ON FIXED POINT THEOREMS OF MAIA TYPE

Bogdan Rzepecki

1. In this note we present some variants of the following result of Maia [10]: Let X be a non-empty set endowed in with two metrics ρ, σ, and let f be a mapping of X into itself. Suppose that $\rho(x,y) \leq \sigma(x,y)$ in X, X is a complete space and f is continuous with respect to ρ, and $\sigma(fx,fy) \leq k \cdot \sigma(x,y)$ for all x, y in X, where $0 \leq k < 1$. Then, f has a unique fixed point in X.

This theorem (cf. also [18], [11], [4], [12], [17]) generalizes the Banach fixed-point principle and is connected with Bielecki’s method [1] of changing the norm in the theory of differential equations. Our results follow as a consequence of two metrics, of two transformations [3] and of the generalized metric space concept ([8], [9]).

2. Let $(E, \| \cdot \|)$ be a Banach space, let S be a normal cone in E (see e.g. [6]) and let \preceq denote the partial order in E generated by the cone S. Suppose that X is a non-empty set and a function $d_E : X \times X \to S$ satisfying for arbitrary elements x, y, z in X the following conditions:

(A 1) $d_E(x,y) = \theta$ if and only if $x = y$ (θ denotes the zero of the space E);
(A 2) $d_E(x,y) = d_E(y,x)$;
(A 3) $d_E(x,y) \preceq d_E(x,z) + d_E(z,y)$

Then, this function d_E is called the generalized metric in X.

Further, let us put $d^+(x,y) = \|d_E(x,y)\|$ for x and y in X. If every d^+-Cauchy sequence in X is d^+-convergent (i.e., $\lim_{p,q \to \infty} d^+(x_p,x_q) = 0$ for a sequence (x_n) in X, implies the existence of an element x_0 in X such that $\lim_{n \to \infty} d^+(x_n,x_0) = 0$), then (X, d_E) is called [6] a generalized complete metric space.

Moreover, in this paper we shall use the notations of \mathcal{L}^*-space, the \mathcal{L}^*-product of \mathcal{L}^*-spaces and a continuous mapping of \mathcal{L}^*-space into \mathcal{L}^*-space (see e.g. [7]).

3. Let E, S and \preceq be as above. In this section suppose we are given:

L - a bounded positive linear operator of E into itself with the spectral radius $r(L)$ less than one (see e.g. [6]);
X, A - two non-empty sets;

ρ_E, σ_E - two generalized metrics in X such that $\rho_E(x, y) \leq C \cdot \sigma_E(x, y)$ for all x, y in X, where C is a positive constant;

T - a transformation from A to X such that $(T[A], \rho_E)$ is a generalized complete metric space1.

Modifying the reasoning from [6, Th. II. 6. 2], we obtain the following result:

Proposition 1. Let (X, ρ_E) be a generalized complete metric space, let $f: X \to X$ be a continuous mapping with respect to ρ^+, and let $\sigma_E(f(x, y)) \leq L(\sigma_E(x, y))$ for all x, y in X. Then f has a unique fixed point ξ in X. Moreover, if $x_0 \in X$ and $x_n = f x_{n-1}$ for $n \geq 1$, then:

(i) $\lim_{n \to \infty} \|\rho_E(x_n, \xi)\| = 0$,

(ii) $\|\rho_E(x_n, \xi)\| \leq N \cdot C \cdot \|L^m u\|$ for all $m \geq 0$, where N is same constant and u is a solution of equation $u = \sigma_E(x_0, fx_0) + Lu$ in the space E (see [6, Th. I. 2. 2]).

Now, we shall prove

Proposition 2. Let (X, ρ_E) be a generalized complete metric space, let $f_m: X \to X$ ($m = 0, 1, \ldots$) be continuous mappings with respect to ρ^+, and let $\sigma_E(f_m(x, y)) \leq L(\sigma_E(x, y))$ for all x, y in X. Denote by ξ_n ($m = 0, 1, \ldots$) a unique fixed point of f_m, and suppose that $\lim_{n \to \infty} \|\sigma_E(f, x_n, f_0 x)\| = 0$ for every x in X. Then $\lim_{n \to \infty} \|\rho_E(\xi_n, \xi_0)\| = 0$.

Proof. Consider the linear equation $u = \sigma_E(\xi_0, f_0 \xi_0) + Lu$ ($n = 1, 2, \ldots$) with the unique solution u_n in E (see [6, Th. I. 2. 2]). By Proposition 1 we obtain $\|\rho_E(\xi_n, \xi_0)\| \leq N \cdot C \cdot \|u_n\|$ for $n \geq 1$, where N is constant.

Let $\varepsilon > 0$ by such that $r(L) + \varepsilon < 1$. Further, let us denote by $\|\cdot\|_e$ the norm equivalent to $\|\cdot\|$ such that $\|L\|_e \leq \varepsilon + r(L)$ (see [6, p. 15]) $\|L\|_e$ is the norm of E generated by $\|\cdot\|_e$. We have

$$
\|u_n\|_e \leq \|\sigma_E(f_n \xi_0, f_0 \xi_0)\|_e + \|Lu_n\|_e \leq \|\sigma_E(f_n \xi_0, f_0 \xi_0)\|_e + (r(L) + \varepsilon) \|u_n\|_e
$$

for $n \geq 1$. Since $\lim_{n \to \infty} \|\sigma_E(f_n \xi_0, f_0 \xi_0)\|_e = 0$, so $\lim_{n \to \infty} \|u_n\|_e \leq (\varepsilon + r(L)) \cdot \lim_{n \to \infty} \|u_n\|_e$, and consequently $\lim_{n \to \infty} \|\rho_E(\xi_n, \xi_0)\| = 0$.

Theorem 1. Let $H: A \to X$ be a mapping such that $H[A] \subset T[A]$ and $\sigma_E(Hx, Hy) \leq L(\sigma_E(Tx, Ty))$ for all x, y in A. Suppose that $\lim_{n \to \infty} \|\rho_E(Hx_n, Hx)\| = 0$ for every sequence (x_n) in A with $\lim_{n \to \infty} \|\rho_E(Tx_n, Tx)\| = 0$ Then:

(i) for every u in $T[A]$ the set $H[T^{-1} u]$ contains only one element2;

(ii) there exists a unique element ξ in $T[A]$ such that $H[T^{-1} \xi] = \xi$, and every sequence of successive approximations $u_{n+1} = H[T^{-1} u_n]$ ($n = 1, 2, \ldots$) is \(\rho^+\)-convergent to ξ;

1T[A] denotes the image of the set A by the transformation T

2T\(^{-1}\)u denotes the inverse image of u under T
(iii) \(Hx = Tx\) for all \(x\) in \(T^{-1} \xi\);

(iv) if \(Hx_i = Tx_i\) \((i = 1, 2)\), then \(Tx_1 = Tx_2\).

Proof. Let us put \(fz = H[T^{-1} z]\) for \(z\) in \(T[A]\). Obviously, \(fz \in T[A]\) for all \(z\) in \(T[A]\). If \(v_i \in f(z) \ (i = 1, 2)\), then \(v_i = Hx_i\) with \(Tx_i = z\). Hence \(\theta \leq \sigma_E(v_1, v_2) \leq L(\sigma_E(Tx_1, Tx_2)) = \theta\) and \(v_1 = v_2\). Therefore, \(H[T^{-1} z]\) contains only one element.

It can be easily seen that the mapping \(f\) of \(T[A]\) into itself is continuous with respect to \(\rho^+\). Indeed, let \(z_n \in T[A]\) for \(n \geq 1\) and let \(\lim_{n \to \infty} ||\rho E(z_n, z_0)|| = 0\). Then there exist \(x_m \in T^{-1} z_m\) \((m = 0, 1, \ldots)\) such that \(fz_m = Hx_m\). We have ||\(\rho_E(Hx_n, Hx_0)\)|| = ||\(\rho_E(fz_n, fz_0)\)|| for \(n \geq 1\), and consequently \(\lim_{n \to \infty} ||\rho_E(Hx_n, Hx_0)\|| = 0\).

Further, it is easy to verify that \(\sigma_E(fu, fv) \leq L(\sigma_E(u, v))\) for all \(u, v\) in \(T[A]\). Consequently, applying Proposition 1 the proof of (ii) is completed.

Obviously, (iii) holds and we omit the proof. Now, we prove (iv): Suppose that \(Hx_i = Tx_i\) \((i = 1, 2)\) and \(Tx_1 \neq Tx_2\). Then, \(\sigma_E(Tx_1, Tx_2) \leq L(\sigma_E(Tx_1, Tx_2))\) and \(\sigma_E(Tx_1, Tx_2) \not\subset S\). Therefore, by theorem II. 5. 4 from [6, p. 81], we obtain \(r(L) \geq 1\). This contradiction completes our proof.

Using Theorem 1 and Proposition 2 we obtain the following

Theorem 2. Let \(H_m : A \to X (m = 0, 1, \ldots)\) be mappings with \(H_m[A] \subset T[A]\) and \(\sigma_E(H_m x, H_m y) \leq L(\sigma_E(Tx, Ty))\) for all \(x, y\) in \(A\). Further, suppose that \(\lim_{n \to \infty} ||\rho E(H_m x_n, H_m x)|| = 0\) for every sequence \((x_n)\) in \(A\) with \(\lim_{n \to \infty} ||\rho E(Tx_n, Tx)|| = 0\).

Let \(\xi_m(m = 0, 1, \ldots)\) be an element in \(T[A]\) such that \(H_m[T^{-1} \xi_m] = \xi_m\). Assume that \(\lim_{n \to \infty} ||\sigma_E(H_n x, H_n y)|| = 0\) for every \(x\) in \(A\). Then \(\lim_{n \to \infty} ||\rho E(Ty_n, Ty_0)|| = 0\), where \(y_m \in T^{-1} \xi_m\) for \(m \geq 0\).

4. M. Krasnoselskii [5] has given the following version of well-known result of Schauder: If \(W\) is a non-empty bounded closed convex subset of a Banach space, \(f\) is a contraction and \(g\) is completely continuous on \(W\) with \(f x + gy \in W\) for all \(x, y\) in \(W\), then the equation \(fx + gy = x\) has a solution in \(W\).

Now, we give a modification and some generalization of this Krasnoselskii’s result.

Let \((E, ||||)\) be a Banach space, let \(S\) be a cone in \(E\) with the partial order \(\preceq\) such that if \(\theta \preceq x \preceq y\) then \(||x|| \preceq ||y||\), and let \(L\) be as in Sec. 3. Further, let \(X\) be a vector space endowed with two generalized norms \(||\cdot||_1, ||\cdot||_2\) (see [6, p. 94]) such that \(||x||_1 \preceq C \cdot ||x||_2\) for all \(x\) in \(X\). Denote: \(\rho_E, \sigma_E\)-generalized metrics in \(X\) generated by \(||\cdot||_1\) and \(||\cdot||_2\), respectively.

Theorem 3. Let \(K\) be a non-empty convex subset of \(X\), let \((K, \rho^+)\) be a complete space and let \(Q, F\) be transformations with the values in \(K\) defined on \(K\) and \(K \times K\) respectively. Assume, moreover, that the following condition holds:

(i) \(Q : (K, \rho^+) \to (K, \rho^+)\) is continuous, \(Q[K]\) is a conditionally compact set with respect to \(\sigma^+\) and \(||Q(u, y) - F(v, y)||_2 \preceq ||Qu - Qv||_2\) for all \(u, v, y\) in \(K\);
(ii) \(|||F(x, y) - F(x, z)||_2 \leq L(|||y - z||_2) \) for all \(x, y, z \) in \(K \);

(iii) for every \(x \) in \(K \) the function \(y \mapsto F(x, y) \) of \(K \) into itself is continuous with respect to \(\rho^+ \).

Then there exists a point \(x \) in \(K \) such that \(F(x, x) = x \).

Proof. Consider the mapping \(y \mapsto F(x, y) \) (\(x \) is fixed in \(K \)) of \(K \) into itself. By Proposition 1, there exists exactly one \(u_x \) in \(K \) such that \(F(x, u_x) = u_x \). Now define an operator \(V \) as \(x \mapsto u_x \).

This operator \(V \) maps continuously \((K, \rho^+)\) into itself. Indeed, let \((x_n) \) be a sequence in \(K \) such that \(\rho^+(x_n, x_0) \to 0 \) as \(n \to \infty \). Let us put \(f_n x = F(x_n, x) \) \((m = 0, 1, \ldots)\) for \(x \) in \(K \). The conditions (i) and (ii) imply that all the assumptions of the Proposition 2 are satisfied. Therefore, \(f_m \) has a unique fixed point \(\xi_m \) and \(\rho^+(\xi_m, \xi_0) \to 0 \) as \(n \to \infty \), so we are done.

Now we are going to show that \(V[K] \) is conditionally compact with respect to \(\rho^+ \): Let \((x_n) \) be a sequence in \(K \), and let \(y_n = F(x_n, u_{x_n}) \) for \(n \geq 1 \). Let \(\varepsilon > 0 \) be such that \(r(L) + \varepsilon < 1 \), let \(\|\cdot\| \) be the norm equivalent to \(|||\cdot||| \) with \(|||L||| \leq r(L) + \varepsilon \), and let us put \(\sigma^+_\varepsilon(x, y) = |||x - y|||_\varepsilon \) for \(x, y \) in \(K \). We have

\[
|||y_i - y_j|||_\varepsilon \leq |||L(y_i - y_j)|||_\varepsilon + |||Qx_i - Qx_j|||_\varepsilon \leq (r(L) + \varepsilon) |||y_i - y_j|||_\varepsilon + |||Qx_i - Qx_j|||_\varepsilon,
\]

hence

\[
(1 - (r(L) + \varepsilon)) \cdot |||y_i - y_j|||_\varepsilon \leq |||Qx_i - Qx_j|||_\varepsilon
\]

for every \(i, j \leq 1 \). Suppose that \((Qx_n)\) is a \(\sigma^+\)-Cauchy sequence. Then, \((Qx_n)\) is a \(\sigma^+_\varepsilon \)-Cauchy sequence and consequently \((y_n)\) is \(\rho^+\)-convergent in \(K \).

By application of the Schauder fixed point theorem, our proof is completed.

Remark. The above theorem will remain true if (i) is replaced by the following condition: \(Q \) is continuous and \(Q[K] \) is a conditionally compact set with respect to \(\rho^+ \), and \(|||F(u, y) - F(v, y)|||_2 \leq |||Qu - Qv|||_1 \) for all \(u, v, y \) in \(K \).

5. Let us remark applications and further results can be obtained if the concept of a generalized metric space in the Luxemburg sense [9] (not every two points have necessarily a finite distance) will be used. Cf. [13]–[17]. How, we give some application of Theorem 2 (in the case of) to functional equations.

In this section, let \((\mathbb{R}^k, ||\cdot||)\) denote the \(k \)-dimensional Euclidean space, let \(E = \mathbb{R}^k \), and let \(S = \{(t_1, t_2, \ldots, t_k) \in \mathbb{R}^k; t_i \geq 0 \text{ for } 1 \leq i \leq k\} \). Then, \((x_1, x_2, \ldots, x_k) \leq (y_1, y_2, \ldots, y_k)\) if we have \(x_i \leq y_i \) for every \(1 \leq i \leq k \).

Suppose that \(J = [0, \infty), K_{ij} \geq 0 \) \((i, j = 1, 2, \ldots, k)\) are constants, and \(p: J \to J \) is a locally bounded function. Let us denote by:

- \(A \) - the set of continuous functions \((x_1, x_2, \ldots, x_k)\) from \(J \) to \(\mathbb{R}^k \) such that \(x_1(t) = 0(\exp(p(t))) \) \((1 \leq i \leq k)\) for every \(t \) in \(J \);
- \(X \) - the set of bounded continuous functions from \(J \) to \(\mathbb{R}^k \);
- \(\Lambda \) - the metric space with the metric \(\delta \).
\[\mathcal{F} - \text{the set of continuous functions } (f_1, f_2, \ldots, f_k) \text{ from } J \times \mathbb{R}^k \times \Lambda \text{ into } \mathbb{R}^k \]
satisfying the following conditions:

\[|f_i(t, t_1, \ldots, t_k, \lambda) - f_i(t, s_1, s_2, \ldots, s_k, \lambda)| \leq \sum_{j=1}^{k} K_{ij} |t_j - s_j| \]

\((1 \leq i \leq k)\) for every \(t \in J, t_j, s_j \in \mathbb{R}^k\) and \(\lambda \in \Lambda; f_i(t, \theta, \lambda) = 0(\exp(p(t)))\) \((1 \leq i \leq k)\) for fixed \(\lambda \in \Lambda\) and every \(t \in J\) \((\theta \text{ denotes the zero of space } \mathbb{R}^k)\).

The set \(\Lambda\) admits a norm \(\|\cdot\|\) defined as \(\|x\| = \sup \{|\exp(-p(t))| \cdot |x(t)|; t \geq 0\}\). In \(X\) we define the generalized metric \(d_E\) as follows: for each \(x = (x_1, \ldots, x_k)\) and \(y = (y_1, \ldots, y_k)\) write \(d_E(x, y) = (\|x_1 - y_1\|, \|x_2 - y_2\|, \ldots, \|x_k - y_k\|)\), where \(\|\cdot\|\) denotes the usual supremum norm in the space of bounded continuous functions on \(J\). Obviously, \((X, d_E)\) is a generalized complete metric space.

We shall deal with the set \(\mathcal{F}\) as an \(L^*\)-space endowed with convergence:

\[\lim_{n \to \infty} (f_1^n, f_2^n, \ldots, f_k^n) = (f_1^0, f_2^0, \ldots, f_k^0) \]

if and only if

\[\lim_{n \to \infty} \sup \{\exp(-p(t)) \cdot |f_i^n(t, u, \lambda) - f_i^0(t, u, \lambda)|; (t, u) \in J \times \mathbb{R}^k\} = 0 \]

for every \(\lambda \in \Lambda\) and every \(1 \leq i \leq k\). Moreover, \(\mathcal{F} \times \Lambda\) be the \(L^*\)-product of the \(L^*\)-spaces \(\mathcal{F}, \Lambda\).

Further, suppose that \(h: J \to J\) is a continuous function, there exists a constant \(q > 0\) such that \(\exp(p(h(t))) \leq q \cdot \exp(p(t))\) for all \(t \in J\), and \([q \cdot K_{ij}]\) \((1 \leq i, j \leq k)\) is a non-zero matrix with

\[
\begin{bmatrix}
1 - qK_{11} & -qK_{12} & \cdots & -qK_{1k} \\
-qK_{21} & 1 - qK_{22} & \cdots & -qK_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
-qK_{k1} & -qK_{k2} & \cdots & 1 - qK_{kk}
\end{bmatrix} > 0
\]

for every \(i = 1, 2, \ldots, k\).

Under these conditions we have the following theorem:

For an arbitrary \(F\) in \(\mathcal{F}\) and \(\lambda \in \Lambda\) there exists a unique function \(x_{(F, \lambda)}\) in \(A\) such that

\[x_{(F, \lambda)}(t) = F(t, x_{(F, \lambda)}(h(t)), \lambda) \]

for every \(t \geq 0\). Moreover, if there exists functions \(\alpha, \beta\) from \(J\) to \(J\) such that \(\alpha(t) = 0(\exp(p(t)))\) for \(t \geq 0\), \(\beta(t) \to 0\) as \(t \to 0^+\) and

\[|f_i(t, u, \lambda) - f_i(t, u, \mu)| \leq \alpha(t) \cdot \beta(\delta(\lambda, \mu)) \quad (1 \leq i \leq k) \]

for all \((f_1, f_2, \ldots, f_k) \in \mathcal{F}, t \geq 0, u \in \mathbb{R}^k\) and \(\lambda, \mu \in \Lambda\), then the function

\[(F, \lambda) \mapsto x_{(F, \lambda)} \]
maps continuously L^*-space $\mathcal{F} \times \Lambda$ into Banach space A.

Proof. Let $m = 0,1,\ldots$ Let $F^{(m)} = (f_1^{(m)}, \ldots, f_k^{(m)}) \in \mathcal{F}$ and $\lambda_m \in \Lambda$ be such that $\lim_{n \to \infty} F^{(n)} = F^{(0)}$ and $\lim_{n \to \infty} \delta(\lambda_n, \lambda_0) = 0$. For each x in A, define:

$$(T_x)(t) = \exp(-p(t)) \cdot x(t),$$

$$(H_m x)(t) = \exp(-p(t)) \cdot F^{(m)}(t, x(h(t)), \lambda_m)$$

on J.

For $x = (x_1, x_2, \ldots, x_k) \in A$ and $t \geq 0$ we obtain

$$| (H_m x)(t) | \leq | F^{(m)}(t, x(h(t)), \lambda_m) - F^{(m)}(t, \theta, \lambda_m) | + | F^{(m)}(t, \theta, \lambda_m) | \cdot \exp(-p(t)) \leq$$

$$\leq \left(\sum_{j=1}^{k} \sum_{j=1}^{k} K_{ij} | x_j(h(t)) | + | F^{(m)}(t, \theta, \lambda_m) | \right) \cdot \exp(-p(t)) \leq$$

$$\leq (c_1 \cdot \exp(p(h(t)))) + c_2 \cdot \exp(p(t)) \cdot \exp(-p(t)) \leq c_1 q + c_2$$

with some constants c_1, c_2, and therefore H_m maps A into X. Further, it can be easily seen that $T[A] = X$ and $H_m[A] \subset T[A]$.

We observe [2] that the operator L generated by the matrix $[g \cdot K_{ij}]$ is a bounded positive linear operator with the spectral radius less than 1. For $x = (x_1, \ldots, x_k)$, $y = (y_1, \ldots, y_k)$ in A and $t \geq 0$ we have

$$\exp(-p(t)) \cdot | f^{(m)}_i(t, x(h(t)), \lambda_m) - f^{(m)}_i(t, y(h(t)), \lambda_m) | \leq$$

$$\leq \left(\sum_{j=1}^{k} K_{ij} \cdot \sup_{t \geq 0} \exp(-p(t)) | x_j(t) - y_j(t) | \right) \cdot \exp(-p(t)) \cdot \exp(p(h(t))) \leq$$

$$\leq q \cdot \sum_{j=1}^{k} K_{ij} \cdot \sup_{t \geq 0} \exp(-p(t)) \cdot | x_j(t) - y_j(t) |,$$

$$d_E(H_m x, H_m y) = (\sup_{t \geq 0} \exp(-p(t)) \cdot | f^{(m)}_1(t, x(h(t)), \lambda_m) - f^{(m)}_1(t, y(h(t)), \lambda_m) |, \ldots, \sup_{t \geq 0} \exp(-p(t)) \cdot | f^{(m)}_k(t, x(h(t)), \lambda_m) - f^{(m)}_k(t, y(h(t)), \lambda_m) |),$$

$$L(d_E(Tx, Ty)) = \left(q \cdot \sum_{j=1}^{k} K_{ij} \cdot \sup_{t \geq 0} \exp(-p(t)) \cdot | x_j(t) - y_j(t) |, \ldots, q \cdot \sum_{j=1}^{k} K_{kj} \cdot \sup_{t \geq 0} \exp(-p(t)) \cdot | x_j(t) - y_j(t) | \right)$$
and therefore $d_E(H_m x, H_n y) \leq L(d_E(Tx, Ty))$.

Let us fix x in A. For $t \geq 0$, $1 \leq i \leq k$ and $n \geq 1$ we get

$$|f_i^{(n)}(t, x(h(t)), \lambda_n) - f_i^{(0)}(t, x(h(t)), \lambda_0)| \leq \alpha(t) \cdot \beta(\delta(\lambda_n, \lambda_0)) +$$

$$+ |f_i^{(n)}(t, x(h(t)), \lambda_0) - f_i^{(0)}(t, x(h(t)), \lambda_0)|$$

hence

$$\sup_{t \geq 0} \exp(-p(t)) |f_i^{(n)}(t, x(h(t)), \lambda_n) - f_i^{(0)}(t, x(h(t)), \lambda_0)| \leq c \cdot \beta(\delta(\lambda_n, \lambda_0)) +$$

$$+ \sup \{\exp(-p(t)) |f_i^{(n)}(t, u, \lambda_0) - f_i^{(0)}(t, u, \lambda_0)| \mid (t, u) \in J \times \mathbb{R}^k \}$$

with some constant c, and it follows

$$\lim_{n \to \infty} \sup_{t \geq 0} \exp(-p(t)) |f_i^{(n)}(t, x(h(t)), \lambda_n) - f_i^{(0)}(t, x(h(t)), \lambda_0)| = 0.$$

Finally, $||d_E(H_n x, H_0 x)|| \to 0$ as $n \to \infty$.

This proves that the theorem 1 and 2 is applicable to the mappings T, $H_m(m = 0, 1, \ldots)$, and the proof is finished.

REFERENCES

Institute of Mathematics
A. Mickiewicz University
Matejki 48/49, Poznań, Poland

Osiedle Bohaterów II Wojny Światowej 43/13
61-385 Poznań, Poland