Classification of Spherical Nilpotent Orbits in Complex Symmetric Space

Donald R. King

Communicated by F. Knop

Abstract. Let G be the adjoint group of the simple real Lie algebra \mathfrak{g}, and let $K_C \to \text{Aut}(\mathfrak{p}_C)$ be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent K_C-orbits in \mathfrak{p}_C.

1. Introduction

When L is a complex simple Lie group, the spherical nilpotent orbits for the adjoint action of L on its Lie algebra have been determined by Panyushev [22] and McGovern [15]. These orbits are significant in the study of the completely prime primitive ideals in the enveloping algebra of L. For example, McGovern has shown how to associate Dixmier algebras to spherical nilpotent orbits (and their covers) [15]. The Dixmier algebra associated to a spherical orbit has a nice structure owing to the fact that the co-ordinate ring of the orbit is multiplicity free as an L module, i.e., each irreducible finite dimensional representation of L occurs with multiplicity 0 or 1.

The goal of this paper is to classify completely the spherical nilpotent K_C-orbits in \mathfrak{p}_C, the complexified tangent space at the identity coset of the symmetric space formed by a simple group G (of adjoint type) and its maximal compact subgroup K. Here K_C is the complexification of K. This classification is contained in Theorems 6.1 (section 6.) and 9.1 (section 9.). Panyushev presented a partial classification of spherical nilpotent K_C-orbits in [21]. The classification presented here is especially significant since each spherical nilpotent K_C-orbit is diffeomorphic to a nilpotent G-orbit in the Lie algebra of G that is multiplicity free as a Hamiltonian K-space [11].

Many specific spherical nilpotent orbits have been investigated. If G is simple, the number of non-zero minimal nilpotent K_C-orbits in \mathfrak{p}_C is either 1 or 2. These orbits are spherical and have been studied extensively by representation theorists, notably [25]. Other spherical nilpotent K_C-orbits are studied in [1] and [16]. One expects spherical nilpotent orbits to play an increasingly prominent role in the representation theory of real simple Lie groups.
2. Basic Notation

Throughout this article, we assume that \(g \) is a real simple Lie algebra with Cartan decomposition \(g = \mathfrak{k} \oplus \mathfrak{p} \). \(\theta \) is the associated Cartan involution. Let \(g_C, \mathfrak{k}_C \) and \(\mathfrak{p}_C \) denote the complexifications of \(g, \mathfrak{k} \) and \(\mathfrak{p} \) respectively. \(\theta \) extends to a complex linear involution on \(g_C \). Let \(\sigma \) denote conjugation on \(g_C \) relative to the real form \(g \). \(G_C \) is the adjoint group of \(g_C \). \(G, K, \) and \(K_C \) are the connected subgroups of \(G_C \) corresponding to the Lie algebras \(g, \mathfrak{k}, \) and \(\mathfrak{k}_C \), respectively. \(G^\theta_C \) is the subgroup of \(G_C \) which is fixed by \(\theta \).

3. Kostant-Sekiguchi correspondence

In order to define the Kostant Sekiguchi correspondence, we consider the adjoint actions of \(G_C \) on \(g_C \), \(G \) on \(g \) and \(K_C \) on \(p_C \).

Definition 3.1. Let \(\mathcal{N}[g], \mathcal{N}[g_C], \) and \(\mathcal{N}[p_C] \) denote the set of nilpotent elements of \(g, g_C \) and \(p_C \) respectively. \(\mathcal{N}[g], \mathcal{N}[g_C]/G, \) and \(\mathcal{N}[p_C]/K_C \) will denote the orbits (conjugacy classes) in \(\mathcal{N}[g], \mathcal{N}[g_C], \) and \(\mathcal{N}[p_C] \) under \(G, G_C \) and \(K_C \) respectively.

The Kostant-Sekiguchi correspondence is a special bijection between \(\mathcal{N}[g]/G \) and \(\mathcal{N}[p_C]/K_C \). It is defined by means of \(sl(2) \)-triples.

Definition 3.2. An ordered triple \(\{Z_1, Z_2, Z_3\} \) of elements in \(g_C \) is said to be an \(sl(2) \)-triple if the following commutation relations are satisfied:

\[
[Z_1, Z_2] = 2Z_2, \quad [Z_1, Z_3] = -2Z_3, \quad \text{and} \quad [Z_2, Z_3] = Z_1.
\]

Two \(sl(2) \)-triples \(\{Z_1, Z_2, Z_3\} \) and \(\{Z'_1, Z'_2, Z'_3\} \) are said to be conjugate under a subgroup \(W \) of \(G_C \) if there exists an element \(w \in W \) such that \(Z_i = w \cdot Z'_i \) for \(i = 1, 2, 3 \). ("\cdot" denotes the adjoint action.)

Using the Jacobson-Morosov Theorem, one can prove the following characterization of \(\mathcal{N}[g]/G \).

Theorem 3.3. [3] There is a bijection between each of the following sets.

1. \(G \) conjugacy classes of \(sl(2) \)-triples of \(g \)
2. \(\mathcal{N}[g]/G \).

The \(sl(2) \)-triple \(\{Z_1, Z_2, Z_3\} \) is said to be normal if \(Z_1 \in \mathfrak{k}_C \), and \(Z_2, Z_3 \in \mathfrak{p}_C \). Normal \(sl(2) \)-triples are at the heart of the Kostant-Rallis description of \(\mathcal{N}[p_C]/K_C \).

Theorem 3.4. [13] There is a bijection between each of the following sets.

1. \(K_C \) conjugacy classes of normal \(sl(2) \)-triples of \(g_C \)
2. \(\mathcal{N}[p_C]/K_C \).

We need to define two notable classes of \(sl(2) \)-triples.
Definition 3.5. (Kostant-Sekiguchi triples) An $sl(2)$-triple $\{H, E, F\}$ in \mathfrak{g} is said to be a KS-triple in \mathfrak{g} if $\theta(E) = -F$, and hence $\theta(H) = -H$. A normal $sl(2)$-triple $\{x, e, f\}$ in \mathfrak{g}_C is said to be a KS-triple in \mathfrak{g}_C if $f = \sigma(e)$.

Sekiguchi established the following facts about KS-triples.

Theorem 3.6. [23] (1) Every $sl(2)$-triple $\{H', E', F'\}$ in \mathfrak{g} is conjugate under G to a KS-triple in \mathfrak{g}. Two KS-triples in \mathfrak{g} are conjugate under G to the same $sl(2)$-triple in \mathfrak{g} if and only if the KS-triples are conjugate under K.

(2) Every normal $sl(2)$-triple $\{x', e', f'\}$ in \mathfrak{g}_C is conjugate under K_C to a KS-triple in \mathfrak{g}_C. Two KS-triples in \mathfrak{g}_C are conjugate under K_C to the same normal $sl(2)$-triple in \mathfrak{g}_C if and only if the KS-triples are conjugate under K.

Definition 3.7. Let $KS(\mathfrak{g})$ denote the set of KS-triples in \mathfrak{g} and $KS(\mathfrak{g}_C)$ denote the set of KS-triples in \mathfrak{g}_C. $KS(\mathfrak{g})/K$ and $KS(\mathfrak{g}_C)/K$ will denote the set of K-conjugacy classes in $KS(\mathfrak{g})$ and $KS(\mathfrak{g}_C)$ respectively.

Combining Theorems 3.4, 3.3 and 3.6 we have:

Theorem 3.8. There are bijections:

\[\mathcal{N}[\mathfrak{g}]/G \leftrightarrow KS(\mathfrak{g})/K \quad \text{and} \quad \mathcal{N}[\mathfrak{p}_C]/K_C \leftrightarrow KS(\mathfrak{g}_C)/K. \]

The Kostant-Sekiguchi correspondence is a consequence of Theorem 3.8 and the following observation.

Proposition 3.9. There is a bijection: $KS(\mathfrak{g})/K \leftrightarrow KS(\mathfrak{g}_C)/K$ defined as follows: $\{H, E, F\} \in KS(\mathfrak{g})$ is mapped to the $\{x, e, f\} \in KS(\mathfrak{g}_C)$, where

\[
\begin{align*}
x &= i(E - F), \\
e &= \frac{E + F + iH}{2}, \\
f &= \frac{E + F - iH}{2}.
\end{align*}
\]

(1)

The map just defined is K-equivariant.

Let Ω be a conjugacy class in $\mathcal{N}[\mathfrak{g}]/G$. Let $\{H, E, F\} = \{H_\Omega, E_\Omega, F_\Omega\}$ be a representative of the conjugacy class in $KS(\mathfrak{g})$ that is associated to Ω by Theorem 3.8. Then set

\[S(\Omega) \overset{\text{def}}{=} K_C \cdot \frac{E + F + iH}{2}. \]

(2)

We obtain our main result.

Theorem 3.10. (The Kostant-Sekiguchi Correspondence [23]) The mapping $S : \mathcal{N}[\mathfrak{g}]/G \rightarrow \mathcal{N}[\mathfrak{p}_C]/K_C$, given by $\Omega \mapsto S(\Omega) \overset{\text{def}}{=} O_\Omega$ (see formula (2)) is a bijection.

Proof. Combine Theorem 3.8 and Proposition 3.9.
4. Results about spherical nilpotents in p_c

We need several results (mostly due to Panyushev) in order to state necessary and sufficient conditions for O to be K_C spherical. Fix a KS-triple $\{x, e, f\}$ in g_c with $e \in O$. Thus $x \in \mathfrak{t}$, $\sigma(e) = f$. It follows that the complex subalgebra $a_c = Cx + Ce + Cf$ has a θ-stable real form $a \subset g$. Let $g_c(j)$, $\mathfrak{u}_c(j)$, and $p_c(j)$ denote the j-eigenspace of $ad(x)$ on g_c, \mathfrak{u}_c, and p_c respectively.

Since $\sigma(x) = -x$, and \mathfrak{u}_c and p_c are preserved by σ, for all j we have

$$\dim_C \mathfrak{u}_c(j) = \dim_C \mathfrak{u}_c(-j); \quad \dim_C p_c(j) = \dim_C p_c(-j).$$

Definition 4.1. We define \mathfrak{u}_c-height(e) (resp., p_c-height(e)) to be the largest non-negative integer j such that $\mathfrak{u}_c(j) \neq (0)$ (resp., $p_c(j) \neq (0)$). height(e) is the largest non-negative integer j such that $g_c(j) \neq (0)$.

Definition 4.2. Let u denote the sum of the positive eigenspaces of $ad(x)$ on g_c. Set $Z = u \cap \mathfrak{u}_c/(u \cap \mathfrak{u}_c)$.\^e.

Lemma 4.3. (1) For each $i \geq 0$, as a K^1_C-module, $\mathfrak{u}_c(i)/(\mathfrak{u}_c(i))^{e}$ is isomorphic to $[f, p_c(i+2)]$; and

(2) As K_C-modules, Z and $\sum_{i \geq 1} p_c(i+2) = \sum_{i \geq 1} p_c(i)$ are isomorphic.

Proof. For (1) apply the representation theory of $sl(2, \mathbb{C})$. (2) follows from (1). \boxed{}

Let $u = \mathfrak{t} + i\mathfrak{p}$. Then u is a compact real form of g_c. $\tau = \sigma \circ \theta$ is the conjugation on g_c with respect to u. Let U be the connected subgroup of G_c with Lie algebra u.

Definition 4.4. Let B denote the Killing form of g_c and B_g denote the restriction of B to g. Set $\langle z, w \rangle = -B_g(z, \tau(w))$. Then $\langle \cdot, \cdot \rangle$ is a U invariant, positive definite Hermitian inner product on g_c. If $z \in g_c$, set $\|z\|^2 = \langle z, z \rangle$. Note that if $z, w \in g$, then $\langle z, w \rangle = -B_g(z, \theta(w))$.

Let m be the orthogonal complement of $\mathfrak{u}_c^{(x, e, f)}$ (relative to $\langle \cdot, \cdot \rangle$) inside \mathfrak{u}_c. m is a $K_C^{(x, e, f)}$ module. Note that m and $p_c(2)$ are isomorphic as $K_C^{(x, e, f)}$ modules.

Recall from [20] the notion of a stabilizer in general position (s.g.p.) for the action of an algebraic group on an irreducible variety.

Definition 4.5. We fix S to be an s.g.p. for the representation of $K_C^{(x, e, f)}$ on m.

That is S is the stabilizer in $K_C^{(x, e, f)}$ of a point whose orbit under $K_C^{(x, e, f)}$ has maximal dimension. Such a point lies in an open subset of m such that the stabilizers of any two points in this subset are conjugate under $K_C^{(x, e, f)}$. Since $K_C^{(x, e, f)}$ is reductive, a generic $K_C^{(x, e, f)}$ orbit on m is closed, so that S is reductive. Also,

$$\dim K_C^{(x, e, f)} - \dim S = \dim \text{orbit of maximal dimension of } K_C^{(x, e, f)} \text{ on } m.$$
Let s_c denote the Lie algebra of S. Since s_c is stable under σ and τ, it is the complexification of a Lie subalgebra s_R which is contained in $\mathfrak{f}^{\{x, e, f\}}$. Let S_R denote the corresponding connected compact subgroup of $K^{\{x, e, f\}}$. S_0 denotes the identity component of S. $B(S)$ will denote a Borel subgroup of S.

Suppose that X is a variety with K_C action and B_k is a Borel subgroup of K_C.

Definition 4.6. The complex codimension of a generic B_k orbit is called the complexity of X, denoted $c_{K_C}(X)$ or $c(X)$ (when the reductive group K_C is understood).

Remark 4.7. $c(X)$ is also the transcendence degree (over C) of the B_k invariant functions in the field of rational functions (with complex coefficients) on X.

Definition 4.8. If X is irreducible, we say that X is spherical for K_C if $c(X) = 0$. That is, some (and hence any) Borel subgroup of K_C has a dense orbit on X.

Remark 4.9. If \overline{X} is the Zariski closure of X, then $c(\overline{X}) = c(X)$.

Corollary 4.10. If $e \in N[p_c]$, then $K_C \cdot e$ is spherical $\iff \overline{K_c \cdot e}$ is spherical.

Proposition 4.11. If $e \in N[p_c]$ and $K_C \cdot e$ is spherical so is each K_C orbit in $\overline{K_c \cdot e}$.

Proof. This follows from Corollaire 3.5 in [2].

Proposition 4.12.

\[c_{K_C}(K_C \cdot e) = c_{K_C}^x(K_C^x/K_C^{\{x, e, f\}}) + c_S(Z). \]

Proof. This is Theorem 1.2(a) of [22]. (See also Theorem 2.3(a) of [22].)

Corollary 4.13. O is spherical if and only if $K_C^x/K_C^{\{x, e, f\}}$ is spherical and a Borel subgroup of S has an open orbit on Z.

Proof. This is Corollary 1.4 of [22].

Lemma 4.14. Suppose \mathfrak{f}^c-height$(e) \leq 3$. Then $\mathfrak{f}^{\{x, e, f\}}_C$ is a symmetric subalgebra of \mathfrak{f}^c_C.

Proof. This is proved like Proposition 3.3 in [22].

Corollary 4.15. Let $\{x, e, f\}$ be a normal triple such that height$(e) = 2$. Then O is spherical for K_C.

Since all spherical nilpotent \(G_C\)-orbits for \(\mathfrak{g}_C\) of type \(A_n\) or \(C_n\) have height 2 (see [22]), we have the following result.

Corollary 4.16. Suppose that \(\mathfrak{g}_C\) is of type \(A_n\) or \(C_n\). If \(\Theta\) is a spherical nilpotent orbit for \(G_C\), and \(O\) is a \(K_C\) orbit in \(\Theta \cap \mathfrak{p}_C\), then \(O\) is spherical for \(K_C\).

Panyushev has shown that for a nilpotent \(e\) in \(\mathfrak{g}_C\), \(\text{height}(e) \geq 4\) implies that \(G_C \cdot e\) is not spherical. In addition he has shown that:

Proposition 4.17. If \(\mathfrak{p}_C\)-height\((e) > 3\), or \(\mathfrak{k}_C\)-height\((e) > 4\), then \(K_C \cdot e\) is not spherical.

Proof. This is equivalent to Theorem 5.6 in [21].

Remark 4.18. If \(O\) is spherical for \(K_C\), then \(\dim \mathcal{C}_O \leq \dim \mathcal{C}_B(K_C)\), where \(B(K_C)\) denotes any Borel subgroup of \(K_C\).

Remark 4.19. If \(e, e' \in \mathcal{N}[\mathfrak{p}_C]\) are conjugate under \(G_C^0\), then \(K_C \cdot e\) is spherical \(\iff\) \(K_C \cdot e'\) is spherical.

5. Parametrizing nilpotent \(K_C\)-orbits in \(\mathfrak{p}_C\)

Suppose that \(\mathfrak{g}\) is a simple classical real Lie algebra. Because of the Kostant-Sekiguchi correspondence, we will generally use the signed partition description of nilpotent conjugacy classes in \(\mathcal{N}[\mathfrak{g}]/G\) (see [3]) to describe the conjugacy classes in \(\mathcal{N}[\mathfrak{p}_C]/K_C\). The signed partition description is equivalent to the description in terms of “\(ab\)-diagrams” given by Ohta ([19]) and others.

Throughout this section and the next \(\{x, e, f\}\) is a KS-triple in \(\mathfrak{g}_C\). We assume that \(x \in i\mathfrak{t}\), where \(\mathfrak{t}\) is a fixed maximal torus of \(\mathfrak{k}\). \(\mathfrak{a}_C\) is the \(\mathfrak{sl}(2, \mathbb{C})\) algebra spanned by triple \(\{x, e, f\}\). For each \(\mathfrak{g}\), we will give a recipe for computing \(x\) from the signed partition description of \(K_C \cdot e\). The idea behind the various recipes is as follows. For each \(\mathfrak{g}\) there is a finite dimensional complex vector space \(V = V(\mathfrak{g})\) carrying the ‘natural’ or ‘basic’ representation of \(\mathfrak{g}\). (If \(\mathfrak{g}\) is not \(\mathfrak{sl}(s, \mathbb{R})\) or \(\mathfrak{su}^*(2n)\), \(V\) is the complex vector space carrying the corresponding \(\mathfrak{g}\)-invariant bilinear form.) \(V\) is a completely reducible \(\mathfrak{a}_C\)-module. An ‘\(ab\)’-diagram for the conjugacy class of the nilpotent \(e \in \mathfrak{p}_C\) describes a basis for \(V\) consisting of eigenvectors of the neutral element \(x\). The eigenvalues of \(x\) on this basis determine the values taken by a system of simple roots of \(\mathfrak{t}_C\) on the element \(x\). This gives the weighted Dynkin diagram of \(x\) which determines the orbit \(K_C \cdot e\). In each case, \(x\) is dominant with respect to the system of simple roots of \(\mathfrak{t}_C\). The recipes below are undoubtedly known to many experts but, to the author’s knowledge, have not been published before. Proofs will be given only for \(\mathfrak{g} = \mathfrak{su}(p, q)\) and \(\mathfrak{g} = \mathfrak{sp}(n, \mathbb{R})\).
5.1. \(sl(s, \mathbf{R}) \).

Let \(s = 2n \) or \(2n+1 \). \(\mathfrak{t} = so(s) \). Let \(E_{i, j} \) denote the \(s \times s \) matrix whose \((i, j)\) entry is \(1 \) and whose other entries are \(0 \). We define a torus \(\mathfrak{t} \) to be the real span of the matrices \(Z_i = E_{2i-1, 2i} - E_{2i, 2i-1}, i = 1, \ldots, n \). Then the linear functional \(e_j, j = 1, \ldots, n \) is defined by \(e_j(Z_i) = -\sqrt{-1} \delta_{ij} \) (Kronecker delta).

If \(s = 2n+1 \), we label the following set of simple roots for \(\mathfrak{t} \):

\[
e_1 - e_2, \ e_2 - e_3, \ldots, \ e_{n-1} - e_n, \ e_n.
\]

For \(s = 2n \), \(\mathfrak{t} = so(2n) \). We label the following set of simple roots for \(\mathfrak{t} \):

\[
e_1 - e_2, \ e_2 - e_3, \ldots, \ e_{n-2} - e_{n-1}, \ e_{n-1} - e_n, \ e_{n-1} + e_n.
\]

Proposition 5.1. (\(\mathfrak{g} = sl(2n+1, \mathbf{R}) \), or \(sl(n, \mathbf{R}) \)) Here is the algorithm for determining the weighted Dynkin diagram of \(x \). Let \(\Lambda = m_1 + m_2 + m_3 + \ldots + m_r \) be the partition of \(2n+1 \) or \(2n \) determined by \(e \), with \(m_1 \geq m_2 \geq \ldots \geq m_r \). Each occurrence of \(m_j \) corresponds to an \(m_j \times m_j \) Jordan block, that is an \(m_j \)-dimensional \(\mathfrak{a}_n \text{-module} \) with basis: \(v, e \cdot v, e^2 \cdot v, \ldots, e^{m_j-1} \cdot v \) for some \(v \in V \). The eigenvalues of \(x \) in this basis are the integers: \((m_j-1), \ldots, -(m_j-1)\).

Case (1) Assume that not all the \(m_j \) are even. Form the multiset \(A_\Lambda = A_\Lambda(K_\mathbf{C}, e) \) by “joining” all such sequences \((m_j-1), \ldots, -(m_j-1)\) for a given partition of \(2n+1 \) or \(2n \). Assume that the elements of \(A_\Lambda \) are arranged in descending order. Take the first \(n \) non-negative integers from \(A_\Lambda \). These are (respectively) the values \(e_1(x), \ldots, e_n(x) \), which give the weighted Dynkin diagram of \(x \).

Case (2) Assume that all the \(m_j \) are even. This is possible only for \(\mathfrak{g} = sl(2n, \mathbf{R}) \). \(\Lambda \) corresponds to two distinct \(K_\mathbf{C} \) nilpotent orbits that are conjugate under \(G_\mathbf{C}^\theta \). To record this fact we label one copy of the partition \(\Lambda \) with a roman numeral “I” and a second copy of \(\Lambda \) with roman numeral “II” (Theorem 9.3.3 in [3]) to distinguish the orbits. Applying the procedure in Case (1) we obtain a weighted Dynkin diagram in which \(e_n(x) = 1 \). We associate this weighted diagram to the orbit \(\Lambda_I \). We then use the values \(e_1(x), \ldots, e_{n-1}(x), e_n(x) = -1 \) to form a second weighted Dynkin diagram. This diagram is assigned to orbit \(\Lambda_{II} \).

Example 5.2.

(a) \(\Lambda = 4 + 3 + 2 \) for \(sl(9, \mathbf{R}) \). The sequences corresponding to the parts 4, 3, and 2 respectively \(\{3, 1, -1, -3\}; \{2, 0, -2\}; \text{and} \{1, -1\} \). Thus \(A_\Lambda = \{3, 2, 1, 0, -1, -2, -3\} \). So \(e_1(x) = 3, e_2(x) = 2, e_3(x) = 1 \) and \(e_4(x) = 0 \). Hence, we obtain the following labels on the simple roots of \(\mathfrak{t} = so(7) \):

\[
e_1 - e_2 = 1, \ e_2 - e_3 = 1, \ e_3 - e_4 = 1, \ e_4 = 0.
\]

(b) \(\Lambda = 4 + 2 + 2 + 2 \) for \(sl(10, \mathbf{R}) \). The sequences corresponding to the parts 4 and 2 are respectively \(\{3, 1, -1, -3\} \) and \(\{1, -1\} \). Thus, \(A_\Lambda = \{3, 1, 1, 1, 1, -1, -1, -1, -1, -3\} \).

So the orbit \(\Lambda_I \) has \(e_1(x) = 3, e_2(x) = 1, e_3(x) = 1, e_4(x) = 1, \) and \(e_5(x) = 1 \). The orbit \(\Lambda_{II} \) has \(e_1(x) = 3, e_2(x) = 1, e_3(x) = 1, e_4(x) = 1, \) and \(e_5(x) = -1 \).

5.2. \(su^*(2n) \). We use the notation of Helgason [10], chapter 10, section 2 for \(\mathfrak{g} \) and \(\mathfrak{t} \). That is, \(\mathfrak{g} \) is the space of \(2n \times 2n \) matrices of the form \[
\begin{pmatrix}
Z_1 & Z_2 \\
-\bar{Z}_2 & \bar{Z}_1
\end{pmatrix}
\]
Proposition 5.4. Let ψ be a signed partition of signature (p, q). See [3]. Let m_1, \ldots, m_d be the distinct part sizes of Λ arranged in descending order. Let r_j^+ (resp., r_j^-) be the number of times m_j occurs labelled with a ’+’ (resp., ’-’) sign.
That is, \(r^+ \) (resp., \(r^- \)) denotes the number of rows of length \(m_j \) in \(\Lambda \) which begin with ‘+’ (resp., ‘-’). We can write

\[
\Lambda = (+m_1)^{r^+} (-m_1)^{r^-} \ldots (+m_d)^{r^+} (-m_d)^{r^-}.
\]

We form two multisets: \(A_\Lambda^p \) and \(B_\Lambda^q \), by performing the following procedure on each row of \(\Lambda \). Suppose \(\lambda \) is a row of \(\Lambda \) of length \(m_j \). Label the first sign in \(\lambda \) with the integer \(m_j - 1 \), the next sign with the integer \(m_j - 3 \), etc. The last sign in \(\lambda \) is labelled with the integer \(-(m_j - 1) \). Each integer labelling a plus sign in \(\lambda \) is placed in \(A_\Lambda^p \) and each integer labelling a minus sign in \(\lambda \) is placed in \(B_\Lambda^q \). By arranging the elements of \(A_\Lambda^p \) in descending order, we obtain the integers \(e_1(x), \ldots, e_p(x) \). By arranging the elements of \(B_\Lambda^q \) in descending order, we obtain the integers \(e_{p+1}(x), \ldots, e_{p+q}(x) \).

Proof. (Sketch) Each row of type \((+m_j)\) in \(\Lambda \) corresponds to an \(\mathfrak{a}_c \)-module \(W^+ \) (of dimension \(m_j \)) with basis: \(v, e \cdot v, e^2 \cdot v, \ldots, e^{m_j - 1} \cdot v \) for some \(v \in V \) with \(e^{m_j - 1} \cdot v \in V^+ \). (And \(e^{m_j - 2} \cdot v \in V^- \), \(e^{m_j - 3} \cdot v \in V^- \), etc.) Each row of type \((-m_j)\) corresponds to a basis of an \(m_j \)-dimensional \(\mathfrak{a}_c \)-module \(W^- \) with basis: \(v, e \cdot v, e^2 \cdot v, \ldots, e^{m_j - 1} \cdot v \) for some \(v \in V \) with \(e^{m_j - 1} \cdot v \in V^- \). (And \(e^{m_j - 2} \cdot v \in V^+ \), \(e^{m_j - 3} \cdot v \in V^+ \), etc.) The bases corresponding to different rows of \(\Lambda \) may be taken to be orthogonal with respect to \(\langle \cdot, \cdot \rangle \). Since \(x \in \mathfrak{k} \) has real eigenvalues and \(\langle \cdot, \cdot \rangle \) is conjugate linear in the second variable, eigenvectors in \(V^+ \) (resp. \(V^- \)) for \(x \) with distinct eigenvalues are mutually orthogonal relative to the restriction of \(\langle \cdot, \cdot \rangle \) to \(V^+ \) (respectively \(V^- \)). Thus by suitable normalization of the vectors in the bases for each row of \(\Lambda \), we can create an orthonormal basis of each eigenspace in \(V^+ \) (using the form \(\langle \cdot, \cdot \rangle \) and an orthonormal basis of each eigenspace of \(V^- \) (using the form \(-\langle \cdot, \cdot \rangle \)). In this way we obtain orthonormal bases of \(V^+ \) and \(V^- \). The integers in \(A_\Lambda^p \) (resp., \(B_\Lambda^q \)) give the eigenvalues of \(x \) in an orthonormal basis of \(V^+ \) (resp., \(V^- \)). We can find an element of \(\mathfrak{k} \) which transforms these orthonormal bases into the standard orthonormal bases of \(V^+ \) and \(V^- \). \(k \cdot x \) is a diagonal matrix with respect to the new bases. The integers in \(A_\Lambda^p \) occupy the first \(p \) entries along the main diagonal and those in \(B_\Lambda^q \) occupy the last \(q \) positions. Using the Weyl group of \(\mathfrak{k} \) we can rearrange these entries so that \(k \cdot x \) becomes dominant with respect to the simple system in equation (3). This establishes the proposition.

Example 5.5.

(a) \(\mathfrak{g} = su(3, 1) \) and \(\Lambda = \left\{(\pm 1, -1) = (3)(1)\right\} \)

This is the principal nilpotent. The weighted Dynkin diagram is obtained by evaluating the neutral element at the compact simple roots \(e_1 - e_2, e_2 - e_3 \) and at \(-\psi = e_4 - e_1 \). The integers for the first row of \(\Lambda \) are 2, 0, -2. So 2 and -2 are labeled with +, and 0 is labeled with -. The 0 in the second row of \(\Lambda \) is labeled ‘+’. Therefore, \(A_\Lambda = \{2, -2\} \) and \(B_\Lambda = \{0, 0\} \). This gives \(e_1(x) = 2, e_2(x) = 0, e_3(x) = -2, \) and \(e_4(x) = 0 \). The weighted Dynkin diagram of \(x \) is given by \(e_1 - e_2 = 2, e_2 - e_3 = 2, \) and \(e_4 - e_1 = -2 \).

(b)(i) \(\mathfrak{g} = su(2, 2) \) and \(\Lambda = \left\{(\pm 1, -1, 1, -1) = (4)\right\} \)

This is one of the principal nilpotents for \(\mathfrak{g} \). \(A_\Lambda = \{3, -1\} \) and \(B_\Lambda = \{1, -3\} \). Therefore, \(e_1(x) = 3, e_2(x) = -1, e_3(x) = 1, \) and \(e_4(x) = -3 \). The weighted Dynkin diagram of \(x \) is given by \(e_1 - e_2 = 4, e_3 - e_4 = 4, \) and \(e_4 - e_1 = -6 \).
Thus \(g \) is the space of real matrices of the form
\[
\begin{pmatrix}
A & B \\
B^\top & D
\end{pmatrix}
\]
where \(A \) is \(p \times p \) skew symmetric, \(D \) is \(q \times q \) skew symmetric, \(B \) is \(p \times q \) and \(B^\top \) denotes the transpose of \(B \). \(\mathfrak{f} \) is the subspace of matrices of the form
\[
\begin{pmatrix}
A & 0 \\
0 & D
\end{pmatrix}
\]
where \(A \) is \(p \times p \) skew symmetric and \(D \) is \(q \times q \) skew symmetric. So \(\mathfrak{f} \) is isomorphic to \(\text{so}(p) \oplus \text{so}(q) \).

Let \(I_{p, q}, V^+ \) and \(V^- \) be defined in as subsection 5.. Let \(s = \left[\frac{p}{2} \right] \) and \(t = \left[\frac{q}{2} \right] \). Let \(E_{i, j} \) denote the \((p+q) \times (p+q)\) matrix defined in subsection 5.. Let \(t_1 \) be the real span of the matrices \(Y_i = E_{2i-1, 2i} + E_{2i-1, 2i}, i = 1, \ldots, s \), and \(t_2 \) be the real span of the matrices \(Y'_i = E_{p+2i-1, p+2i} - E_{p+2i-1, p+2i}, i = 1, \ldots, t \). Then \(t = t_1 \oplus t_2 \) is a maximal torus of \(\mathfrak{f} \). Define linear functionals \(e_j, j = 1, \ldots, s + t \), as follows.

\[
e_j(Y_i) = -\sqrt{-1} \delta_{ij}, \quad e_j(t_2) = 0, \quad \text{for } 1 \leq i \leq s, 1 \leq j \leq s;
\]
\[
e_j(Y'_i) = -\sqrt{-1} \delta_{i, j-s}, \quad e_j(t_1) = 0, \quad \text{for } 1 \leq i \leq t, s + 1 \leq j \leq s + t.
\]

We specify \(\pi \), the following system of simple of roots, for \(\mathfrak{f} \) depending on the parity of \(p \) and \(q \).

\[
\pi = \{e_1 - e_2, \ldots, e_{s-2} - e_{s-1}\} \cup \{e_{s+1} - e_{s+2}, \ldots, e_{s+t-2} - e_{s+t-1}\} \cup \pi'
\]

where \(\pi' \) equals

\[
\{e_{s+1} - e_s, e_{s-1} - e_s\} \cup \{e_{s+t-1} - e_{s+t}, e_{s+t-1} - e_{s+t}\} \quad (p, q \text{ even});
\]
\[
\{e_{s+1} - e_s, e_{s-1} + e_s\} \cup \{e_{s+t-1} - e_{s+t}, e_{s+t+1}\} \quad (p \text{ even}, q \text{ odd});
\]
\[
\{e_{s+1} - e_s, e_s\} \cup \{e_{s+t-1} - e_{s+t}, e_{s+t-1} + e_{s+t}\} \quad (p \text{ odd}, q \text{ even});
\]
\[
\{e_{s+1} - e_s, e_s\} \cup \{e_{s+t-1} - e_{s+t}, e_{s+t}\} \quad (p, q \text{ odd}).
\]

The nilpotent orbits of \(\text{so}(p, q) \), are parametrized by signed Young diagrams of signature \((p, q)\) such that rows of even length occur with even multiplicity and have their leftmost boxes labeled ‘+’. Some of these diagrams get roman numerals attached to them as follows. If \(\Lambda \) is such a diagram and all the rows have even length, then \(\Lambda \) corresponds to two \(K_{CC} \) orbits which are conjugate under \(G_{CC}^d \). \(\Lambda_I \) and \(\Lambda_{II} \) will denote the two \(K_{CC} \) orbits. (This situation is possible only if both \(p \) and \(q \) are even.) The distinction between \(\Lambda_I \) and \(\Lambda_{II} \) is given below in Proposition 5.6. If at least one row of \(\Lambda \) has odd length and all odd rows have an even number of boxes labeled ‘+’, or all odd rows have an even number of boxes labeled ‘-’, then again \(\Lambda_I \) and \(\Lambda_{II} \) denote the corresponding \(K_{CC} \) orbits, which are conjugate under \(G_{CC}^d \) (This situation is possible only if at least one of the integers \(p, q \) is even.) The distinction between \(\Lambda_I \) and \(\Lambda_{II} \) is given below in Proposition 5.6. Thus if \(p \) and \(q \) are both odd, no numerals are attached to any signed Young diagram.
Proposition 5.6. Let Λ be a signed partition of signature (p, q). Represent Λ using the notation of Proposition 5.4.

(A) Assume that Λ does not have a numeral. We define two multisets: A^s_Λ and B^t_Λ by following the rules below. By arranging the elements of A^s_Λ in descending order, we obtain the integers $e_1(x), \ldots, e_s(x)$. By arranging the elements of B^t_Λ in descending order, we obtain the integers $e_{s+1}(x), \ldots, e_{s+t}(x)$.

1. Suppose λ is an odd row (of length $m+1$) of Λ with integer labelling:

$$m, m-2, \ldots, 2, 0, -2, \ldots, -m$$

In this case, the first integer m is even. Set $|\lambda|$ equal to the number of integers in the string, $|\lambda|_+$ (resp. $|\lambda|_-$) is the number of integers labelled with a “+” (resp. “−”) sign.

case(a) Assume that m is labelled by a plus sign. Then, $|\lambda|_+ = \left[\frac{m+1}{2}\right] + 1$ and $|\lambda|_- = \left[\frac{m-1}{2}\right] + 1$.

Let c^+_m denote the number of rows identical to λ in Λ, i.e., the number of rows of length $|\lambda|$ that begin with a ‘+’ sign. Arrange the $c^+_m|\lambda|_+$ integers from these rows which are labelled with a ‘+’ sign in descending order, and assign the first $\left[\frac{c^+_m|\lambda|_+}{2}\right]$ of these integers to A^s_Λ. Likewise, arrange the $c^-_m|\lambda|_-$ integers from these rows that are labelled with a ‘−’ sign in descending order, and assign the first $\left[\frac{c^-_m|\lambda|_-}{2}\right]$ to B^t_Λ.

case(b) Assume that m is labelled by a minus sign. Then, $|\lambda|_+ = \left[\frac{m-1}{2}\right] + 1$ and $|\lambda|_- = \left[\frac{m+1}{2}\right] + 1$. Let c^-_m denote the number of rows identical to λ in Λ, i.e., the number of rows of length $|\lambda|$ which begin with a ‘−’ sign. Arrange the $c^-_m|\lambda|_+$ integers from these rows which are labelled with a ‘+’ sign in descending order, and assign the first $\left[\frac{c^-_m|\lambda|_+}{2}\right]$ of these integers to A^s_Λ. Likewise, arrange the $c^-_m|\lambda|_-$ integers from these rows that are labelled with a ‘−’ sign in descending order, and assign the first $\left[\frac{c^-_m|\lambda|_-}{2}\right]$ of them to B^t_Λ.

2. Now suppose that λ is an even row with integer labelling $m, m-2, \ldots, -m$. Then m is odd. Suppose that there are $2c$ copies of λ in Λ.

Place c copies of the string: $m, m-2, \ldots, 3, 1$ in A^s_Λ and place c copies of the same string in B^t_Λ. For example, if $c = 1$, then assign the string

$$m, m-2, m-4, \ldots, 3, 1.$$ to A^s_Λ, and the string

$$m, m-2, m-4, \ldots, 3, 1.$$ to B^t_Λ.

3. If after performing the procedures in (1) and (2) on all rows, A^s_Λ has less that s elements (counted with multiplicity) place enough extra zeroes in A^s_Λ so that A^s_Λ has cardinality s. And if B^t_Λ has less that t elements (counted with multiplicity) place enough extra zeroes in B^t_Λ so that B^t_Λ has cardinality t.

We must now take into account the assignment of numerals to some of the signed partitions.

(B) Assume that Λ is a signed partition with roman numeral “I” or “II”. Then there are two possibilities.
1. If all rows of \(\Lambda \) are even then both \(p \) and \(q \) are even. If we apply the rules for forming \(A^s_\Lambda \) and \(B^t_\Lambda \) in part (A) of the proposition, we find that \(e_s = 1 \) and \(e_{s+t} = 1 \). We stipulate that the numeral “I” assigned to \(\Lambda \) will correspond to the unique neutral element coming from the integers \(e_1, \ldots, e_{s+t} \). We stipulate that the numeral “II” assigned to \(\Lambda \) will correspond to the unique neutral element coming from the integers \(e_1, \ldots, e_{s-1}, -e_s, e_{s+1}, \ldots, e_{s+t-1}, -e_{s+t} \).

2. case (a) Suppose \(\Lambda \) has some odd rows, and all odd rows contain an even number of plus signs. Then \(p \) must be even. Apply the rules for forming \(A^s_\Lambda \) and \(B^t_\Lambda \) in part (A). These rules imply that \(e_s \in \{1, 2\} \) and \(e_{s+t} = 0 \). Label \(\Lambda \) with roman numeral “I”. Consider the neutral element \(x' \) defined by \(e_i(x') = e_i \) for \(i \neq s \) and \(e_s(x') = -e_s \). It will correspond to \(\Lambda_{II} \).

2. case (b) Suppose \(\Lambda \) has some odd rows, and all odd rows contain an even number of minus signs. Then \(q \) must be even. Apply the rules for forming \(A^s_\Lambda \) and \(B^t_\Lambda \) in part (A). These rules imply that \(e_s = 0 \) and \(e_{s+t} \in \{1, 2\} \). Label \(\Lambda \) with roman numeral “I”. Consider the neutral element \(x' \) defined by \(e'_i(x) = e_i \) for \(i \neq s+t \) and \(e'_{s+t}(x) = -e_{s+t} \). It will correspond to \(\Lambda_{II} \).

The proof of Proposition 5.6 uses ideas similar to those in the proof of Proposition 5.4 and will be omitted.

5.5. \(so^+(2n) \). We use the notation of Helgason [10]. \(g \) is the space of \(2n \times 2n \) complex matrices of the form \(\begin{pmatrix} Z_1 & Z_2 \\ -\bar{Z}_2 & \bar{Z}_1 \end{pmatrix} \) where \(Z_1 \) and \(Z_2 \) are complex \(n \times n \)-matrices, \(Z_1 \) is skew symmetric and \(Z_2 \) is Hermitian. (‘\(\ast \)’ denotes complex conjugation.) \(\mathfrak{t} \) is the subspace of matrices in \(g \) where \(Z_1 \) and \(Z_2 \) are real. (Thus \(Z_2 \) is symmetric.) The real linear map from \(\mathfrak{t} \) to the complex \(n \times n \) matrices given by \(\begin{pmatrix} Z_1 & Z_2 \\ -\bar{Z}_2 & \bar{Z}_1 \end{pmatrix} \mapsto Z_1 + \sqrt{-1}Z_2 \) is a Lie algebra isomorphism onto the space of \(n \times n \) skew Hermitian matrices. Thus \(\mathfrak{t} \) is isomorphic to \(u(n) \).

The subspace of matrices in \(\mathfrak{t} \) of the form \(\begin{pmatrix} 0 & B \\ -B & 0 \end{pmatrix} \), where \(B \) is diagonal, is a maximal torus \(t \) of \(\mathfrak{t} \). If \(B = diag(y_1, \ldots, y_n) \), the linear functional \(e_i \) \((1 \leq i \leq n)\) on \(\mathfrak{t} \) is defined so that its value on the \(\begin{pmatrix} 0 & B \\ -B & 0 \end{pmatrix} \) is \(\sqrt{-1}y_i \).

\(\mathfrak{t} \) can also be realized as follows. Let \((\cdot, \cdot) \) be the usual symmetric form on \(\mathbb{C}^{2n} \) and let

\[
J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}
\]

where \(I_n \) is the \(n \times n \) identity matrix. Set \(V^+ \) (resp., \(V^- \)) equal to the \(i \) (resp., \(-i \)) eigenspace of \(J \). Then, the bilinear form \(\langle v, w \rangle = (v, \bar{w}) \) is a Hermitian inner product on \(V^+ \), and \(\mathfrak{t} = u(V^+) \).

For \(g = so^+(2n) \), the nilpotent orbits are parametrized by signed Young diagrams of size \(n \) and any signature in which rows of odd length have their left most boxes labeled ‘+’.

The neutral element of a nilpotent conjugacy class will be described by giving its values at the following simple roots of \(\mathfrak{t} = u(n) \) and at the noncompact root \(-\psi \) of \(g \) (where \(\psi = e_1 + e_2 \)):

\[
e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n, \text{ and } -\psi = -e_1 - e_2.
\]
Proposition 5.7. Let Λ be a signed partition. Represent Λ using the notation of Proposition 5.4. We form a multiset A_Λ. Then, arrange the elements of A_Λ in descending order to obtain the integers: $e_1(x), \ldots, e_n(x)$.

To form A_Λ, we label the signs in each row of Λ with the appropriate integers and then proceed as follows.

Suppose λ is an even row of Λ. Then it must begin with a non-negative odd integer m. Suppose m labels a plus sign, then place two copies of the integer string

$$m, m-4, m-8, \ldots, -(m-2)$$

in A_Λ. If m labels a minus sign, then place two copies of the integer string

$$m-2, m-6, m-10, \ldots, -m$$

in A_Λ.

Now suppose that λ is an odd row and is labelled by the integers

$$m, m-2, \ldots, 0, -2, \ldots, -m$$

then place this entire string in A_Λ.

Proof. The argument is similar to that for Proposition 5.8 below and will be omitted.

5.6. $sp(n, \mathbf{R})$. Let J be the matrix in (4). $sp(n, \mathbf{C})$ is the space of $2n \times 2n$ complex matrices X such that $X^t J + JX = 0$. We identify $sp(n, \mathbf{R})$ with the isomorphic Lie algebra $su(n, n) \cap sp(n, \mathbf{C})$, where $su(n, n)$ is defined as in subsection 5.4. (See Chapter VI, section 10 of [12].) Using this identification, $\mathfrak{k} = sp(n, \mathbf{R}) \cap u(2n)$ which is isomorphic to $u(n)$. Let \mathfrak{t} be the space of matrices:

$$\{ B = diag(\sqrt{-1}y_1, \ldots, \sqrt{-1}y_n, -\sqrt{-1}y_1, \ldots, -\sqrt{-1}y_n) | y_i \in \mathbf{R} \}. \quad (5)$$

Define the linear functionals e_j on \mathfrak{t} by setting $e_j(B) = \sqrt{-1}y_j$ where B is the diagonal matrix above.

The neutral element of a nilpotent conjugacy class will be described by giving its values at the following simple roots of $\mathfrak{k} = u(n)$ and at $-\psi$ (where $\psi = 2e_1$):

$$e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n, \text{ and } -\psi = -2e_1.$$

In addition, let V^+ (resp. V^-) denote the $+i$ (resp., $-i$) eigenspace of the matrix J. If $\{ \cdot, \cdot \}$ is the skew symmetric form on \mathbf{C}^{2n} which defines $sp(n, \mathbf{C})$, then $\langle v, w \rangle = -\{ v, Jw \}$ is the standard positive definite skew Hermitian form on \mathbf{C}^{2n}. We will identify \mathfrak{k} with $u(V^+)$, defined relative to the restriction of $\langle \cdot, \cdot \rangle$ to V^+.

Nilpotent orbits are parametrized by signed Young diagrams of size $2n$ and any signature in which odd length rows appear with even multiplicity and begin with a ‘+’. Even length rows may begin with ‘+’ or ‘−’.
Proposition 5.8. Let Λ be a signed partition. Represent Λ using the notation of Proposition 5.4. We label the signs in each row of Λ with the appropriate integers. We form a multiset A_Λ as follows.

(1) Suppose λ is an even row of Λ. Then it must begin with a non-negative odd integer m. Suppose m labels a plus sign, then place the integer string
\[m, m-4, m-8, \ldots, -(m-2) \]
in A_Λ. If m labels a minus sign, then place the integer string
\[m-2, m-6, m-10, \ldots, -m \]
in A_Λ.

(2) Suppose that λ is an odd row with integer labelling
\[m, m-2, \ldots, 2, 0, -2, \ldots, -m \]
In this case, the first integer m is even, and labels a plus sign.
Suppose that there are exactly $2c$ copies of λ in Λ, then place c copies of the set \{m, m-2, \ldots, 2, 0, -2, \ldots, -m\} in A_Λ.

Arrange the elements of A_Λ in descending order to obtain the integers: $e_1(x), \ldots, e_n(x)$.

Proof. (Sketch) Suppose that λ is an even length row of type $(+m_j)$, then the theory of ‘ab’-diagrams shows that there is an irreducible m_j-dimensional a_c-submodule W_j^+ of V with basis: $v, e \cdot v, e^2 \cdot v, \ldots, e^{m_j-1} \cdot v$ for some $v \in V$ with $e^{m_j-1} \cdot v \in V^+$. We have $v \in V^-, e \cdot v \in V^+$, etc. In addition,
\[
(1) \{e^a \cdot v, e^b \cdot v\} = 0 \text{ if } a + b \neq m_j - 1.
\]
\[
(2) \{e^a \cdot v, e^{m_j-1-a} \cdot v\} = (-1)^a \alpha_{m_j},
\]
where α_{m_j} is a non-zero complex number depending on m_j alone.

If λ is an even length row of type $(-m_j)$ then there is an irreducible m_j-dimensional a_c-submodule W_j^- of V with basis: $v, e \cdot v, e^2 \cdot v, \ldots, e^{m_j-1} \cdot v$ for some $v \in V$ and $e^{m_j-1} \cdot v \in V^-$. We have $v \in V^+, e \cdot v \in V^-$, etc. In addition,
\[
(1) \{e^a \cdot v, e^b \cdot v\} = 0 \text{ if } a + b \neq m_j - 1.
\]
\[
(2) \{e^a \cdot v, e^{m_j-1-a} \cdot v\} = (-1)^a \beta_{m_j},
\]
where β_{m_j} is a non-zero complex number depending on m_j alone.

Since $\{v, \bar{v}\} \neq 0$ and m_j is even, W_j^+ and W_j^- are stable under complex conjugation. See the proof of Proposition 2 in [18].

Clearly $e^a \cdot \bar{v}$ is a multiple of $e^{m_j-1-a} \cdot v$. Therefore, $\langle e^a \cdot v, e^b \cdot v \rangle = 0$ unless $a = b$. Thus, each $(+m_j)$, for m_j even, contributes mutually orthogonal (relative to $\langle \cdot, \cdot \rangle$) eigenvectors
\[e^{m_j-3} \cdot v, e^{m_j-7} \cdot v, \ldots, v \]
for x with eigenvalues $m_j - 3, m_j - 7, \ldots, -(m_j - 1)$ to an eigenbasis of V^+. Similarly each $(-m_j)$, for m_j even, contributes mutually orthogonal eigenvectors
\[e^{m_j-1} \cdot v, e^{m_j-5} \cdot v, \ldots, e \cdot v \]
for \(x \) with eigenvalues \(m_j - 1, m_j - 5, \ldots, -(m_j - 3) \) to an eigenbasis of \(V^+ \).

Suppose that \(\lambda \) is an odd length row of type (+\(m_j \)) in \(\Lambda \). Such rows occur in pairs. The theory of ‘ab’-diagrams shows that for each such pair, \(V \) contains a direct sum of two irreducible \(m_j \)-dimensional \(\mathfrak{sp} \)-modules \(W'_j \) and \(W''_j \) with respective bases:

\[
\begin{align*}
v, & \quad e \cdot v, \quad e^2 \cdot v, \ldots, \quad e^{m_j - 1} \cdot v \\
w, & \quad e \cdot w, \quad e^2 \cdot w, \ldots, \quad e^{m_j - 1} \cdot w
\end{align*}
\]

where \(v \in V^+, e \cdot v \in V^-, e^2 \cdot v \in V^+, \) etc. and \(w \in V^-, e \cdot w \in V^+, e^2 \cdot w \in V^-, \) etc. Moreover,

1. \(\{e^a \cdot v, \quad e^b \cdot v\} = 0 = \{e^a \cdot w, \quad e^b \cdot w\} \) for all \(a \) and \(b \).
2. \(\{e^a \cdot v, \quad e^b \cdot w\} = 0 \) if \(a + b \neq m_j - 1 \).
3. \(\{e^a \cdot v, \quad e^{m_j - 1 - a} \cdot w\} = (-1)^a \delta_{m_j}. \)

\(\delta_{m_j} \) is a nonzero complex number depending on \(m_j \) alone. In this case, \(W''_j \) is the complex conjugate of \(W'_j \). Each pair of odd rows (+\(m_j \)) contributes mutually orthogonal eigenvectors (relative to \(\langle \cdot, \cdot \rangle \)) for \(x \):

\[
\begin{align*}
v, & \quad e \cdot w, \quad e^2 \cdot v, \ldots, \quad e^{m_j - 2} \cdot w, \quad e^{m_j - 1} \cdot v
\end{align*}
\]

with eigenvalues \(- (m_j - 1), -(m_j - 3), \ldots, (m_j - 1)\) to an eigenbasis of \(V^+ \).

The eigenvectors obtained from distinct even rows and distinct pairs of odd rows of \(\Lambda \) are mutually orthogonal with respect to \(\langle \cdot, \cdot \rangle \). It is clear that (after normalizing the vectors) steps (1) and (2) of Proposition 5.8 will yield the eigenvalues of \(x \) on an orthonormal eigenbasis of \(V^+ \). This determines \(x \) as an element of \(u(V^+) \). The remaining details are left to the reader.

\section{5.7. sp(\(p, q \)).} We adopt the notation of Helgason [10] (Chapter X, section 2) for \(sp(p, q) \) inside \(sp(p + q, C) \). \(\langle \cdot, \cdot \rangle \) is the skew symmetric form on \(C^{2p+2q} \) which defines \(sp(p+q, C) \). Let \(K_{p,q} \) be the block diagonal matrix \(\text{diag}(-I_p, I_q, -I_p, I_q) \) where \(I_p \) (resp., \(I_q \)) is the \(p \times p \) (resp., \(q \times q \)) identity matrix. \(V^+ \) and \(V^- \) denote the \(+1\) and \(-1\) eigenspaces of \(K_{p,q} \). \(sp(p, q) \) is the space of \(2(p+q) \times 2(p+q) \) complex matrices \(X \) such that \(X^T K_{p,q} + K_{p,q} X = 0 \). \(\mathfrak{t} = sp(p, q) \cap u(2p + 2q) \) which is isomorphic to \(sp(p) \oplus sp(q) \). (See Chapter X, section 2, Lemma 2.1 in [10].) Let \(\mathfrak{t} \) be the space of matrices defined as in (5) with \(n = p + q \). Define the linear functionals \(e_j, \quad j = 1, \ldots, p+q \) on \(\mathfrak{t} \) as in subsection 5.

In this case, we choose the following simple system for \(\mathfrak{t} \):

\[
\{e_1 - e_2, \ldots, e_{p-1} - e_p, 2e_p\} \cup \{e_{p+1} - e_{p+2}, \ldots, e_{p+q-1} - e_{p+q}, 2e_{p+q}\}.
\]

Nilpotents in \(sp(p, q) \) are parametrized by signed Young tableaus of signature \((p, q) \) in which even rows begin with \('+\').

\section{Proposition 5.9.} Let \(\Lambda \) be a signed partition of signature \((p, q) \). Represent \(\Lambda \) using the notation of Proposition 5.4. We form two multisets of nonnegative integers: \(A^p_{\Lambda} \) and \(B^q_{\Lambda} \). By arranging the elements of \(A^p_{\Lambda} \) in descending order,
we obtain the integers $e_1(x), \ldots, e_p(x)$. By arranging the elements of B^q_Λ in descending order, we obtain the integers $e_{p+1}(x), \ldots, e_{p+q}(x)$.

To obtain A^p_Λ and B^q_Λ, we first label the signs in each row of Λ with the appropriate integers.

Suppose λ is an even row of Λ. Then it must begin with a non-negative odd integer m. In this case m labels a plus sign. Place one copy of the integer string

$$m, m - 2, m - 4, \ldots, 1$$

in A^p_Λ and one copy of the same string in B^q_Λ.

Next suppose that λ is an odd row. We have the integer string:

$$m, m - 2, \ldots, 2, 0, -2, \ldots, -m$$

In this case, the first integer m is even, and the row contains $m + 1$ integers.

If m is labelled with a plus sign there are two subcases:

(a) $m \equiv 0 \pmod{4}$, so $m = 4k$. Then the integer string

$$m, m, m - 4, m - 4, \ldots, 4, 4, 0$$

which contains $2k + 1$ integers is assigned to A^p_Λ and the integer string

$$m - 2, m - 2, m - 6, m - 6, \ldots, 2, 2$$

which contains $2k$ integers is assigned to B^q_Λ. (Thus, if $k = 0$, no integers are assigned to B^q_Λ.)

(b) $m \equiv 2 \pmod{4}$, so $m = 4k + 2$. Then the integer string

$$m, m, m - 4, m - 4, \ldots, 2, 2$$

which contains $2k + 2$ integers is assigned to A^p_Λ and the integer string

$$m - 2, m - 2, m - 6, m - 6, \ldots, 4, 4, 0$$

which contains $2k + 1$ integers is assigned to B^q_Λ.

If m is labelled with a minus sign there are two subcases:

(a) $m \equiv 0 \pmod{4}$, so $m = 4k$. Then the integer string

$$m - 2, m - 2, m - 6, m - 6, \ldots, 2, 2$$

which contains $2k$ integers is assigned to A^p_Λ and the integer string

$$m, m, m - 4, m - 4, \ldots, 4, 4, 0$$

which contains $2k + 1$ integers is assigned to B^q_Λ.

(b) $m \equiv 2 \pmod{4}$, so $m = 4k + 2$. Then the integer string

$$m - 2, m - 2, m - 6, m - 6, \ldots, 4, 4, 0$$

which contains $2k + 1$ integers is assigned to A^p_Λ and the integer string

$$m, m, m - 4, m - 4, \ldots, 2, 2$$

which contains $2k + 2$ integers is assigned to B^q_Λ.

Proof. One uses V^+ and V^- in a manner similar to that in the proof of Proposition 5.4. The details are left to the reader. \[\square\]
6. The spherical nilpotent K_C-orbits in \mathfrak{p}_C for \mathfrak{g} classical

We will prove the following result in section 8.

Theorem 6.1. If \mathfrak{g} is a simple real classical Lie algebra then the spherical nilpotent K_C-orbits in \mathfrak{p}_C are precisely those corresponding to signed partitions Λ in the following list. The notation for Λ is as in Proposition 5.4. (m, k, k_1, k_2, r, r_1, r_2 are non negative integers.)

- $\mathfrak{sl}(s, \mathbb{R})$: No part size of Λ exceeds 2.
- $\mathfrak{su}^*(2n)$: No part size of Λ exceeds 2.
- $\mathfrak{sp}(p, q)$: Λ is one the following:
 a) $(+3)(+2)^k(-2)^{k_2}(-1)^{r_1}(-1)^{r_2}$; $(+3)(+2)^k(-2)^{k_2}(-1)^{r_1}(-1)^{r_2}$
 b) $(+3)^2(+1)^r; (-3)^2(-1)^r$.
 c) $(+2)^{k_1}(-2)^{k_2}(-1)^{r_1}(-1)^{r_2}$.

Remark 6.2. The argument is case by case. Each algebra is treated in one of the subsections of section 8.

The following proposition greatly reduces the task of classifying the spherical nilpotent K_C-orbits in \mathfrak{p}_C for \mathfrak{g} real, classical and simple.

Proposition 6.3. Assume that \mathfrak{g} is real, classical and simple, and we retain the notation of section 5. If $K_C \cdot e$ is a spherical nilpotent orbit, and Λ is the corresponding signed partition, then $|e_i(x)| \leq 2$ for all i. That is, no part size (i.e., row length) of Λ exceeds 3.

Proof. The proof is case by case and depends on Proposition 4.17 and precise information about the t_C-weights of the representation of t_C on \mathfrak{p}_C to restrict the values of the $e_i(x)$. We give details only for $\mathfrak{g} = \mathfrak{sl}(s, \mathbb{R})$, $\mathfrak{su}^*(2n)$, $\mathfrak{su}(p, q)$, and $\mathfrak{sp}(n, \mathbb{R})$.

1. $\mathfrak{g} = \mathfrak{sl}(s, \mathbb{R})$. The weights of t_C in \mathfrak{p}_C are of the form $\pm(e_i \pm e_j)$ (and possibly $\pm e_i$) and $\pm 2e_i$. By Proposition 5.1 we have $e_i(x) \geq 0$ for all i. Thus $0 \leq 2e_i(x) \leq 3$ by Proposition 4.17. Hence by integrality each $e_i(x) \leq 1$. By Proposition 5.1 this means that no part size exceeds 2.

2. $\mathfrak{g} = \mathfrak{su}^*(2n)$. \mathfrak{p}_C is the representation of $t = \mathfrak{sp}(n)$ on the irreducible submodule of $\bigwedge^2 \mathbb{C}^{2n}$ of dimension $2n^2 - n - 1$. The non zero t_C weights on \mathfrak{p}_C are of the form $\pm(e_i \pm e_j)$, $1 \leq i < j \leq n$. The non zero t_C weights on \mathfrak{t}_C are of the form $\pm(e_i \pm e_j)$, $1 \leq i < j \leq n$, and $\pm 2e_i$, $1 \leq i \leq n$.
By Proposition 5.3 we have \(e_i(x) \geq 0 \) for all \(i \). By Proposition 4.17, the \(k \)-height cannot exceed 4, therefore \(0 \leq e_i(x) \leq 2 \) for all \(i \). Since the \(p \)-height cannot exceed 3, only one \(e_i(x) \) may equal 2 and the other \(e_i(x) \) must be 0 or 1.

3. \(\mathfrak{g} = su(p, q) \). The weights of \(\mathfrak{t} \) in \(\mathfrak{p} \) are of the form \(\pm(e_i - e_j) \), \(1 \leq i \leq p, p + 1 \leq j \leq p + q \). If for some \(i, e_i(x) > 2 \), then some row of length at least 4 must occur in \(\Lambda \). If a row of length 4 occurs, then \(\Lambda \) contains either \(x \leq 3 \). The fundamental representation of \(k \) cannot exceed 3, only one \(x \leq 3 \). The reductive components of \(k \), i.e., whether \(\mathfrak{g} \) orbit \(O \) of an orbit we have shown to be spherical; or (3!) the closure of \(O \) whether \(k \) determine how \(\mathfrak{g}^{(x, e, f)} \) is embedded in \(\mathfrak{g} \). This information is summarized below for each classical simple real algebra other than \(sl(s, \mathbb{R}) \) and \(sp(n, \mathbb{R}) \). We will only sketch the proofs in case \(\mathfrak{g} \) is \(su(p, q) \). We use the following conventions in stating the results.

First, if \(q \) is a reductive Lie algebra, then the containment \(q \subset 2q \) (resp., \(q \subset 3q \)) always refers to the diagonal embedding \(X \hookrightarrow X \oplus X \) (resp., \(X \hookrightarrow X \oplus X \oplus X \)). More generally if we have reductive Lie algebras \(q_0, q_1, \) and \(q_2 \) with \(q_0 \subset q_i \) (\(i = 1, 2 \)). Then, we say that \(q_0 \) is diagonally embedded in the direct sum \(q_1 \oplus q_2 \) if we have a Lie algebra homorphism \(q_0 \rightarrow q_1 \oplus q_2 \) given by \(X \mapsto X \oplus X \).

Suppose \(\mathfrak{g} \) is a classical simple real algebra other than \(sl(s, \mathbb{R}) \) or \(su^*(2n) \).
Let $V = V(\mathfrak{g})$, be the complex vector space associated to \mathfrak{g} in the corresponding recipe in section 5. In that section subspaces V^+ and V^- were defined for each \mathfrak{g}. The notation \mathfrak{q}^+ (resp., \mathfrak{q}^-) applied to a subalgebra of \mathfrak{g} indicates that \mathfrak{q} consists of linear transformations which preserve the subspace V^+ (resp., V^-) associated to the form on V. (See section 5.) In general, if W is a complex (resp. real) vector space with a positive definite Hermitian (resp. quadratic) form, then $u(W)$ (resp. $o(W)$) denotes the Lie algebra of the unitary (resp. orthogonal) group preserving the form.

Finally we need

Definition 7.1. Let \mathfrak{g} be a classical simple real algebra other than $\mathfrak{sl}(s, \mathbb{R})$ or $\mathfrak{su}^*(2n)$. We set $V\{j\}$, $(j = 1, 2, 3)$ equal to the sum of the irreducible j-dimensional \mathfrak{a}_c-submodules of V, $V_+\{j\}$ (resp., $V_-\{j\}$) equal to the sum of the irreducible j-dimensional \mathfrak{a}_c-submodules of V whose highest weight vector (i.e., the kernel of the element e) belongs to V^+ (resp. V^-). If $a = 0, \pm 1, \pm 2, \pm 3$, then $V\{j, a\}$ denotes the a-eigenspace of x in $V\{j\}$. $V_+\{j, a\}$ and $V_-\{j, a\}$ have similar meanings.

7.2. $\mathfrak{su}^*(2n)$. Let $\Lambda = 3^p 2^q 1^r$. Then

$$\mathfrak{k}^x = u(2p) \oplus u(2q) \oplus sp(p + r); \mathfrak{f}^{\{x, e, f\}} = sp(p) \oplus sp(q) \oplus sp(r) \quad (6)$$

with

$$sp(p) \oplus sp(r) \subset u(2p) \oplus sp(p + r); sp(q) \subset u(2q). \quad (7)$$

$sp(p)$ is embedded diagonally in $u(2p) \oplus sp(p + r)$, and $sp(r)$ is embedded naturally in $sp(p + r)$.

Lemma 7.2. The embedding $sp(p) \oplus sp(r) \subset u(2p) \oplus sp(p + r)$ in equation (7) is spherical if and only if $p \leq 1$.

Proof. The proof is left to the reader. ■

7.3. $\mathfrak{g} = \mathfrak{su}(p, q)$.

Let $\Lambda = (+3)^{m_1}(-3)^{m_2}(+2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}$. Set $\mathfrak{k} = u(p) \oplus u(q)$. It is more convenient to describe the containment $\tilde{\mathfrak{f}}^{\{x, e, f\}} \subset \mathfrak{k}^x$. This is sufficient since \mathfrak{k}^x (resp., $\tilde{\mathfrak{f}}^{\{x, e, f\}}$) consists of the trace zero matrices in \mathfrak{k}^x (resp., $\tilde{\mathfrak{f}}^{\{x, e, f\}}$).

We have

$$\tilde{\mathfrak{k}}^x = 2u(m_1) + u(n_1) \oplus u(n_2) \oplus u(r_1 + m_2) \oplus 2u(m_2) \oplus u(n_1) \oplus u(n_2) \oplus u(r_2 + m_1) \quad (8)$$

$$\tilde{\mathfrak{f}}^{\{x, e, f\}} = u(m_1) \oplus u(m_2) \oplus u(n_1) \oplus u(n_2) \oplus u(r_1) \oplus u(r_2)$$

with

\[
\begin{align*}
 u(n_1) &= D(u(n_1)^+ \oplus u(n_1)^-); \quad u(n_2) = D(u(n_2)^+ \oplus u(n_2)^-); \\
 u(m_1) \oplus u(r_2) &\subset (2u(m_1)^+ \oplus u(m_1 + r_2)^-); \\
 u(m_2) \oplus u(r_1) &\subset (2u(m_2)^- \oplus u(m_2 + r_1)^+).
\end{align*}
\]
\(D\) denotes the diagonal embedding. Note that \(u(m_1)\) embeds diagonally in \(2u(m_1)^+\) and sits naturally inside \(u(m_1 + r_2)^-\), while \(u(r_2)\) sits naturally inside \(u(m_1 + r_2)^-\). \(u(m_2)\) embeds diagonally in \(2u(m_2)^-\) and sits naturally inside \(u(m_2 + r_1)^-\), while \(u(r_1)\) sits naturally inside \(u(m_2 + r_1)^-\). If \(r_1 = 0\), then \(u(m_1)\) embeds diagonally in 3 copies of \(u(m_1)\). If \(r_2 = 0\), then \(u(m_2)\) embeds diagonally in 3 copies of \(u(m_2)\).

We will demonstrate the embeddings \(u(n_1) = D(u(n_1)^+ \oplus u(n_1)^-)\) and \(u(m_1) \oplus u(r_2) \subset \oplus (2u(m_1)^+ \oplus u(m_1 + r_2)^-)\) in (9).

Proof. The form \(\langle \cdot, \cdot \rangle_{p, q}\) is non-degenerate and either positive definite or negative definite on each of the complex subspaces \(V_x \{i, j\}\). If \(\zeta \in \mathbb{T}^e\), \(\zeta\) preserves the eigenspaces of \(x\) and the restriction of \(\zeta\) to each of these subspaces preserves the restriction of the form \(\langle \cdot, \cdot \rangle_{p, q}\). Thus, \(\zeta\) corresponds to an element of the direct sum of the Lie algebras in lines (10) and (11) below:

\[
\begin{align*}
&u(V_x \{3, 2\}), u(V_x \{3, -2\}), u(V_x \{3, 0\} + V_x \{1, 0\}), u(V_x \{2, 1\}), u(V_x \{2, -1\}) \\
&u(V_- \{3, 2\}), u(V_- \{3, -2\}), u(V_- \{3, 0\} + V_- \{1, 0\}), u(V_- \{2, 1\}), u(V_- \{2, -1\}).
\end{align*}
\]

(10)

(11)

Line (10) gives \(2u(m_1)^+ \oplus u(m_2 + r_1)^+ \oplus u(n_1)^+ \oplus u(n_1)^-\) and line (11) gives \(2u(m_2)^- \oplus u(m_1 + r_2)^- \oplus u(n_2)^- \oplus u(n_1)^+\). So we have the first half of (8).

Suppose that \(\zeta \in \mathbb{T}^{(x, e, f)}\). Clearly, the maps \(e : V_x \{3, 0\} \to V_x \{3, 2\}, e^2 : V_x \{3, -2\} \to V_x \{3, 2\},\) and \(e : V_\{2, -1\} \to V_\{2, 1\}\) are isomorphisms. By redefining the restriction of the form \(\langle \cdot, \cdot \rangle_{p, q}\) on each of the spaces \(V_x \{3, 2\},\) and \(V_\{2, 1\}\), we can assume that the maps defined by \(e\) and \(e^2\) are isometries. \(\zeta\) preserves the following complex subspaces: the \(m_1\) (resp., \(m_2\)) dimensional subspace \(W_1\) (resp., \(W_1')\) spanned by the vectors \(v + (e^2 \cdot v)\) and \(v \in V_x \{3, -2\}\) (resp., \(v \in V_- \{3, -2\}\)); and the \(n_1\) (resp., \(n_2\)) dimensional subspace \(W_2\) (resp., \(W_2')\) spanned by \(w + e \cdot w\), \(w \in V_x \{2, -1\}\) (resp., \(w \in V_- \{2, -1\}\)). Thus, \(u(W_1)\) maps into the diagonal of \(u(V_x \{3, 2\}) \oplus u(V_x \{3, -2\})\). \(u(W_2)\) maps into the diagonal of \(u(V_x \{2, 1\}) \oplus u(V_x \{2, -1\})\). But in addition there is a map from \(u(W_1)\) into \(u(V_- \{3, 0\} \oplus V_\{1, 0\})\) given as follows: \(T\) in \(u(W_1)\) is mapped to \(e \circ T \circ e^{-1}\) in \(u(V_- \{3, 0\})\). Similar arguments apply to \(W_1'\) and \(W_2'\).

Lemma 7.3. Let \(u(p) \oplus u(r) \subset 2u(p) \oplus u(r + p)\) be the embedding in the second line of (9). (a) If \(p = 1\) the embedding is spherical for all \(r\). (b) If \(p = 2\) the embedding is spherical if and only if \(r = 0\). (c) If \(p \geq 3\), the embedding is not spherical.

We leave the proof to the reader.

Corollary 7.4. If \(m_1 \geq 3\) or \(m_2 \geq 3\), then \(\mathbb{T}^{(x, e, f)} \subset \mathbb{T}^e\) in equation (8) is not a spherical embedding.

Proof. Let \(\Lambda = (+3)^{m_1} (-3)^{m_2} (+2)^n (+1)^{r_1} (-1)^{r_2}\).

\[
\mathbb{T}^e = u(m_1)^+ \oplus u(m_2)^- \oplus \mathbb{S}(m_2 + r_1)^+ \oplus u(m_2)^- \oplus u(m_1 + r_2)^- \oplus \mathbb{S}(m_1 + r_2)^-
\]

(12)

\[
\mathbb{T}^{(x, e, f)} = \mathbb{S}(m_1) \oplus \mathbb{S}(m_2) \oplus u(\frac{n}{2}) \oplus \mathbb{S}(r_1) \oplus \mathbb{S}(r_2)
\]
where
\[
\begin{align*}
\kappa(n) &= D(\kappa(n)^+ \oplus \kappa(n)^-); \\
so(m_1) \oplus so(r_2) &\subset u(m_1)^+ \oplus so(m_1 + r_2)^-; \\
so(m_2) \oplus so(r_1) &\subset u(m_2^-) \oplus so(m_2 + r_1)^+.
\end{align*}
\]

so(m_1) (resp., so(m_2)) is embedded diagonally in u(m_1)^+ \oplus so(m_1 + r_2)^- (resp., u(m_2)^- \oplus so(m_2 + r_1)^+).

Lemma 7.5. (a) If \(r \geq 0 \) and \(m = 2 \) or (b) \(m \geq 3 \) the embedding
\[so(m) \oplus so(r) \subset u(m) \oplus so(m + r) \]
in (13) is not spherical.

We leave the proof to the reader.

Corollary 7.6. If \(m_1 \geq 3 \) or \(m_2 \geq 3 \), then \(t^{\{x, e, f\}} \subset t^x \) in equation (12) is not a spherical embedding.

7.5. \(so^*(2n) \). Let \(\Lambda = (+3)^p (+2)^q (-2)^r (+1)^r \). Then
\[
\begin{align*}
t^x &= 2u(p) \oplus u(p + r) \ominus u(2q_1) \oplus u(2q_2) \\
t^{\{x, e, f\}} &= u(p) \oplus sp(q_1) \oplus sp(q_2) \oplus u(r).
\end{align*}
\]
with
\[u(p) \oplus u(r) \subset 2u(p) \oplus u(p + r); \ sp(q_i) \subset u(2q_i), \ i = 1, 2 \]
where \(u(p) \oplus u(r) \) is embedded in \(2u(p) \oplus u(p + r) \) as in equation (9).

Lemma 7.7. The containment \(t^{\{x, e, f\}} \subset t^x \) in equation (14) is spherical \[\iff \]
\[p \leq 2. \]
Proof. This follows from Lemma 7.3.

7.6. \(sp(p, q) \).

Let \(\Lambda = (+3)^m (-3)^m (-2)^n (+1)^r (-1)^r \). Then
\[
\begin{align*}
t^x &= u(2m_1)^+ \oplus u(n)^+ \oplus sp(m_2 + r_1)^+ \oplus u(2m_2)^- \oplus u(n)^- \oplus sp(m_1 + r_2)^- \\
t^{\{x, e, f\}} &= sp(m_1) \oplus sp(m_2) \oplus u(n) \oplus sp(r_1) \oplus sp(r_2)
\end{align*}
\]
where
\[
\begin{align*}
u(n) &= D(\kappa(n)^+ \oplus \kappa(n)^-); \\
sp(m_1) \oplus sp(r_2) &\subset u(2m_1)^+ \oplus sp(m_1 + r_2)^-; \\
sp(m_2) \oplus sp(r_1) &\subset u(2m_2)^- \oplus sp(m_2 + r_1)^+.
\end{align*}
\]
sp(m_1) (resp., sp(m_2)) is embedded diagonally in u(2m_1)^+ \oplus sp(m_1 + r_2)^- (resp., u(2m_2)^- \oplus sp(m_2 + r_1)^+).

Lemma 7.8. If \(m_1 \geq 2 \) or \(m_2 \geq 2 \), then \(t^{\{x, e, f\}} \subset t^x \) in equation (15) is not a spherical embedding.

Proof. This follows from Lemma 7.2.
8. Proof of Theorem 6.1

8.1. $sl(s, \mathbb{R})$. By the proof of Proposition 6.3 for $sl(s, \mathbb{R})$, if $K_c \cdot e$ is spherical then no part size of the corresponding partition Λ exceeds 3. Indeed we have the following.

Proposition 8.1. $(g = sl(s, \mathbb{R}))$. $K_c \cdot e$ is spherical if and only if in the corresponding partition Λ no part size exceeds 2.

Proof. The proof of Proposition 6.3 implies that no part size in Λ can exceed 2. Corollary 4.16 implies that if no part size exceeds 2, then $K_c \cdot e$ is spherical.

8.2. $su^*(2n)$. By the proof of the $su^*(2n)$ case of Proposition 6.3 the signed partition for a spherical nilpotent K_c-orbit for $su^*(2n)$ has at most one part of size 3. We now show that in fact no part size can exceed 2.

Lemma 8.2. Suppose $g = su^*(2n)$, and $\Lambda = 3^{p}2^{q}1^{r}$ is the partition of n corresponding to the orbit $K_c \cdot e$. If $p > 0$ then $K_c \cdot e$ is not spherical.

Proof. From the discussion preceding this lemma, if Λ is spherical then $p = 0$ or 1. Suppose $p = 1$. By Proposition 5.3, we have that:

$$e_1(x) = 2 = e_2(x); \quad e_3(x) = 1 = \ldots = e_{2q+2}(x); \quad e_{2q+3}(x) = 0 = \ldots = e_n(x).$$

Since $e_1 + e_2$ is a weight of t_c on p_c, p_c-height$(e) > 3$. So by Proposition 4.17, $K_c \cdot e$ is not spherical.

It follows from the previous lemma and Corollary 4.15, that

Proposition 8.3. If $g = su^*(2n)$, then the spherical K_c-nilpotent orbits are exactly those corresponding to partitions of n with part sizes not exceeding 2.

8.3. $su(p, q)$. Proposition 6.3 implies the following.

Proposition 8.4. If $K_c \cdot e$ is a spherical nilpotent orbit of $su(p, q)$ then the corresponding signed partition has the form

$$\Lambda = (+3)^{m_1}(-3)^{m_2}(+2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}, \quad (16)$$

where m_i, n_i and r_i $(i = 1, 2)$ are non negative integers.

Proposition 8.5. If $g = su(p, q)$, $K_c \cdot e$ is a spherical nilpotent orbit in p_c and Λ is the corresponding signed partition then $K_c \cdot e$ is spherical if and only if Λ has one of the following forms (where n_1, n_2, r_1, r_2, r are non-negative integers):

(a) $(+3)^{(2)}(+2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}; \quad (-3)^{(+2)}(+2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}$

(b) $(+3)^{2}(+1)^{r}; \quad (-3)^{2}(-1)^{r}$

(c) $(+2)^{m_1}(-2)^{m_2}(+1)^{r_1}(-1)^{r_2}.$

We prove the proposition in a series of lemmas.
Lemma 8.6. \((\mathfrak{g} = su(p, q))\) Let the \(\Lambda\) be the signed partition in equation (16) corresponding to the nilpotent orbit \(K_C \cdot e\). If \(m_1 \geq 1\) and \(m_2 \geq 1\). Then \(K_C \cdot e\) is not spherical.

Proof. \(\Lambda\) has \(p_C\)-height exceeding 3 so the result follows from Proposition 4.17.

Lemma 8.7. \((\mathfrak{g} = su(p, q))\) Let the \(\Lambda\) be the signed partition in equation (16) corresponding to the nilpotent orbit \(K_C \cdot e\). If \(m_1 \geq 3\) or \(m_2 \geq 3\), then \(K_C \cdot e\) is not spherical.

Proof. This follows from Lemma 7.4 and Corollary 4.13.

Lemma 8.8. \((\mathfrak{g} = su(p, q))\) Let the signed partition corresponding to the nilpotent orbit \(K_C \cdot e\) be \(\Lambda = (+2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}\). Then \(K_C \cdot e\) is spherical.

Proof. This follows from Corollary 4.15.

Lemma 8.9. \((\mathfrak{g} = su(p, q))\) Let the \(\Lambda\) be the signed partition in equation (16) corresponding to the nilpotent orbit \(K_C \cdot e\), where \(m_1\) or \(m_2\) is positive. Then \(\Lambda\) is spherical if and only if one of the following is true:

(a) \(m_1 = 1, m_2 = 0\).

(a)’ \(m_2 = 1, m_1 = 0\).

(b) \(m_1 = 2, m_2 = n_1 = n_2 = r_2 = 0\).

(b)’ \(m_2 = 2, m_1 = n_1 = n_2 = r_1 = 0\).

Proof. By Lemma 8.6 and Lemma 8.7, \(\Lambda\) spherical implies that either \(m_1 \in \{1, 2\}\) and \(m_2 = 0\) or \(m_2 \in \{1, 2\}\) and \(m_1 = 0\).

(a) We first consider the case \(m_1 = 1, m_2 = 0\). Then \(p = n_1 + n_2 + r_1 + 2\) and \(q = n_1 + n_2 + r_2 + 1\). After applying Proposition 5.4 we find that \(e_j(x) = 0\) for \(n_1 + 2 \leq j \leq n_1 + r_1 + 1\) and \(p + n_2 + 1 \leq j \leq p + n_2 + r_2 + 1\), and the non-zero \(e_j(x)\) are:

\[
e_1(x) = 2, \ e_j(x) = 1 \ (2 \leq j \leq n_1 + 1), \ e_j(x) = -1 \ (n_1 + r_1 + 2 \leq j \leq p + 1),
\]

\[
e_p(x) = -2, \ e_j(x) = 1 \ (p + 1 \leq j \leq p + n_2), \ e_j(x) = -1 \ (p + n_2 + r_2 + 2 \leq j).
\]

By equation (8):

\[
\mathfrak{t}^\varphi = s(2u(1)^+ \oplus u(n_1)^+ \oplus u(n_2)^\pm \oplus u(r_1)^+ \oplus u(n_2)^- \oplus u(n_1)^- \oplus u(r_2 + 1)^-)
\]

\[
\mathfrak{t}^{[\varphi, e, f]} = s(u(1) \oplus u(n_1) \oplus u(n_2) \oplus u(r_1) \oplus u(r_2)).
\]

The containment relations following equation (8) imply that \(K_{C_{\varphi}}^{[\varphi, e, f]}\) is spherical in \(K_C\). In this case \(s_{\mathfrak{R}} = s(u(1) \oplus t(n_1) \oplus t(n_2) \oplus u(r_1) \oplus u(r_2 - 1))\) where \(t(n_1)\) and \(t(n_2)\) are maximal tori inside the subalgebras \(u(n_1)\) and \(u(n_2)\) respectively inside the parentheses in the expression for \(\mathfrak{t}^{[\varphi, e, f]}\) in equation (17).
If $\Delta(Z)$ denotes the t_c-weights of Z, we also have:

$$\Delta(Z) = \{e_1 - e_{p+n_1+r_2+2}, \ldots, e_1 - e_{p+q}, e_{p+1} - e_{p+q}, \ldots, e_{p+n_2} - e_{p+q}\}.$$

Let V_1 denote the span of the eigenvectors in Z with the first n_1 weights in $\Delta(Z)$ and let V_2 denote the span of the eigenvectors with last n_2 weights in $\Delta(Z)$. One can show that for $i = 1, 2$, V_i is an irreducible representation of $u(n_i)$ of dimension n_i. It is known that the maximal torus of $U(n_i)$ has a dense orbit on V_i. It follows that $B(S)$ has a dense orbit on Z.

(b) Finally, we will consider the case $m_1 = 2, m_2 = 0$. ($m_1 = 0, m_2 = 2$ is similar.)

We have $\Lambda = (+3)^2(2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}$. From equation (8) we get

$$t^x = s(2u(2)^{+} \oplus u(n_1)^{+} \oplus u(n_2)^{+} \oplus u(r_1)^{+} \oplus u(n_2)^{-} \oplus u(n_2)^{-} \oplus u(r_2)^{+})$$

$$t[x, e, f] = s(u(2) \oplus u(n_1) \oplus u(n_2) \oplus u(r_1) \oplus u(r_2)).$$

By Lemma 7.3, $K^x_c/K^{(x, e, f)}_c$ is spherical if and only if $r_2 = 0$. It follows that

Remark 8.10. If $r_2 > 0$ and n_1, n_2, r_1 are arbitrary, the following nilpotent orbit is not spherical:

$$\Lambda = (+3)^2(2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}.$$

From now on assume that $r_2 = 0$.

By applying Proposition 5.4 to $\Lambda = (+3)^2(2)^{n_1}(-2)^{n_2}(+1)^{r_1}$, we obtain the values of the $c_i(x)$. Using these values we find $\Delta(Z)$. We obtain the decomposition $\Delta(Z) = \Delta_1 \cup \Delta_2 \cup \Delta_3 \cup \Delta_4$ where

$$\Delta_1 = \{e_1 - e_{n_1+2n_2+r_1+7}, \ldots, e_1 - e_{2n_1+2n_2+r_1+6}\},$$

$$\Delta_2 = \{e_2 - e_{n_1+2n_2+r_1+7}, \ldots, e_2 - e_{2n_1+2n_2+r_1+6}\},$$

$$\Delta_3 = \{e_{n_1+n_2+r_1+5} - e_{n_1+n_2+r_1+3}, \ldots, e_{n_1+n_2+r_1+4} - e_{n_1+n_2+r_1+3}\},$$

$$\Delta_4 = \{e_{n_1+n_2+r_1+5} - e_{n_1+n_2+r_1+4}, \ldots, e_{n_1+n_2+r_1+4} - e_{n_1+n_2+r_1+3}\}.$$

We also have

$$\dim_C Z = 2n_1 + 2n_2,$$

$$s_{R} = s(2u(1) \oplus t(n_1) \oplus t(n_2) \oplus u(r_1))$$

$u(r_1)$ acts trivially on Z. Therefore if $B(S)$ has an open orbit on Z, we must have $n_1 + n_2 + 1 \geq 2n_1 + 2n_2$, i.e., $n_1 + n_2 \leq 1$. But if $n_1 > 0$ or $n_2 > 0$, $\Lambda = (+3)^2(2)^{n_1}(-2)^{n_2}(+1)^{r_1}$ contains either $(+3)^2(2)^{n_1-1}(-2)^{n_2}(+1)^{r_1+1}$ or $(+3)^2(2)^{n_1}(-2)^{n_2-1}(+1)^{r_1+1}(-1)$ in its closure (by Theorem 2 of [19]). Neither of the latter nilpotent orbits is spherical by Remark 8.10. Therefore Λ is not spherical when $n_1 > 0$ or $n_2 > 0$. If $n_1 + n_2 = 0$, then $Z = 0$ and we conclude that $\Lambda = (+3)^2(1)^{r_1}$ is spherical. We have shown that cases (a) and (b) of our proposition are the only possibilities when $m_1 > 0$. Likewise by considering $\Lambda = (+3)^2(2)^{n_1}(-2)^{n_2}(+1)^{r_1}(-1)^{r_2}$ and applying similar arguments we can show that cases (a)' and (b)' are the only ones possible when $m_2 > 0$.

Proposition 8.5 follows from Propositions 8.4, Lemmas 8.6, 8.7, 8.8, and 8.9.

8.4. $so(p, q)$. Proposition 6.3 implies the following.
Proposition 8.11. \((g = \text{so}(p, q)) \) If \(K_C \cdot e \) is spherical, then the corresponding signed partition \(\Lambda \) has the form
\[
\Lambda = (+3)^{m_1}(-3)^{m_2}n^{+1}(-1)^{r_1}(-1)^{r_2},
\]
where \(m_1, m_2, n, r_1, r_2 \) are non-negative integers.

For convenience, in the proofs below we consider only nilpotents whose signed partitions are without numerals or have roman numeral “I”. Nilpotents whose signed partitions have roman numeral “II” are handled by remark 4.19.

Lemma 8.12. \((g = \text{so}(p, q)) \) If \(K_C \cdot e \) is the orbit corresponding to any of the following signed partitions with or without numerals then \(K_C \cdot e \) is spherical:

(a) \(\Lambda = (+3)^m(+2)^n(+1)^r(-1)^2, \ 1 \leq m \geq 0, n \geq 0, r_1, r_2 \geq 0 \);
(b) \(\Lambda = (-3)^m(-2)^n(+1)^r(-1)^2, \ 1 \leq m \geq 0, n \geq 0, r_1, r_2 \geq 0 \);
(c) \(\Lambda = (+3)^2(+1)^r, \ r_1 \geq 0 \);
(d) \(\Lambda = (-3)^2(-1)^r, \ r_2 \geq 0 \).

Proof. For (a), we use an argument similar to that for part (a) of Lemma 8.9. For (b) and (c), we use an argument similar to that for part (b) of Lemma 8.9.

Lemma 8.13. \((g = \text{so}(p, q)) \) If \(K_C \cdot e \) corresponds to any of the following signed partitions with or without numerals then \(K_C \cdot e \) is not spherical:

(a) \(\Lambda = (+3)^2(+1)^r(-1)^2, \ r_1 \geq 0, n \geq 0, r_2 \geq 1 \);
(b) \(\Lambda = (-3)^2(-1)^r(-1)^2, \ r_1 \geq 1, r_2 \geq 0 \);
(c) \(\Lambda = (+3)^m(-3)^2(+2)^n(+1)^r(-1)^2, \ p_1 \geq 1, r_2 \geq 1 \);

Proof. (a) Here \(g = \text{so}(r_1 + 4, r_2 + 2) \). By Proposition 5.6: \(e_1(x) = 2 = e_2(x) \), and \(e_j(x) = 0 \) for all other \(j \). If \(\{x, e, f\} \) is the corresponding triple, then:
\[
t^x = u(2)^+ \oplus \text{so}(r_1)^+ \oplus \text{so}(r_2 + 2)^-; \quad t^{\{x, e, f\}} = \text{so}(2) \oplus \text{so}(r_1) \oplus \text{so}(r_2).
\]
By Lemma 7.5 \(K_C^x / K_C^{\{x, e, f\}} \) is spherical if and only if \(r_2 = 0 \). (b) is proven similarly.

(c) This follows from Proposition 4.17.

Lemma 8.14. \((g = \text{so}(p, q)) \) If \(K_C \cdot e \) corresponds to any of the following signed partitions with or without numerals then \(K_C \cdot e \) is not spherical:

(a) \(\Lambda = (+3)^m(+2)^n(+1)^r(-1)^2, \ for \ m \geq 2, \ n \geq 2 \) \((n \text{ even}) \);
(a) \(\Lambda = (-3)^m(-2)^n(+1)^r(-1)^2, \ for \ m \geq 2, \ n \geq 2 \) \((n \text{ even}) \);
(b) \(\Lambda = (+3)^m(+1)^r(-1)^2, \ for \ m \geq 3 \);
(b) \(\Lambda = (-3)^m(-1)^r(-1)^2, \ for \ m \geq 3 \).

Proof. Assume that \(\Lambda \) has no numeral attached. In case (a) or (a)', if \(n \geq 2 \) then the closure of \(K_C \cdot e \) contains an orbit \(K_C \cdot e' \) where \(K_C \cdot e' \) is of type (a) or (b) in Lemma 8.13. (See [9].) Now apply Proposition 4.11. The assertions about (b) and (b)' follow from Corollary 7.6.
Proposition 8.15. If \(g = \text{so}(p, q) \), then \(K_c \cdot e \) is spherical \(\iff \) the corresponding signed partition (after ignoring numerals) is of the form:

(a) \(\Lambda = (+3)^m(+1)^r_1, m \leq 2, r_1 \geq 0; \)
(b) \(\Lambda = (-3)^m(-1)^r_2, m \leq 2, r_2 \geq 0; \)
(c) \(\Lambda = (+3)^n(+1)^r_1(-1)^r_2, 1 \geq m \geq 0, n \geq 0 \) (\(n \) even), \(r_1 \geq 0, r_2 \geq 0; \)
(d) \(\Lambda = (-3)^n(-1)^r_1(-1)^r_2, 1 \geq m \geq 0, n \geq 0 \) (\(n \) even), \(r_1 \geq 0, r_2 \geq 0. \)

Proof. The result follows from Proposition 8.11 and Lemmas 8.12, 8.13, and 8.14. ■

8.5. \(\text{so}^*(2n) \). Proposition 6.3 implies the following.

Proposition 8.16. \((g = \text{so}^*(2n)) \) If \(K_c \cdot e \) is spherical, then the corresponding signed partition \(\Lambda \) has the form

\[
\Lambda = (+3)^p(+2)^{q_1}(-2)^{q_2}(+1)^r,
\]

where \(p, q_1, q_2, r \) are non-negative integers.

Lemma 8.17. \((g = \text{so}^*(2n)) \) Let \(\Lambda \) be the signed partition for \(K_c \cdot e \). (a) For all integers \(r \geq 0 \), if \(\Lambda = (+3)(+1)^r \), then \(K_c \cdot e \) is spherical. (b) For all integers, \(q_1 \geq 0, q_2 \geq 0, r \geq 0 \), if \(\Lambda = (+2)^n(-2)^{q_2}(+1)^r \), then \(K_c \cdot e \) is spherical.

Proof. For (a) first apply Proposition 5.7 to obtain (with \(n = r + 3 \)) to conclude that \(e_1(x) = 2, e_n(x) = -2 \), and \(e_j(x) = 0 \) for \(1 < j < n \). By (14) \(f^n = 2u(1) \oplus u(r + 1) \) and \(f(x, e, f) = u(1) \oplus u(r) \). By Lemma 7.7 \(K_c^e / K_c^f \) is spherical. Since \(Z = 0 \), \(\Lambda \) is spherical by Corollary 4.13. (b) follows from Corollary 4.15. ■

Lemma 8.18. \((g = \text{so}^*(2n)) \) For all integers \(p \geq 2, q_1 \geq 0, q_2 \geq 0, r \geq 0 \), if \(\Lambda = (+3)^p(+2)^{q_1}(-2)^{q_2}(+1)^r \) is the signed partition for \(K_c \cdot e \), then \(K_c \cdot e \) is not spherical.

Proof. Applying Proposition 5.7, we find that \(e_1(x) = e_2(x) = 2 \). Since \(e_1 + e_2 \) is a weight of \(t_c \) on \(p_c \), we can apply Proposition 4.17. ■

Lemma 8.19. \((g = \text{so}^*(2n)) \) For all integers \(q_1 \geq 1, q_2 \geq 1, r \geq 0 \), if the signed partition for \(K_c \cdot e \) is

\[
\Lambda = (+3)^p(+2)^{q_1}(-2)^{q_2}(+1)^r,
\]

then \(K_c \cdot e \) is not spherical.
Proof. In this case \(n = 2q_1 + 2q_2 + r + 3 \). If \(x \) is the neutral element corresponding to \(\Lambda = (+3)(+2)^{q_1}(-2)^{q_2}(+1)^r \), then:

\[
\mathfrak{t}^x = u(2q_1) \oplus u(2q_2) \oplus u(r + 1) \\
\mathfrak{t}^{\langle x, e, f \rangle} = u(1) \oplus u(r) \oplus \text{sp}(q_1) \oplus \text{sp}(q_2).
\]

\(K_x^c / K_{\langle x, e, f \rangle}^c \) is spherical. Applying Proposition 5.7, we find that \(e_{2q_1+2}(x) = \ldots = e_{2q_1+r+2}(x) = 0 \) and that

\[
\Delta(Z) = \{e_1 + e_2, \ldots, e_1 + e_{2q_1+1}, -(e_n + e_{2q_1+r+3}), \ldots, -(e_n + e_{n-1})\}.
\]

Using an argument similar to that for part (b) of Lemma 8.9, it can be shown that \(B(S) \) does not have a dense orbit in \(Z \). \(\square\)

Proposition 8.20. If \(\mathfrak{g} = \text{so}^*(2n) \), then the nilpotent \(e \in \mathfrak{p}_c \) is spherical \(\iff \) the corresponding signed partition is of the form (1) \(\Lambda = (+3)(+1)^r \) or (2) \(\Lambda = (+2)^{q_1}(-2)^{q_2}(+1)^r \).

Proof. Proposition 8.16 and Lemmas 8.17–8.19. \(\square\)

8.6. \(\text{sp}(n, \, \mathbb{R}) \).

Proposition 8.21. If \(\mathfrak{g} = \text{sp}(n, \, \mathbb{R}) \), the spherical nilpotent \(K_c \) nilpotent orbits in \(\mathfrak{p}_c \) are precisely those corresponding to signed partitions with part sizes not exceeding 2. That is, \(\Lambda \) corresponds to a spherical nilpotent orbit if and only if \(\Lambda = (+2)^{q_1}(-2)^{q_2}1^r \) for nonnegative integers \(q_1, q_2, \) and \(r \).

Proof. Corollary 4.16 and the proof of Proposition 6.3. \(\square\)

8.7. \(\text{sp}(p, \, q) \). Proposition 6.3 implies the following.

Proposition 8.22. \((\mathfrak{g} = \text{sp}(p, \, q))\) If \(K_c \cdot e \) is spherical, then the corresponding signed partition \(\Lambda \) has the form

\[
\Lambda = (+3)^{m_1}(-3)^{m_2}(+2)^n(+1)^{r_1}(-1)^{r_2}, \tag{18}
\]

where \(m_1, m_2, n, r_1, r_2 \) are non-negative integers.

If \(\Lambda \) is as in (18), then by applying Proposition 5.9 we find that \(e_j(x) = 0 \) for \(2m_1 + n + 1 \leq j \leq p \) and \(p + 2m_2 + n + 1 \leq j \leq p + q \) and the non-zero \(e_j(x) \) are:

\[
e_1(x) = 2 = \ldots = e_{2m_1}(x), \quad e_{2m_1+1}(x) = 1 = \ldots = e_{2m_1+n}(x), \\
e_{p+1}(x) = 2 = \ldots = e_{p+2m_2}(x), \quad e_{p+2m_2+1}(x) = 1 = \ldots = e_{p+2m_2+n}(x), \tag{19}
\]

where \(p = 2m_1 + m_2 + n + r_1 \) and \(q = m_1 + 2m_2 + n + r_2 \).

Corollary 8.23. \((\mathfrak{g} = \text{sp}(p, \, q))\) If the nilpotent orbit \(K_c \cdot e \) is spherical and corresponds to the signed partition \(\Lambda \) in equation (18), then either, (a) \(m_1 = 0 = m_2 = 0 \), (b) \(m_1 = 1, \, m_2 = 0 \), or (c) \(m_1 = 0, \, m_2 = 1 \).
Proof. By Lemma 7.8 and Corollary 4.13, we must have $m_1 \leq 1$ and $m_2 \leq 1$. If $m_1 = m_2 = 1$, then apply Proposition 4.17.

Lemma 8.24. \((\mathfrak{g} = \text{sp}(p, q))\) Let \(\Lambda\) be the signed partition corresponding to \(K_C \cdot e\).

(a) If \(\Lambda = (+2)^n (+1)^{r_1} (-1)^{r_2}\), where \(n \geq 0\), \(r_1 \geq 0\), \(r_2 \geq 0\), then \(K_C \cdot e\) is spherical.

(b) If \(\Lambda = (+3)(+2)^n (+1)^{r_1} (-1)^{r_2}\) or \(\Lambda = (-3)(+2)^n (+1)^{r_1} (-1)^{r_2}\), where \(0 \leq n \leq 1\) and \(r_1, r_2 \geq 0\), then \(K_C \cdot e\) is spherical.

(c) If \(\Lambda = (+3)(+2)^n (+1)^{r_1} (-1)^{r_2}\) or \(\Lambda = (-3)(+2)^n (+1)^{r_1} (-1)^{r_2}\), where \(n > 1\) and \(r_1, r_2 \geq 0\), then \(K_C \cdot e\) is not spherical.

Proof. (a) follows from Corollary 4.15.

For (b) and (c), first note that if \(\Lambda = (+3)(+2)^n (+1)^{r_1} (-1)^{r_2}\), then \(p = n + r_1 + 2\), and \(q = n + r_2 + 1\).

\[\mathfrak{t}^x = u(2)^+ \oplus u(n)^+ \oplus \text{sp}(r_1)^+ \oplus u(n)^- \oplus \text{sp}(r_2 + 1)^- \]

\[\mathfrak{t}^{(x, e, f)} = \text{sp}(1) \oplus u(n) \oplus \text{sp}(r_1) \oplus \text{sp}(r_2). \]

By Lemma 7.2, \(K_C^x / K_C^{(x, e, f)}\) is spherical.

Now suppose that \(n = 0\). Equation (19) implies that \(0 \leq e_j(x) + e_k(x) \leq 2\) for all \(1 \leq j \leq p\) and \(p + 1 \leq k \leq p + q\). Therefore, \(Z = 0\). Since \(Z = 0\), \(K_C \cdot e\) is spherical by Corollary 4.13. The proof of sphericality for \(\Lambda = (-3)(+1)^{r_1} (-1)^{r_2}\) is similar.

If \(n > 0\), an argument similar to that in part (b) of Lemma 8.9 completes the proof.

Proposition 8.25. If \(\mathfrak{g} = \text{sp}(p, q)\), then \(K_C \cdot e\) is spherical if and only if the corresponding signed partition is one of the following (for \(n \geq 0\), \(r_1 \geq 0\), \(r_2 \geq 0\)):

(a) \(\Lambda = (+3)(+1)^{r_1} (-1)^{r_2}\) or \((+3)(+2)^{r_1} (-1)^{r_2}\);

(b) \(\Lambda = (-3)(+1)^{r_1} (-1)^{r_2}\) or \((-3)(+2)^{r_1} (-1)^{r_2}\);

(c) \(\Lambda = (+2)^n (+1)^{r_1} (-1)^{r_2}\).

9. The spherical nilpotent \(K_C\)-orbits in \(p_c\) for \(\mathfrak{g}\) exceptional

The following conventions hold throughout this section. We will use the notation of Helgason [10] to describe the simple real exceptional algebra \(\mathfrak{g}\). We use the tables of Đoković in [4] and [5] to describe the \(K_C\)-nilpotent conjugacy classes of the exceptional simple algebras and for information about the neutral element \(x\), \(\mathfrak{t}^x\), and \(\mathfrak{t}^{(x, e, f)}\) associated to each conjugacy class.

Theorem 9.1. If \(\mathfrak{g}\) is a simple real exceptional Lie algebra then the spherical nilpotent \(K_C\)-orbits in \(p_c\) are the following ones as listed in [4] and [5].

EI: classes 1, 2 and 3.
constructing K by Corollary 4.15.

9.1. EI ($\mathfrak{t} = \mathfrak{sp}(4)$). By Remark 4.18 and Proposition 4.17, the K_C classes 1, 2 and 3 are the only ones that could be spherical. Classes 1 and 2 must be spherical by Corollary 4.15.

For class 3, $\mathfrak{t}^x = \mathfrak{su}(3) \oplus 2\mathfrak{u}(1), \mathfrak{t}^{(x, e, f)} = \mathfrak{su}(2) \oplus \mathfrak{u}(1)$. Therefore, $K_C^x/K_C^{(x, e, f)}$ is spherical. $\mathfrak{s}_R = 2\mathfrak{u}(1)$. $Z = \mathfrak{p}_C(3)$ and $\dim Z = 1$. By constructing \mathfrak{s}_R and Z one shows directly that \mathfrak{s}_R acts nontrivially on Z. Since $\mathfrak{s}_0 = B(\mathbf{S})$, this shows that $B(\mathbf{S})$ has a dense orbit on Z. So class 3 is spherical.

9.2. EII ($\mathfrak{t} = \mathfrak{su}(6) \oplus \mathfrak{su}(2)$). By Remark 4.18 and Proposition 4.17, the K_C classes 1-7, are the only ones that could be spherical. Classes 1, 2 and 3 are spherical by Corollary 4.15.

For class 6, $\mathfrak{t}^x = \mathfrak{su}(6) \oplus \mathfrak{u}(1)$ and $\mathfrak{t}^{(x, e, f)} = 2\mathfrak{su}(3)$. $K_C^x/K_C^{(x, e, f)}$ is not spherical. For class 7, $\mathfrak{t}^x = \mathfrak{su}(4) \oplus \mathfrak{su}(2) \oplus 2\mathfrak{u}(1)$ and $\mathfrak{t}^{(x, e, f)} = 2\mathfrak{su}(2) \oplus 2\mathfrak{u}(1)$. By explicit construction of \mathfrak{t}^x and $\mathfrak{t}^{(x, e, f)}$, one finds that $\mathfrak{t}^{(x, e, f)}$ is contained in the $\mathfrak{su}(4) \oplus 2\mathfrak{u}(1)$ component of \mathfrak{t}^x hence $K_C^x/K_C^{(x, e, f)}$ is not spherical. It follows that neither class 6 nor class 7 is spherical.

Finally consider classes 4 and 5. For class 4, $\mathfrak{t}^x = 2\mathfrak{su}(3) \oplus 2\mathfrak{u}(1)$, and $\mathfrak{t}^{(x, e, f)} = \mathfrak{su}(3) \oplus \mathfrak{u}(1)$; for class 5, $\mathfrak{t}^x = 2\mathfrak{su}(2) \oplus 4\mathfrak{u}(1)$, and $\mathfrak{t}^{(x, e, f)} = \mathfrak{su}(2) \oplus 2\mathfrak{u}(1)$. By Lemma 4.14, $\mathfrak{t}^{(x, e, f)}$ is a symmetric subalgebra of \mathfrak{t}^x, so condition (a) of Corollary 4.13 is satisfied by class 4 and class 5. For class 4 and class 5, $\mathfrak{s}_R = 3\mathfrak{u}(1)$. One verifies directly that in each case \mathfrak{s}_R acts nontrivially on $Z = \mathfrak{p}_C(3)$ which is one dimensional. Therefore, $B(\mathbf{S})$, the complex torus corresponding to \mathfrak{s}_R, has a dense orbit on Z. So condition (b) of Corollary 4.13 is satisfied and both classes are spherical.

9.3. $EIII$ ($\mathfrak{t} = \mathfrak{so}(10) \oplus \mathbf{R}$). By Remark 4.18 and Proposition 4.17, the K_C classes 1-9, are the only ones that could be spherical. In fact, classes 1, 2, 3, 4 and 5 are spherical since the height of each of the corresponding G_C classes is 2.

For class 9, $\mathfrak{t}^x = \mathfrak{so}(8) \oplus 2\mathfrak{u}(1)$, and $\mathfrak{t}^{(x, e, f)} = (G_2)_{-14}$. So $K_C^{(x, e, f)}$ is spherical in K_C^x. Since $Z = 0$, class 9 is spherical.

By Figure 5 in [6], the closure of class 9 contains the closure of classes 6, 7 and 8 (and classes 1-5). Therefore, the spherical K_C nilpotent classes of $EIII$ are classes 1-9.

9.4. EV ($\mathfrak{t} = \mathfrak{su}(8)$). By Remark 4.18 and Proposition 4.17, the K_C classes 1-6, 8 and 9 are the only ones that could be spherical. Classes 1, 2, 3 and 4 are spherical by Corollary 4.15.
spherical because each of the corresponding G_C classes has height 2.

For class 6, we have $\mathfrak{k}^x = su(6) \oplus 2u(1)$ and $\mathfrak{k}^{(x, e, f)} = 2su(3)$. So $K_C(4)/K_C(3)$ is not spherical.

For class 8 and for class 9, we have $\mathfrak{k}^x = 2su(3) \oplus 3u(1)$ and $\mathfrak{k}^{(x, e, f)} = su(3) \oplus u(1)$. Class 8 and class 9 are conjugate under G_C^ϕ.

Consider class 8. By constructing \mathfrak{k}^x and $\mathfrak{k}^{(x, e, f)}$ one checks that the $su(3)$ summand of $\mathfrak{k}^{(x, e, f)}$ is embedded diagonally in the $2su(3)$ summand of \mathfrak{k}^x and that $K_C(4)/K_C(3)$ is spherical. We also have $\mathfrak{s} = 3u(1)$, a maximal torus in $\mathfrak{k}^{(x, e, f)}$. Now $\mathfrak{s} = 3$ is a complex three dimensional torus. One can find a basis for Z consisting of noncompact root vectors for a maximal torus of \mathfrak{k} that contains \mathfrak{s}. Using this information, one verifies that $[\mathfrak{s}, Z] = Z$. So $B(S) = S_0$ has a dense orbit on Z, making class 8 spherical. By Remark 4.19, class 9 is spherical.

Figure 6 in [8] shows that class 5 lies in the closure of each of the following classes: 8 and 9. Their sphericality implies that of class 5.

9.5. EVI ($\mathfrak{k} = so(12) \oplus su(2)$). By Remark 4.18 and Proposition 4.17, the K_C classes 1–6, 8 and 9 are the only ones that could be spherical. In fact, classes 1, 2 and 3 are spherical since the height of each of the corresponding G_C classes is 2.

Since $Z = 0$ for classes 6 and 8, it suffices to check whether $K_C(3, e, f)$ is spherical in K_C^x. By [14], for $n \geq 3$, su(n) is only spherical in so(2n) when n is odd. For class 6, $\mathfrak{k}^x = so(12) \oplus u(1)$, and $\mathfrak{k}^{(x, e, f)} = su(6)$. For class 8, $\mathfrak{k}^x = so(8) \oplus su(2) \oplus u(1)$, and $\mathfrak{k}^{(x, e, f)} = su(4) \oplus su(2) \oplus u(1)$. Thus for classes 6 and 8 sphericality fails. Since class 8 is not spherical and the closure of class 9 contains class 8 (by results in [7]), class 9 can’t be spherical.

For class 4, $\mathfrak{k}^x = su(6) \oplus 2u(1)$, and $\mathfrak{k}^{(x, e, f)} = sp(3) \oplus u(1)$. For class 5, $\mathfrak{k}^x = sp(4) \oplus su(2) \oplus 3u(1)$, and $\mathfrak{k}^{(x, e, f)} = sp(2) \oplus su(2) \oplus u(1)$. For class 4 and class 5, $K_C(4)$ is spherical in K_C^x. In each case, $\mathfrak{s} = 3su(2) \oplus u(1)$ and \mathfrak{s} contains a maximal torus of $\mathfrak{k}^{(x, e, f)}$. One checks directly that this torus acts non trivially on the one dimensional space Z. This implies that $B(S)$ has an open orbit on Z. Thus classes 4 and 5 are spherical.

9.6. EVII ($\mathfrak{k} = e_6 \oplus R$). By Remark 4.18 and Proposition 4.17, the K_C classes 1–12 are the only ones that could be spherical. In fact, classes 1–9 are spherical since the height of each of the corresponding G_C classes is 2.

Since $Z = 0$ for class 10, it suffices to check whether $K_C(3)$ is spherical in K_C^x. We have $\mathfrak{k}^x = su(6) \oplus 2u(1)$, and $\mathfrak{k}^{(x, e, f)} = su(5) \oplus u(1)$. By constructing these subalgebras, one checks that sphericality holds for the corresponding pair of reductive groups. Thus class 10 is spherical.

For classes 11 and 12, $\mathfrak{k}^x = su(4) \oplus su(2) \oplus 3u(1)$, and $\mathfrak{k}^{(x, e, f)} = su(4) \oplus u(1) = u(4)$. So $K_C(3)$ is spherical in K_C^x. Consider either class 11 or class 12. In each case $Z = p_3(3)$. $\mathfrak{s} = 4u(1)$, a maximal torus in $\mathfrak{k}^{(x, e, f)}$. A. Noel constructs this maximal torus in [17]. One verifies directly that the intersection of this maximal torus with $su(4)$ does not act trivially on Z. This shows that $p_3(3)$ (which has dimension 4) is not a trivial $su(4)$-module. Since, the dimension of the smallest non-trivial $su(4)$ module is 4 this shows that $p_3(3)$ is a 4 dimensional irreducible representation of $u(4)$. It follows that $B(S) = S_0$ has a dense open orbit on $p_3(3)$. This establishes the sphericality of classes 11 and 12.
By Remark 4.18 and Proposition 4.17, the K_C classes 1–4 and 6 are the only ones that could be spherical. In fact classes 1 and 2 are spherical since each has height $= 2$.

For class 6, $\mathfrak{t}^{\{x, e, f\}} = u(4)$ is diagonally embedded in $\mathfrak{t}^x = u(4) \oplus u(4)$, so that $K_C^{\{x, e, f\}}$ is spherical inside K_C^x. $\mathfrak{g}_R = 4u(1)$, and an argument similar to that for classes 11 and 12 in EVII shows that $B(S)$ has a dense orbit on $\mathfrak{p}_C(3)$. So class 6 is spherical. Since class 3 lies in the closure of class 6, class 3 is also spherical.

For class 4, $\mathfrak{t}^x = so(12) \oplus su(2) \oplus u(1)$, and $\mathfrak{t}^{\{x, e, f\}} = su(6) \oplus su(2)$. Therefore, so $K_C^{\{x, e, f\}}$ is not spherical in K_C^x. Hence class 4 is not spherical.

By Remark 4.18 and Proposition 4.17, the K_C classes 1–6, 8 and 9 are the only ones that could be spherical. In fact classes 1, 2, and 3 are spherical because they have height equal to 2.

Since $Z = 0$ for classes 6 and 8 for sphericality, it suffices to check whether $K_C^{\{x, e, f\}}$ is spherical in K_C^x. For class 6, $\mathfrak{t}^x = (E_7)(-1) \oplus u(1)$, and $\mathfrak{t}^{\{x, e, f\}} = (E_6)(-78)$, so sphericality fails. For class 8, $\mathfrak{t}^x = so(12) \oplus su(2) \oplus u(1)$, and $\mathfrak{t}^{\{x, e, f\}} = so(10) \oplus u(1)$. One verifies that $\mathfrak{t}^{\{x, e, f\}}$ is contained in the $so(12) \oplus su(2)$ component of \mathfrak{t}^x. But $K_C^{\{x, e, f\}}$ is not spherical in K_C^x. Therefore, class 8 is not spherical. The closure of class 9 contains class 8. Hence by Proposition 4.11, class 9 is not spherical.

For class 4, $\mathfrak{t}^x = E_6(78) \oplus 2u(1)$, and $\mathfrak{t}^{\{x, e, f\}} = F_4(-52) \oplus u(1)$. So sphericality holds for the reductive groups. $\mathfrak{s}_R = so(8) \oplus u(1)$. One checks that the maximal torus in S acts non-trivially on the one dimensional space Z which establishes the sphericality of class 4. A similar argument establishes the sphericality of class 5.

References

The closure ordering of nilpotent orbits of the complex symmetric pair $SO_{p+q}, SO_p \times SO_q$), Canadian J. Math. (to appear).

Donald R. King
Department of Mathematics
567 Lake Hall
Northeastern University
Boston MA 02115
donking@neu.edu

Received March 25, 2002
and in final form October 28, 2003