Abstract. Let F be an algebraically closed field of characteristic 0 and $f(x)$ a polynomial of degree strictly greater than one in $F[x]$. We show that the number of degree k polynomials with coefficients in F that commute with f (under composition) is either zero or equal to the number of degree one polynomials with coefficients in F that commute with f. As a corollary, we obtain a theorem of E. A. Bertram characterizing those polynomials commuting with a Chebyshev polynomial.