THE REGULATION NUMBER OF A GRAPH

Jin Akiyama, Frank Harary

Abstract. The regulation number \(r(G) \) of a graph \(G \) with maximum degree \(d \) is defined as the smallest number of new points in a \(d \)-regular supergraph. It is shown that for \(d \geq 3 \), every possible value of \(r(G) \) between zero and the maximum established by Akiyama, Era and Harary, namely \(d \mod 2 + 1 + d \), is realized by some graph. Also, a characterization is given for \(G \) to have \(r(G) = n \).

1. Introduction. The regulation number \(r(G) \) of a graph \(G \) with maximum degree \(d \geq 3 \),

(1) \[r(G) \leq d + 2 \text{ when } d \text{ is odd,} \]

(2) \[r(G) \leq d + 1 \text{ when } d \text{ is even.} \]

Our first purpose is to demonstrate the interpolation theorem that for each \(n \) between 0 and the upper bounds in (1) and (2), there exists a graph with regulation number \(n \). This is accomplished by constructing such a graph.

A necessary and sufficient condition is then derived for a graph to have regulation number \(n \), using the notion of an “\(f \)-factor” due to Tutte, [5].

In general we follow the notation and terminology of [bf 4].

2. Interpolation. We shall show that for each \(d \geq 3 \), every integer \(n \) between zero, the smallest possible value of \(r(G) \), and the maximum value \(d + 1 \) \(\mod d + 2 \) depending on the parity of \(d, n \) is realized as the regulation number of some graph. In the construction of such a graph, it is convenient to use the notation \(G_1 + G_2 + G_3 \) of [2] for the iterated join of three disjoint graphs \(G_i \) defined as the union \((G_1 + G_2) \cup (G_2 + G_3) \). Similarly, the iterated join of \(n \geq 3 \) disjoint graphs is written \(G_1 + G_2 + G_3 + \cdots + G_n \) and is defined as \((G_1 + G_2) \cup (G_2 + G_3) \cup \cdots \cup (G_{n-1} + G_n) \). We shall encounter the special case \(K_1 + K_1 + \cdots + K_1 + G_{k+1} + \cdots + G_n \) where \(G_{k+1} \neq K_1 \) and will abbreviate it by \(P_k + G_{k+1} + \cdots + G_n \) (as \(i \) this case the join of the first \(k \) copies of \(K_1 \) gives the path \(P_k \)).
THEOREM 1. Let $d \geq 3$.

1. If d is odd and $0 \leq n \leq d + 2$, then there is a graph H_n with maximum degree d and $r(H_n) = n$.

2. If d is even and $0 \leq n \leq d + 1$, then there is a graph J_n with maximum degree d and $r(J_n) = n$.

Proof. When $n = 0$ and $d \geq 3$ is odd, one can take H_0 as a d-regular graph or as a spanning subgraph of such a graph. For $n = d + 2$, we have $H_n = K_1 + \overline{K}_2 + K_{d-1}$. (The case $d = 3$ was illustrated in [1]). Now for any positive integer n properly between 0 and $d + 2$, one possible choice is

$$H_n = P_{d-n+3} + \overline{K}_2 + K_{d-1}.$$

The proof when d is even is analogous, with $J_n = P_{d-n+2} + \overline{K}_2 + K_{d-1}$. □

Figure 1. Realization graphs for regulation number interpolation

Figure 1 shows the graphs H_1 to H_5 when $d = 3$. The smallest 3-regular graph containing these H_n is shown in Figure 2. As noted in [bf 4], this is the smallest cubic graph with a bridge.

Figure 2. The smallest cubic graph with a bridge

3. Characterization. Let G be any graph with p points $V = \{1, 2, \ldots, p\}$. Let $f = (f_1, \ldots, f_p)$ be a vector of p non-negative integers. Then an f-factor is a spanning subgraph F of G such that the degree of point i in F is f_i. We recall the following result of Tutte [5] giving a criterion for the existence of an f-factor.

THEOREM B. A graph G has an f-factor if and only if for any two disjoint subsets X and Y of V, with $o(X,Y)$ the number of odd components of $G - X - Y$, and $d(i, G - X)$ the degree of i in $G - X$ we have

$$o(X,Y) + \sum_{i \in Y} \{f_i - d(i, G - X)\} \leq \sum_{i \in D} f_i.$$ (3)
Let $d_i = d(i, G)$ and let the deficiency of v_i in G be $f_i = d - d_i$. Then it can easily be verified that G has regulation number 0 if and only if \bar{G} has an f-factor, where $f = (f_1, \ldots, f_p)$ is the vector of deficiencies. We will extend this observation to obtain a criterion for a graph to have regulation number n. Fix n properly between 0 and $d + 2$ and define the join $I_n = \bar{G} + P_n$, with the additional points labelled $p + 1, \ldots, p + n$. Set $I_0 = G$. If $n > 0$, let $f_j = d$ for $j = p + 1, \ldots, p + n$ and set $f = (f_1, \ldots, f_{p+n})$.

Theorem 2. Let $0 \leq n \leq d + 2$ and let G be a graph with maximum degree d. Then $r(G) = n$ if and only if n is smallest integer such that I_n has an f-factor.

Proof. Suppose $r(G) = n$ and consider the set of lines added to $G + \bar{K}_n$ to form a d-regular graph. These edges form an f-factor in I_n. Suppose there is some integer $j < n$ such that I_j contains an f-factor. Then it is easily verified that these edges would regularize $G + \bar{K}_j$, contradicting the fact that $r(G) = n$. The converse holds by a similar argument. □

Theorem A and Theorem 2 together yield an algorithm which can be used to determine $r(G)$ for a given graph G. However, the paper [3] by Erdős and Kelly implicitly contains an $O(n)$ algorithm for this purpose even though they studied and determined the induced regulation number of a graph.

Acknowledgement. We thank David Avis helpful comments and for pointing out the preceding paragraph.

REFERENCES

Nippon Ika University
Kawasaki, Japan

University of Michigan
Ann Arbor, U. S. A.
(Ulam Professor of Mathematics
Boulder, Colorado, U. S. A., (Fall 1982)