7) into (1.6), we obtain

\[
[\alpha(R - K) + \beta(R^* - K^*)] r_{r k} + \beta[(R - K) + \alpha(R^* - K^*)] r_{r k} F^a_r = \delta^a_f \rho_{r k} - \delta^a_k \rho_{r j} - g_{r j} \rho^a_k + g_{k r} \rho^a_j + F^a_k F^b_r \rho_{a k} - F^a_k F^b_r \rho_{a j} - F_{r j} g^b F^a_k \rho_{a k} + F_{k r} g^b F^a_l \rho_{a j}.
\]

Contracting this with respect to \(i \) and \(k \) and taking into account (1.8), we get

\[
(4 - n)\rho_{r j} - \varphi F^l_{r k} \rho_{a j} =
\]

\[
= \{ (n - 2)[\alpha(R - K) + \beta(R^* - K^*)] + \beta[(R - K) + \alpha(R^* - K^*)] + \rho^a_k \} g_{r j} +
\]

\[
+ \{ \varphi[\alpha(R - K) + \beta(R^* - K^*)] + (n - 2)[\beta(R - K) + \alpha(R^* - K^*)] + F^a_k F^b_r \} F_{r j}.
\]

or
\[
(4 - n)\rho_{r j} - \varphi F^l_{r k} \rho_{a j} = f_1 g_{r j} + h_1 F_{r j}, \tag{2.8}
\]

where we have put

\[
f_1 = (n - 2)[\alpha(R - K) + \beta(R^* - K^*)] + \beta[(R - K) + \alpha(R^* - K^*)] + \rho^a_k,
\]

\[
h_1 = \varphi[\alpha(R - K) + \beta(R^* - K^*)] + (n - 2)[\beta(R - K) + \alpha(R^* - K^*)] + F^a_k F^b_r \rho^a_k.
\]

From (2.8) we obtain

\[-\varphi \rho_{r j} + (4 - n) F^a_{r k} \rho_{a j} = h_1 g_{r j} + \varphi f_1 F_{r j}. \]

From (2.8) and this last equation we easily find that

\[
[(4 - n)^2 - \varphi^2] \rho_{r j} = [(4 - n) f_1 + \varphi h_1] g_{r j} + [(4 - n) h_1 + \varphi f_1] F_{r j}.
\]

Since \(p > 2 \) and \(g > 2 \), \((4 - n) f_1 - \varphi^2 \neq 0 \), and we can express the preceding relation in the form

\[
\rho_{r j} = \frac{(4 - n) f_1 + \varphi h_1}{(4 - n)^2 - \varphi^2} g_{r j} + \frac{(4 - n) h_1 + \varphi f_1}{(4 - n)^2 - \varphi^2} F_{r j}.
\]

This shows that \(\rho_{r j} \) has the form (2.1). Therefore, we have

Theorem 1. The connection (1.3) satisfies (2.1) if and only if (2.7) holds.

The tensor on the right hand side of (2.7) is the product concircular curvature tensor [3]. Because of that we introduce the following

Definition. The connection (1.3) satisfying (2.1) is called PS-concircular (product semisymmetric concircular) connection.
Contracting (2.7) with respect to i and j, we find
\[
R_{rk} + \varphi(\beta R + \alpha R^*) + (n - 2)(\alpha R + \beta R^*)g_{kr} + \\
+ [(n - 2)(\beta R + \alpha R^*) + \varphi(\alpha R + \beta R^*)]F_{kr} = \\
= K_{rk} + [\varphi(\beta K + \alpha K^*) + (n - 2)(\alpha K + \beta K^*)]g_{kr} + \\
+ [(n - 2)(\beta K + \alpha K^*) + \varphi(\alpha K + \beta K^*)]F_{kr}.
\]
(2.9)

Conversely, we suppose that for (1.3), we have (2.9). Then, substituting $R_{rk} - K_{rk}$ from (2.9) into (1.9), we obtain (2.8). Therefore, we have

Theorem 2. (1.3) is a PS-concircular connection iff (2.9) holds.

Using the abbreviation
\[
(2.10) \quad A = \alpha R + \beta R^*, \quad B = \beta R + \alpha R^*, \quad P = \alpha K + \beta K^*, \quad Q = \beta K + \alpha K^*.
\]
we express (2.9) in the form
\[
R_{rk} + [\varphi B + (n - 2)A]g_{kr} + [(n - 2)B + \varphi A]F_{kr} = \\
= K_{rk} + [\varphi Q + (n - 2)P]g_{kr} + [(n - 2)Q + \varphi P]F_{kr}
\]
From this, we easily obtain
\[
R_{rk}^* = [\varphi B + (n - 2)A]F_{kr} + [(n - 2)B + \varphi A]g_{kr} = \\
= K_{rk}^* + [\varphi + (n - 2)P]F_{kr} + [(n - 2)Q + \varphi P]g_{kr}.
\]
From these two relations it follows that
\[
\delta_j^i R_{rk} + [\varphi B + (n - 2)A]\delta_j^i g_{kr} + [\varphi A + (n - 2)B]\delta_j^i F_{kr} = \\
= \delta_j^i K_{rk} + [\varphi Q + (n - 2)P]\delta_j^i g_{kr} + [\varphi P + (n - 2)Q]\delta_j^i F_{kr},
\]
(2.11)
\[
F^j_i R_{rk} + [\varphi B + (n - 2)A]F^j_ig_{kr} + [\varphi A + (n - 2)B]F^j_ig_{kr} = \\
= F^j_i K_{rk} + [\varphi Q + (n - 2)P]F^j_ig_{kr} + [\varphi P + (n - 2)Q]F^j_ig_{kr},
\]
(2.12)
\[
\delta_j^i R_{rk}^* + [\varphi B + (n - 2)A]\delta_j^i g_{kr} + (n - 2)B + \varphi A]\delta_j^i g_{kr} = \\
= \delta_j^i K_{rk}^* + [\varphi Q + (n - 2)P]\delta_j^i F_{kr} + [(n - 2)Q + \varphi P]\delta_j^i g_{kr},
\]
(2.13)
\[
F^j_i R_{rk}^* + [\varphi B + (n - 2)A]F^j_ig_{kr} + (n - 2)B + \varphi A]F^j_ig_{kr} = \\
= F^j_i K_{rk}^* + [\varphi Q + (n - 2)P]F^j_ig_{kr} + [(n - 2)Q + \varphi P]F^j_ig_{kr}.
\]
(2.14)
We multiply (2.11) with $n - 2$ and (2.13) with φ and subtract the second from the first. Then, taking into account the notations (1.15), we have
\[
A\delta_j^i g_{kr} + B\delta_j^i F_{kr} - P\delta_j^i g_{kr} - Q\delta_j^i F_{kr} = \\
2b(\delta_j^i R_{rk} - \delta_j^i K_{rk} - 2a(R_{rk} \delta_j^i - K_{rk} \delta_j^i).
\]
(2.15)
Now, we multiply (2.12) with φ and (2.14) with $n - 2$ and subtract the first from the second. We find
\[
B F^j_ig_{kr} + A F^j_ig_{kr} - Q F^j_ig_{kr} - P F^j_ig_{kr} = \\
- 2a(F^j_i R_{rk} - F^j_i K_{rk}) + 2b(F^j_i R_{rk} - F^j_i K_{rk}).
\]
(2.16)
On the other hand, we can express (2.7), using the notation (2.10), in the form:

\[
R^i_{rke} = K^i_{rke} + (A\delta^i_k g_{jr} + B\delta^i_k F_{jr}) - (P\delta^i_k g_{kr} + Q\delta^i_k F_{kr}) - \\
- (A\delta^i_k g_{kr} + B\delta^i_k F_{kr}) + (P\delta^i_k g_{kr} + Q\delta^i_k F_{kr}) + \\
+ (AF^i_k F_{jr} + BF^i_k g_{jr}) - (PF^i_k F_{kr} + QF^i_k g_{kr}) - \\
- (AF^i_k F_{kr} + BF^i_k g_{kr}) + (PF^i_k F_{kr} + QF^i_k g_{kr}).
\]

Substituting from (2.15) and (2.16), we obtain

\[
R^i_{rke} = -2b(\delta^i_k R_{rj} - \delta^i_j R_{rk} + F^j_k R^*_{rj} - F^j_i R^*_{rk}) + \\
+ 2a(\delta^i_k R_{rj} - \delta^i_j R_{rk} + F^j_k R^*_{rj} - F^j_i R^*_{rk}) = \\
K^i_{rke} = -2b(\delta^i_k K_{rj} - \delta^i_j K_{rk} + F^j_k K^*_{rj} - F^j_i K^*_{rk}) + \\
+ 2a(\delta^i_k K^*_{rj} - \delta^i_j K^*_{rk} + F^j_k K^*_{rj} - F^j_i K^*_{rk}).
\]

But the tensor on the right-hand side is the product projective curvature tensor [7]. Thus we have

Theorem 3. The product projective curvature tensor is an invariant of the PS-concircular connection.

Lowering the index \(i\) in the preceding equation and taking into account (1.11), and then raising the index \(r\), we obtain

\[
R^r_{ikj} = -2b(g_{ik} R^r_{j} - g_{ij} R^r_{k} + F^r_{ik} R^*_{j} - F^r_{ij} R^*_{k}) + \\
+ 2a(g_{ik} R^r_{j} - g_{ij} R^r_{k} + F^r_{ik} R^*_{j} - F^r_{ij} R^*_{k}) = \\
K^r_{ikj} = -2b(g_{ik} K^r_{j} - g_{ij} K^r_{k} + F^r_{ik} K^*_{j} - F^r_{ij} K^*_{k}) + \\
+ 2a(g_{ik} K^*_{j} - g_{ij} K^*_{k} + F^r_{ik} K^*_{j} - F^r_{ij} K^*_{k}),
\]

where \(R^r_{ik} = R^r_{ik}, K^r_{ik} = K^r_{ik}\).

Conversely, we suppose that for (1.3) we have (2.17). Contracting (2.17) with respect to \(r\) and \(j\), we get

\[
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} = \\
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} = \\
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} =
\]

\[
2 \varphi R_{ik} - [n(n-2) - \varphi^2] R_{ik} + 2 \varphi K_{ik} + [n(n-2) - \varphi^2] K^*_{ik} = \\
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} = \\
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} =
\]

\[
2 \varphi R_{ik} - [n(n-2) - \varphi^2] R_{ik} + 2 \varphi K_{ik} + [n(n-2) - \varphi^2] K^*_{ik} = \\
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} = \\
- [n(n-2) - \varphi^2] R_{ik} + 2 \varphi R_{ik} + [n(n-2) - \varphi^2] K_{ik} - 2 \varphi K^*_{ik} =
\]
We multiply (2.18) with \(n(n-2) - \varphi^2 \) and (2.19) with \(2 \varphi \) and add the obtained relations. Then we have

\[
R_{ik} - K_{ik} = - \frac{[n - 2] R - \varphi R^* [n(n - 2) - \varphi^2] + 2 \varphi \left([n(n - 2) - \varphi^2] R - \varphi R^* \right)}{4 \varphi^2 - [n(n - 2) - \varphi^2]^2} F_{ik} - \frac{[n - 2] R^* - \varphi R [n(n - 2) - \varphi^2] + 2 \varphi \left([n(n - 2) - \varphi^2] R - \varphi R^* \right)}{4 \varphi^2 - [n(n - 2) - \varphi^2]^2} F_{ik} + \frac{[n - 2] K - \varphi K^* [n(n - 2) - \varphi^2] + 2 \varphi \left([n(n - 2) - \varphi^2] K - \varphi K^* \right)}{4 \varphi^2 - [n(n - 2) - \varphi^2]^2} F_{ik} - \frac{[n - 2] K^* - \varphi K [n(n - 2) - \varphi^2] + 2 \varphi \left([n(n - 2) - \varphi^2] K - \varphi K^* \right)}{4 \varphi^2 - [n(n - 2) - \varphi^2]^2} F_{ik}.
\]

(Since \(p > 2 \), and \(q > 2 \), \(4 \varphi^2 - [n(n - 2) - \varphi^2]^2 \neq 0 \).)

Substituting \(R_{ik} - K_{ik} \) from this relation into (1.9), we obtain a relation of the form (2.8). Therefore, we have

Theorem 4. The connection (1.3) is a PS-concircular connection iff (2.17) holds.

3. **Product coharmonic curvature tensor.** In this section we consider another special product semisymmetric metric F-connection, namely the connection (1.3) satisfying the conditions

\[
(3.1) \quad \rho_a^a = 0, \quad \rho_b^b F_a^b = 0.
\]

Transvecting (1.9) and (1.10) with \(g_{rk} \), we obtain

\[
R = K + 2(n - 2) \rho_a^a + 2 \varphi F_a^b \rho_b^a,
\]

\[
R^* = K^* + 2 \varphi \rho_a^a + 2(n - 2) F_a^b \rho_b^a.
\]

So, if the connection (1.3) satisfies (3.1), we have \(R = K, R^* = K^* \) and the relation (1.12) reduces to

\[
(3.3) \quad R_{r[kj} + b_1 s_{r]kj}^{ij} - a_1 s_{s[kj}^{ij} F_{r]}^{ij} = K_{r[kj} + b_1 s_{r]kj}^{ij} - a_1 s_{s[kj}^{ij} F_{r]}^{ij}.
\]

Conversely, we suppose that for (1.3) we have (3.3). Then, contracting (3.3) with respect to \(i \) and \(j \), we get

\[
(3.4) \quad [n(n - 4) - \varphi^2] R - 4 R^* = [n(n - 4) - \varphi] K - 4 K^*,
\]

\[
(3.5) \quad - 4 R + [n(n - 4) - \varphi^2] R^* = - 4 K + [n(n - 4) - \varphi^2] K^*.
\]

Transvecting this equation with \(g_{rk} \) and \(F^* \), after some calculation, we obtain
We multiply (3.4) with $n(n - 4) - \varphi^2$ and (3.5) with 4 and add the obtained relations. Then we have

$$\{(n(n - 4) - \varphi^2)^2 - 16\} = \{(n(n - 4) - \varphi^2)^2 - 16\}K.$$

Since $p > 2$ and $q > 2$, $[n(n - 4) - \varphi^2]^2 - 16 \neq 0$, and therefore $R = K$. Thus (3.2) reduces to

$$(n - 2)\varphi_a^a + \varphi F_a^a \rho_a^b = 0, \quad \varphi \rho_a^a + (n - 2)F_a^a \rho_a^b = 0,$$

from which $\rho_a^a = 0$ and $F_a^a \rho_a^b = 0$.

Therefore, we have

Theorem 5. (1.3) satisfies the condition (3.1) if (3.3) holds.

The tensor on the right-hand side of (3.3) is analogous to the conharmonic curvature tensor [2]. Because of that we introduce the following

Definition. The tensor on the right-hand side of (3.3) is called a product coharmonic curvature tensor.

The connection (1.3) satisfying (3.1) is called a PS-coharmonic connection.

4. **Holomorphically semisymmetric connections.** The geometrical meaning of the semisymmetric connection was given by E. Bartolotti [1] and it consists in the following. Let U and V be two vectors. The vectors $S_{ij}^k u^i v^j, u^k, v^k$ are, in the general case, linearly independent. But if

$$S_{ij}^k u^i v^j = pu^k + qv^k$$

for every U and V, where p and q are scalars, then S_{ij}^k has the form (0.1), and conversely.

To generalize this property in the case of the locally decomposable Riemannian space, we considered in [5] the skew-symmetric tensor S_{ij}^k satisfying the condition $S_{ij}^k u^i F_j^a v^a = pu^k + qF_k^a v^a$ instead of (4.1) and proved the following:

Theorem. The skew-symmetric tensor S_{ij}^k satisfies condition (4.1) for every U iff it has the form

$$S_{ij}^k = \delta_j^k S_i - \delta_i^k S_j = F_j^k F_i^a S_a + F_i^k F_j^a S_a +$$

$$+(\delta_j^k \delta_i^b + F_j^k F_i^a) w_{ab} / 2,$$

where w_{ab}^k is an arbitrary skew-symmetric tensor.

One connection whose torsion tensor has the form (4.2) is the connection

$$G_{ij}^k = \left\{ \begin{array}{c}
\frac{k}{ij} + \delta_j^k S_i + \varepsilon g_{ij} S^k - F_j^k F_i^a S_a + \varepsilon F_i^k F_j^a S_a;
\end{array} \right.$$

where $\varepsilon = +1$ or $\varepsilon = -1$. (The case $\varepsilon = -1$ resembles more to the classical semisymmetric metric connection, i.e. to the connection $\left\{ \frac{k}{ij} \right\}$.)
the obtained results hold good for the case $\varepsilon = +1$, too.) This connection is an F-connection, i.e. $\partial F/\partial x^k + G^i_{ka} F^a_j - G^i_{kj} F^i_a = 0$, but is not a metric one.

Definition. The connection (4.3) is called a *holomorphically semisymmetric $(H S)$-connection*.

The curvature tensor $H^i_{r k j}$ of the connection (4.3) can be expressed in the form [5]

$$ H^i_{r k j} = K^i_{r k j} + \delta^i_{r k j} + F^i_j F^a_k \psi_{a k} - F^i_j F^a_k \psi_{a j} + g_{j r} \psi^i_k - g_{k r} \psi^i_j + F_{j r} F^a_k \psi^i_a - F_{k r} F^a_j \psi^i_a, $$

where $\psi_{a k} = \varepsilon \nabla_a S_j + S_j S_k + F^a_j F^b_k S_b$, $\psi^i_k = g^{i a} \psi_{a k}$.

As in 1, we suppose that S_i is locally a gradient and satisfies the condition (1.4). Then

$$ \psi_{j k} = \psi_{k j}, \quad F^a_j \psi_{a k} = F^a_k \psi_{a j} $$

and the preceding equation reduces to

$$ H^i_{r k j} = K^i_{r k j} + g_{j r} \psi^i_k - g_{k r} \psi^i_j + F_{j r} F^a_k \psi^i_a - F_{k r} F^a_j \psi^i_a. $$

If $H^i_{r k j} = H^a_{r k j}$, $H^* = H^a_{r k j}$, then from (4.5) we obtain

$$ H^i_{r k j} = K^i_{r k j} + g_{j r} \psi^i_k - g_{k r} \psi^i_j + F_{j r} F^a_k \psi^i_a - F_{k r} F^a_j \psi^i_a, $$

(4.6)

$$ H^*_{r k} = K^*_{r k} + 2 \psi_{r k} - g_{r k} \psi^a_a - g_{r k} \psi^a_a - \psi^a_a, $$

(4.7)

$$ H^*_{r k} = K^*_{r k} + 2 \psi_{r k} F^a_k F^r_a - g_{r k} F^a_k \psi^a_a. $$

Transvecting (4.5) and (4.6) with $g^{r k}$, we find

$$ H - K = (2 - n) \psi^a_k - \varphi F^a_k \psi^a_a, \quad H^* - K^* = - \psi^a_k + (2 - n) F^a_k \psi^a_a. $$

Taking into account (4.6), (4.7) and (4.8), we can eliminate ψ^a_k from (4.5) and we obtain the relation

$$ H^i_{r k j} - (g_{j r} H^i_k - g_{k r} H^i_j + F_{j r} H^i_k - F_{k r} H^i_j)/2 = $$

$$ - (bH - aH^*) r_{i k j} - (bH^* - aH) r^j_{i k} F^a_j = $$

$$ = K r k i - (g_{j r} K^i_k - g_{k r} K^i_j + F_{j r} K^i_k - F_{k r} K^i_j)/2 - $$

$$ - (bK - Q K^*) r^j_{i k j} - (bK^* - aK) r^j_{i k a}, $$

where we have used the notations (1.14) and (1.15).

5. HS-concircular connection. In this section we consider a special HS-connection, namely the connection (4.3) satisfying the condition

$$ \psi^i_k = f \delta^i_k + h F^i_k, $$

where f and h are some scalar functions.
Substituting (5.1) into (4.5), we find
\begin{equation}
H_{rkj}^i = K_{rkj}^i + f_{rjk}^i + h_{arj}^i F_r^a.
\end{equation}

Contracting with respect to \(i \) and \(j \), we get
\[
H_{rk} = K_{rk} + g_{rk}[(2-n)f - \varphi h] + F_{rk}[(2-n)h - \varphi f].
\]

Transvecting this with \(g^F_k \) and \(F^r_k \), we find
\begin{align}
H - K &= n(2-n) - \varphi^2 f + 2\varphi(1-n)h \tag{5.3} \\
H^* - K^* &= 2\varphi(1-n)f + [n(2-n) - \varphi^2]h. \tag{5.4}
\end{align}

We multiply (5.3) with \(n(2-n) - \varphi^2 \) and (5.4) with \(2(1-n)\varphi \) and subtract the second from the first. Afterward, we multiply (5.3) with \(2(1-n)\varphi \) and (5.4) with \(n(2-n) - \varphi^2 \) and subtract the first from the second. Then, taking into account the notations (2.6), we have
\begin{equation}
f = \alpha(H - K) + \beta(H^* - K^*), \quad h = \beta(H - K) + \alpha(H^* - K^*) \tag{5.5}
\end{equation}

Substituting (5.5) into (5.2), we find
\begin{align}
H_{rkj}^i - (\alpha H + \beta H^*)r_{rkj}^i - (\beta H + \alpha H^*)r_{arj}^i F_r^a &= \\
= K_{rkj}^i - (\alpha K + \beta K^*)r_{rkj}^i - (\beta K + \alpha K^*)r_{arj}^i F_r^a.
\end{align}

Conversely, we suppose that for (4.3) we have (5.6). Then, substituting \(H_{rkj}^i - K_{rkj}^i \) from (5.6) into (4.5), we find
\begin{align}
g_{jk}\psi^i_k - g_{kr}\psi^i_r + F_{jr}^i F_r^a\psi^a_k - F_{kr} F_r^i \psi^a_k &= \\
= -(\alpha H + \beta H^* - \alpha K - \beta K^*)r_{rkj}^i + (\beta H + \alpha H^* - \beta K - \alpha K^*)r_{arj}^i F_r^a.
\end{align}

Contracting with respect to \(i \) and \(j \) we obtain
\begin{equation}
2\psi_r^k = g_{rk}[(\alpha(H - K) + \beta(H^* - K^*))(2-n) - [\beta(H - K) + \alpha(H^* - K^*)]\varphi + \psi^a_k] + \\
+ F_{rk}[-[\alpha(H - K) + \beta(H^* - K^*)]\varphi + [\beta(H - K) + (H^* - K^*)](2-n) + F_r^a \psi^a_k]
\end{equation}

and this is an equation of the form (5.1). Therefore, we have

Theorem 6. The connection (4.3) satisfies the condition (5.1) iff (5.6) holds.

The tensor on the right-hand side of (5.6) being the product concircular curvature tensor, it is reasonable to introduce the following

Definition. The connection (4.3) satisfying (5.1) is called a \(HS - concircular \) connection.
Now, we contract (5.6) with respect to i and j and find
\[
H_{r_k} + [(n - 2)(\alpha H + \beta H^*) + \varphi(\beta H + \alpha H^*)g_{r_k} + \\
+ [\varphi(\alpha H + \beta H^*) + (n - 2)(\beta H + \alpha H^*)F_{r_k} = \\
= K_{r_k} + [(n - 2)(\alpha K + \beta K^*) + \varphi(\beta K + \alpha K^*)g_{r_k} + \\
+ [\varphi(\alpha K + \beta K^*) + (n - 2)(\beta K + \alpha K^*)]F_{r_k}.
\]

Conversely we suppose that for the HS-connection (4.3) we have (5.8). Then substituting $H_{r_k} - K_{r_k}$ from (5.8) into (4.6) we obtain (5.7), i.e. we obtain an equation of the form (5.1). Therefore, we have

Theorem 7. An HS-connection is HS-concircular iff (5.8) holds.

In the same way as in section 2, using the relation (5.8) we obtain
\[
H^i_{r_k j} - 2b(\delta^i_j H_{r_k j} - \delta^i_j H_{r_k} + F^i_j H^*_{r_k} - F^i_j H^*_k) + \\
+ 2a(\delta^i_k H^*_{r_k j} - \delta^i_k H^*_r + F^i_k H_{r_k j} - F^i_k H_{r_k}) = \\
= K^i_{r_k j} - 2b(\delta^i_j K_{r_k j} - \delta^i_j K_{r_k} + F^i_j K^*_{r_k} - F^i_j K^*_r) + \\
+ 2a(\delta^i_k K^*_{r_k j} - \delta^i_k K^*_{r_k} + F^i_k K_{r_k j} - F^i_k K_{r_k}),
\]

and therefore we have

Theorem 8. The product projective curvature tensor is an invariant of the HS-concircular connection.

6. **Another special HS-connection.** In this section we consider HS-connections satisfying the conditions
\[
(6.1) \\
\psi^a_a = 0, \quad \psi^a_b F^b_a = 0.
\]

Then (4.8) gives $H = K$ and $H^* = K^* st$ and (4.9) reduces to
\[
H^i_{r_k j} - (g_{j r} H^i_k - g_{k r} H^i_j + F_{j r} H^*_{k i} - F_{k r} H^*_{j i})/2 = \\
= K^i_{r_k j} - (g_{j r} K^i_k - g_{k r} K^i_j + F_{j r} K^*_{k i} - F_{k r} K^*_{j i})/2.
\]

Conversely, we suppose that for the HS-connection (4.3) we have (6.2). Then contracting (6.2) with respect to i and j, we find
\[
(H - K)g_{r_k} + (H^* - K^*)F_{r_k} = 0.
\]

Transvecting this relation with g^{r_k} and F^{r_k}, we obtain
\[
(H - K)n + (H^* - K^*)\varphi = 0, \quad (H - K)\varphi + (H^* - K^*)n = 0.
\]

Consequently $H = K$ and $H^* = K^*$ and (4.8) reduces to
\[
(2 - n)\psi^a_a - \varphi \psi^a_b F^b_a = 0, \quad -\varphi \psi^a_a + (2 - n)F^b_a \psi^b_a = 0,
\]
from which (6.1) follows. Therefore we have

Theorem 9. An HS-connection satisfies the condition (6.1) iff (6.1) holds.

7. **Remark concerning HS-connections.** Lowering the index i in (4.5) we have

$$H_{irkj} = 2K_{irkj} + g_{jr}\psi_{ik} - g_{kr}\psi_{ij} + F_{jr}F_{ia}\psi_{ia} - F_{kr}F_{ia}\psi_{ia}.$$

From this we obtain

$$H_{irkj} - H_{rikj} = 2K_{irkj} - g_{jr}\psi_{ik} + g_{kr}\psi_{ij} - F_{jr}F_{ia}\psi_{ak} + F_{kr}F_{ia}\psi_{aj} +$$

$$+ g_{jr}\psi_{ik} - g_{kr}\psi_{ij} + F_{jr}F_{ia}\psi_{ak} - F_{kr}F_{ia}\psi_{aj}.$$

Let us introduce the following notation

$$L_{irkj} = (H_{irkj} - H_{rikj})/2, \quad \rho_{rk} = -\psi_{rk}/2.$$

Then we express the preceding relation in the form

$$L_{irkj} = K_{irkj} + g_{ji}\rho_{rk} - g_{ki}\rho_{rj} + F_{jk}F_{ia}\rho_{ak} - F_{ki}F_{ia}\rho_{aj} -$$

$$- g_{jr}\rho_{ik} + g_{kr}\rho_{ij} - F_{jr}F_{ia}\rho_{ak} + F_{kr}F_{ia}\rho_{aj}.$$

or, raising the index i, in the form

$$L_{i r kj} = K_{i r kj} + \delta_{i j}^k \rho_{rk} - \delta_{i j}^k \rho_{rj} + F_{j k}F_{ia}\rho_{ak} - F_{ki}F_{ia}\rho_{aj} -$$

$$- g_{jr}\delta_{i j}^k + g_{kr}\delta_{i j}^j - F_{jr}F_{ia}\rho_{ak} + F_{kr}F_{ia}\rho_{aj}.$$

The right-hand side of this relation has the same form as the right-hand side of (1.6). Therefore, all conclusions of 2 and 3 can be repeated for HS-connections and the tensor $L_{i r kj}$.

REFERENCES

Institut za matematiku (Received 28 04 1983)
Prirodno-matematički fakultet
21000 Novi Sad
Yugoslavia