An Invariant Symmetric Non-selfadjoint Differential Operator

Erik G. F. Thomas

Communicated by K.-H. Neeb

Abstract. Let D be a symmetric left invariant differential operator on a unimodular Lie group G of type I. Then we show that D is essentially self-adjoint if and only if for almost all $\pi \in \hat{G}$, with respect to the Plancherel measure, the operator $\pi(D)$ is essentially self-adjoint. This, in particular, allows one to exhibit a left invariant symmetric differential operator on the Heisenberg group, which is not essentially self-adjoint.

Introduction

Let $X = G/H$ be a homogeneous space, having an invariant measure. If D is an invariant differential operator on X which is symmetric, it is often important to know whether D, with domain the space of test functions $\mathcal{D}(X) = C^\infty_c(X)$, is essentially self-adjoint in $L^2(X)$.

The simplest positive result in this regard, involving an individual operator, is perhaps the following: if τ is the quasi-regular representation of G on $L^2(X)$, and D is a symmetric element in the centre of the universal enveloping algebra, the operator $\tau(D)$ is an invariant differential operator on X, which, by a theorem of I.E. Segal [16], is essentially self-adjoint, at least on the Gårding domain. A result of E. Nelson and W.F. Stinespring shows that $\tau(D)$ is also essentially self-adjoint on the (smaller) domain $\mathcal{D}(X)$ (see [12] or the addendum to §1 below). In general not all invariant differential operators on X are obtained in this way however.

Also, several types of homogeneous space are known with the property that every symmetric invariant differential operator on it is essentially self-adjoint. For instance, every compact homogeneous space (having an invariant measure) has this property. As another example we mention the hyperbolic spaces $U(p, q; \mathbb{R})/U(1; \mathbb{R}) \times U(p-1, q; \mathbb{C}), \mathbb{F} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} (cf. [6] and [17] theorem C, example b). In particular, this justifies the assertion in Lemma 9 of [14]. E.P. van den Ban has shown that for every semi-simple symmetric pair (G, σ, H), G/H has this property [1]. This also includes cases where (G, H) is not a generalised Gelfand pair [5].

Perhaps because of the abundance of these results no example was known (to the author) of a homogeneous space and a symmetric invariant differential
operator on it, which is not essentially self-adjoint. On the other hand, several examples are known of a Lie group \(G \), an irreducible representation \(\pi \) of \(G \), and a symmetric element \(D \) in the universal enveloping algebra, such that \(\pi(D) \) is not essentially self-adjoint. The best known example of this is probably the one due to J. von Neumann (unpublished cf. [12]) where \(G \) is the Heisenberg group.

We have proved the following theorem (corollary to Theorem 1.7):

Selfadjointness Theorem Let \(G \) be a unimodular Lie group of type 1. Let \(D \) be a symmetric element of the universal enveloping algebra. Then \(D \), viewed as a left invariant differential operator on \(G \), with domain \(\mathcal{D}(G) \), is essentially self-adjoint if and only if \(\pi(D) \) is essentially self-adjoint for almost all irreducible \(\pi \), with respect to the Plancherel measure.

This then allows one to convert von Neumann’s example into an example of a symmetric left invariant differential operator on the Heisenberg group, which is not essentially self-adjoint.

We have taken the opportunity to state some related results, such as Theorem 1.8, which connects strong commutation of two operators \(D_1 \) and \(D_2 \), with strong commutation of the operators \(\pi(D_1) \) and \(\pi(D_2) \), but the reader mainly interested in the counter-example could read as far as half way through the proof of proposition 1.4, and then turn directly to the third example in paragraph 2.

In the addendum to paragraph 1 we show that, for an arbitrary unitary representation \(U \), the operator \(U(D) \), on the \(C^\infty \)-vectors, and its restriction to the space of analytic vectors, always have the same closure.

1. Generalities

Let \(G \) be a unimodular Lie group which eventually we shall assume to be of type 1. We denote \(\mathcal{D}(G) \) the space of \(C^\infty \) functions with compact support, and \(\mathcal{D}'(G) \) the space of distributions on \(G \). Having chosen a Haar measure on \(G \) we identify the locally integrable functions with distributions as usual. Thus we have the inclusions:

\[
\mathcal{D}(G) \subset \subset L^2(G) \subset \subset \mathcal{D}'(G)
\]

More generally, let

\[
\mathcal{H} \subset \subset \mathcal{D}'(G)
\]

be any Hilbert subspace of \(\mathcal{D}'(G) \), i.e. a linear subspace equipped with a Hilbert space inner–product, such that the inclusion map, \(j \), is continuous. For any \(f \in \mathcal{D}'(G) \) and \(\phi \in \mathcal{D}(G) \) we use the notation \(\langle f, \phi \rangle = j(\phi) \). Let \(j^* : \mathcal{D} \longrightarrow \mathcal{H} \) be the adjoint of \(j \) defined by the equation:

\[
(f, j^*\phi) = \langle jf, \phi \rangle
\]

where the left–hand side stands for the inner product in \(\mathcal{H} \). (Note that in this equation \(j \) is usually omitted from the expression on the right–hand side).

The reproducing operator for \(\mathcal{H} \), analogous to the orthogonal projection on a closed subspace of a Hilbert space, is by definition the operator \(H = jj^* \). It is a continuous linear operator from \(\mathcal{D} \) to \(\mathcal{D}' \) which completely characterises \(\mathcal{H} \) (see [15] or the summary in [17]).
Every Hilbert subspace $\mathcal{H} \subset \mathcal{D}'$ possesses a privileged dense subspace, namely $j^*(\mathcal{D})$, or, somewhat incorrectly, $H(\mathcal{D})$. We shall denote it by \mathcal{H}_0. (In the particular case where \mathcal{H} is a dense subspace of \mathcal{D}', j^* is injective, and one obtains a Gelfand triplet).

Let R denote the right regular representation in $\mathcal{D}'(G)$. A Hilbert subspace \mathcal{H} is said to be right invariant if $R(g)\mathcal{H} = \mathcal{H}$ and the restriction of each operator $R(g)$ to \mathcal{H} is unitary. This happens if and only if $R(g)H = HR(g)$ for all g, i.e. H intertwines the regular representations on \mathcal{D} and \mathcal{D}'. Equivalently, H is a convolution operator:

$$H(\phi) = K * \phi$$

(2)

where K is some positive definite distribution on G. Let us denote $R^\mathcal{H}$ the restriction of R to the space \mathcal{H}. It is a continuous unitary representation in \mathcal{H}.

To verify the continuity it is sufficient to check weak continuity on \mathcal{H}_0. We have in fact: $(j^*\phi, R^\mathcal{H}(g)j^*\psi) = (j^*\phi, j^*R(g)\psi) = \langle H\phi, R(g)\psi \rangle$ which is continuous with respect to g. Let us note also that the subspace \mathcal{H}_0, which is invariant under $R^\mathcal{H}$, is composed of regular distributions, in fact of functions of class C^∞. This is a consequence of formula (2).

Similar considerations apply to left invariant spaces. A space which is both left and right invariant will be called bi-invariant. In the particular case where $\mathcal{H} = L^2(G)$, we have $H(\phi) = \phi$, and everything we have said is most familiar.

Let \mathfrak{g} denote the Lie algebra of G, and \mathcal{U} the universal enveloping algebra of its complexification. We identify \mathcal{U} with the algebra of left invariant differential operators on G (\mathcal{U}_L if any confusion should arise).

These differential operators are viewed as acting on $\mathcal{D}(G)$, on $\mathcal{E}(G)$, the space of all functions of class C^∞, and on $\mathcal{D}'(G)$. If D^* denotes the formal adjoint of D, we have, G being unimodular,

$$\langle D^*f, \phi \rangle = \langle f, D\phi \rangle$$

(3)

for all $\phi \in \mathcal{D}(G)$ and $f \in \mathcal{D}'(G)$.

If U is any unitary representation of G, we denote $U_\infty(D)$ the operator corresponding to $D \in \mathcal{U}$, acting on the space of C^∞-vectors for U. If \mathcal{H} is a right invariant Hilbert subspace of $\mathcal{D}'(G)$, we denote \mathcal{H}_∞ the space of C^∞-vectors for $R^\mathcal{H}$.

Proposition 1.1. Let \mathcal{H} be a right invariant Hilbert subspace of $\mathcal{D}'(G)$, and let $D \in \mathcal{U}$ be a left invariant differential operator.

a. $R_\infty(D)$ is the restriction to \mathcal{H}_∞ of the operator $D : \mathcal{D}'(G) \to \mathcal{D}'(G)$, i.e.:

$$R_\infty^\mathcal{H}(D)f = Df \quad \forall f \in H_\infty$$

b. $\mathcal{H}_0 \subset \mathcal{H}_\infty$. If $R_0^\mathcal{H}(D)$ denotes the restriction of $R_\infty^\mathcal{H}(D)$ to \mathcal{H}_0, the operators $R_0^\mathcal{H}(D)$ and $R^\mathcal{H}(D)$ have the same closure.

c. Let T denote either $R^\mathcal{H}_\infty(D)$ or $R^\mathcal{H}_0(D)$. Then the domain of T^* is

$$\text{dom}(T^*) = \{f \in \mathcal{H} : D^*f \in \mathcal{H} \}$$

and $T^*f = D^*f$ for all f in this domain.
Proof. a. It is sufficient to prove this for $X \in \mathfrak{g}$, an arbitrary $D \in \mathcal{U}$ being a linear combination of products of such elements. Now we have $R^H_{\infty}(X)f = \frac{d}{dt}R(\exp tX)f|_{t=0}$ in the space \mathcal{H}, and so a fortiori in $\mathcal{D}'(G)$. But G being unimodular, we have $X^* = -X$, and so it is easy to see by transposition, that the above expression yields Xf.

b. Since the reproducing operator intertwines the regular representations in \mathcal{D} and \mathcal{D}', we have $R^H_{\infty}(g)j^*\phi = j^*R^H_{\infty}(g)\phi$. On the other hand, the map $j^*: \mathcal{D} \rightarrow \mathcal{H}$ is a continuous linear operator and ϕ is a C^∞-vector for the regular representation in \mathcal{D}. Thus $j^*\phi$ is a C^∞-vector for R^H_{∞}. Next we need to show that for any $f \in \mathcal{H}_{\infty}$, there exists $f_n \in \mathcal{H}_0$ with $f_n \rightarrow f$ and $Df_n \rightarrow Df$ in \mathcal{H}. (The fact that $R^H_{\infty}(D)$ actually has a closure is well known, and besides an immediate consequence of a). Now it is known that \mathcal{H}_{∞} is in fact equal to the Gårding domain, i.e. the linear span of the elements of the form $R^H_{\infty}(\phi)h$, with $h \in \mathcal{H}$ and $\phi \in \mathcal{D}(G)$ ([3] Theorem 3.3). Thus we may assume $f = R^H_{\infty}(\phi)h$. Let $h_n \in \mathcal{H}_0$ tend to h in the space \mathcal{H}. Then $f_n = R^H_{\infty}(\phi)h_n = h_n * \phi$ belongs to \mathcal{H}_0, f_n converges to f, and $Df_n = R^H_{\infty}(D\phi)h_n$ converges to $R^H_{\infty}(D\phi)h = Df$.

c. To prove this it will be useful to first note the following

$$R^H_{\infty}(D)j^*\phi = j^*D\phi \quad \forall \phi \in \mathcal{D}(G)$$

or equivalently

$$DH(\phi) = H(D\phi) \quad \forall \phi \in \mathcal{D}(G)$$

which is proved, as before, first for $D = X$ by differentiation. Now, if $f = j^*\phi$, h belongs to \mathcal{H}, and T denotes $R^H_{\infty}(D)$, we have:

$$(h, Tf) = (h, Df) = (h, j^*(D\phi)) = \langle h, D\phi \rangle = \langle D^*h, \phi \rangle$$

If D^*h belongs to \mathcal{H}, this equals $(D^*h, j^*\phi)$, and so we have

$$(h, Tf) = (D^*h, f)$$

for all $f \in \mathcal{H}_0$, which implies $h \in \text{dom}(T^*)$, and $T^*h = D^*h$. Conversely, if h belongs to the domain of T^*, the above equalities show that there exists a constant M such that,

$$|\langle D^*h, \phi \rangle| \leq M||j^*\phi|| \quad \forall \phi \in \mathcal{D}(G)$$

Thus, by the Riesz–Fréchet representation theorem, there exists an element $f \in \mathcal{H}$, such that $\langle D^*h, \phi \rangle = \langle f, j^*\phi \rangle = \langle f, \phi \rangle$ for all $\phi \in \mathcal{D}(G)$, which implies $D^*h = f \in \mathcal{H}$. Since by b. $R^H_{\infty}(D)$ and $R^H_{\infty}(D)$ have the same adjoint, the proof is complete.

A particular consequence of proposition 1.1 is that, when $D = D^*$, the operator $R^H_{\infty}(D)$ is essentially self-adjoint, i.e. has self-adjoint closure, if and only if $R^H_{\infty}(D)$ is essentially self-adjoint. From now on we shall describe the essential self-adjointness of these operators simply by saying that $R^H_{\infty}(D)$ is essentially self-adjoint. Similarly, if U is a unitary representation of G we say that $U(D)$ is essentially self-adjoint if the operator $U_{\infty}(D)$, with domain the C^∞-vectors has this property. If π is the equivalence class of U we also describe this by saying that $\pi(D)$ is essentially self-adjoint. Similarly $\pi(\phi)$ stands for $U(\phi)$, etc.
Now let \hat{G}_1 denote the set of equivalence classes π of irreducible unitary representations of G, such that, for each $\phi \in \mathcal{D}(G)$, $\pi(\phi)$ is an operator of trace class. Then, if for $\pi \in \hat{G}_1$ we put $\chi_\pi(\phi) = \text{trace } \pi(\phi)$, χ_π is a central positive definite distribution which determines π, the character of π. If we now put

$$H_\pi(\phi) = \chi_\pi * \phi = \phi * \chi_\pi$$

(6)

H_π is the reproducing operator of a minimal bi-invariant Hilbert subspace of $\mathcal{D}'(G)$, with the property that R^{H_π} is the $d(\pi)$-fold repetition of π, $d(\pi)$ being the degree of π. If we topologize \hat{G}_1 by making the map $\pi \to \chi_\pi$ a homeomorphism, \hat{G}_1 becomes a Suslin space whose Borel sets are Borel sets of \hat{G} in the sense of Mackey [10]. Moreover, if G is a group of type I, which we shall assume from now on, the map $\pi \to \chi_\pi$ is an admissible section for the set of extreme generators of the cone of central positive definite distributions on G, which is a lattice cone. Thus, there exists a unique measure $d\pi$ on \hat{G}_1, the Plancherel measure, such that:

$$\delta = \int \chi_\pi d\pi$$

(7)

Equivalently, (see [17] Theorem A), one has the direct integral decomposition:

$$L^2(G) = \int_{\hat{G}_1} \mathcal{H}_\pi d\pi$$

(8)

More generally, if \mathcal{H} is any bi-invariant Hilbert subspace of $\mathcal{D}'(G)$, there exists a unique measure m on \hat{G}_1 such that

$$\mathcal{H} = \int_{\hat{G}_1} \mathcal{H}_\pi dm(\pi)$$

(9)

(for details regarding this approach to Plancherel measure see [10] and [17].)

Proposition 1.2. Let $D = D^\ast$ be a symmetric element in \mathcal{U}, and let π belong to \hat{G}_1. Then $\pi(D)$ is essentially self-adjoint if and only if $R^{H_\pi}(D)$ is essentially self-adjoint.

Proof. Recall that a densely defined symmetric operator T fails to be essentially self-adjoint if and only if at least one of the equations $T^* f = \pm i f$ admits a solution $f \neq 0$. First assume that $\pi(D)$ is not essentially self-adjoint. Let \mathcal{K} be a closed minimal right invariant subspace of \mathcal{H}_π (which exists because R^{H_π} is a factor representation of type I). Then $R^{\mathcal{K}}$ represents π, and so, by proposition 1.1, there exists a non zero solution of the equation $Df = if$ (say) in the space \mathcal{K}. But then f belongs to \mathcal{H}_π and so for the same reason $R^{H_\pi}(D)$ is not essentially self-adjoint. Conversely, assume $R^{H_\pi}(D) = T$ is not essentially self-adjoint. Then there exists an element $f \in \mathcal{H}_\pi$ such that, for instance $T^* f = if$, $f \neq 0$. Also, \mathcal{H}_π being the orthogonal direct sum of minimal right invariant closed subspaces, there exists such a space, \mathcal{K}, such that the orthogonal projection $P_\mathcal{K} f$ of f on \mathcal{K} is not zero. We shall prove that the orthogonal projection operator $P_\mathcal{K}$ commutes with T^\ast. Then it will follow that $T^* P_\mathcal{K} f = iP_\mathcal{K} f$, and so, by proposition 1.1, the equation $Dk = ik$ has a non-zero solution in \mathcal{K}. Thus $R^{\mathcal{K}}(D)$ is not essentially
self-adjoint, which means that $\pi(D)$ is not essentially self-adjoint. To prove that T^* commutes with P_K, note that T^* commutes with the operators of left translation in H. Thus the bounded operators $B = (I + T^*T^*)^{-1}$ and $C = T^*B$ commute with the left translations. Therefore, by the Godement–Segal commutativity theorem ([8], [10]) the operators B and C belong to the Von Neumann algebra R generated by the operators R^H (g). On the other hand, P_K commutes with right translations, and so belongs to the commutant of R. Thus P_K commutes with B and C, and so also with the operator T^*, which can be recovered from B and C, i.e. we have $P_K T^* \subset T^* P_K$. Thus if $T^* f = i f$, $k = P_K f$ belongs to the domain of T^*, and $T^* k = i k$ as was to be shown. □

Remark 1.3. We have obviously proved something slightly more precise than the statement of Proposition 1.2, namely, that the operators $\pi(D)$ and $R^H(D)$ have positive (resp. negative) deficiency indices differing from zero, simultaneously.

Proposition 1.4. Let H be any bi–invariant Hilbert subspace of $D(G)$, and let $D \in \mathcal{U}$ be any left invariant differential operator. Let $K = \{f \in H : Df = 0\}$ and let $K_\pi = \{f \in H_\pi : Df = 0\}$. Then

$$K = \int K_\pi dm(\pi)$$

(10)

(m being the measure defined by equation (9))

The proof depends on the following lemma which will be proved, on another occasion.

Lemma 1.5. Let E be a locally convex Hausdorff space such that its dual contains a countable subset separating the points of E. Let F be a closed linear subspace of E. Let Λ be a topological Hausdorff space equipped with a Radon measure m, and let $(H_\lambda)_{\lambda \in \Lambda}$ be an m–measurable family of Hilbert subspace of E. Also, let $K_\lambda = H_\lambda \cap F$, with the Hilbert space structure induced from H_λ. Then $(K_\lambda)_{\lambda \in \Lambda}$ is an m–measurable family of Hilbert subspaces of E.

If we apply this lemma with $E = D'(G)$ and $F = \{f \in D'(G) : Df = 0\}$, we see that the family $(K_\pi)_{\pi \in \hat{G}}$ is m–measurable. Thus the integral on the right-hand side of (10) exists as Hilbert subspace of $D'(G)$, and it is a closed subspace of H, which we denote as W. Every element $f \in W$ has an expansion in $D'(G)$:

$$f = \int f_\pi dm(\pi)$$

(11)

where $(f_\pi)_{\pi \in \hat{G}}$ is a square integrable field such that $f_\pi \in K_\pi$. Now, since $D : D'(G) \rightarrow D'(G)$ is a continuous linear operator equation (11) yields $Df = \int Df_\pi dm(\pi) = 0$, which proves the inclusion $W \subset K$. (This will be sufficient for the construction below of a non essentially self-adjoint left invariant differential operator).

To prove the opposite inclusion we need some further notations. By equation (9) every $f \in H$ has a unique expansion as in (11), with a square integrable field (f_π) where $f_\pi \in H_\pi$. If $M \subset \hat{G}_1$ is a Borel subset, we put:

$$P_M f = \int_M f_\pi dm(\pi)$$

(12)
Also, let \mathcal{L} (resp. \mathcal{R}) denote the Von Neumann algebra of operators in \mathcal{H} generated by the left (resp. right) translations. Then it is known that $\mathcal{L} \cap \mathcal{R}$, which by the Godement–Segal commutativity theorem is the centre of \mathcal{L} and of \mathcal{R}, is generated by the projections P_M, in fact (9) is the central decomposition of \mathcal{H}. Actually, we shall only need the fact that the projections P_M commute with the operators $R^\mathcal{H}(g)$, which may be easily verified as follows: $R(g)$ being continuous in $\mathcal{D}'(G)$ we have from (11): $R(g)f = \int R(g)f_\pi \, dm(\pi)$, which may also be written:

$$R^\mathcal{H}(g)f = \int R^\mathcal{H}(g)f_\pi \, dm(\pi) \quad (13)$$

Now, since $R^\mathcal{H}(g)$ preserves the norm in \mathcal{H}_π, the right-hand side of (13) is the integral of a square integrable field, and so equation (13) is the decomposition of $R^\mathcal{H}(g)f$ corresponding to (9). Thus we have, by definition of P_M,

$$P_M R^\mathcal{H}(g)f = \int_M R^\mathcal{H}(g)f_\pi \, dm(\pi) = R^\mathcal{H}(g)P_M f$$

which shows that P_M commutes with the right translations in \mathcal{H}, and so belongs to \mathcal{R}', the commutant of \mathcal{R}.

Now let $T = R^\mathcal{H}_0(D^*)$. Then by Proposition 1.1, we have

$$\mathcal{K} = \{ f \in \text{dom}(T^*) : T^*f = 0 \} = \text{Ker}(T^*)$$

As in the proof of the previous proposition, we see that, since T^* commutes with left translations, the corresponding operators B and C belong to $\mathcal{L}' = \mathcal{R}$, and so commute with P_M, which implies that T^* commutes with P_M, i.e. we have $P_M T^* \subset T^* P_M$. Thus, in particular, if f belongs to $K = \text{Ker}(T^*)$, $P_M f$ belongs to K. Therefore we have:

$$D P_M f = \int_M D f_\pi \, dm(\pi) = 0$$

for all Borel sets $M \subset \hat{G}_1$. This implies $D f_\pi = 0$ m-almost everywhere, i.e. $f_\pi \in \mathcal{K}_\pi$ m-almost everywhere, which means that f belongs to \mathcal{W}. The proof is complete.

Now for any bi–invariant Hilbert subspace \mathcal{H} of $\mathcal{D}'(G)$ and left differential operator D, let us put:

$$\mathcal{H}^\pm = \{ f \in \mathcal{H} : Df = \pm if \}$$

Then we have the following corollary of proposition 1.4:

Corollary 1.6. Under the same hypotheses as in proposition 1.4 we have:

$$\mathcal{H}^\pm = \int \mathcal{H}_\pi^\pm \, dm(\pi) \quad (14)$$

m being the measure defined by equation (9).
Theorem 1.7. Let \mathcal{H} be a bi-invariant Hilbert subspace of $\mathcal{D}'(G)$ and let m be the measure on \hat{G}, defined by equation (9). Then, if D is a symmetric left invariant differential operator on G, $R^H(D)$ is essentially self-adjoint if and only if $\pi(D)$ is essentially self-adjoint for m-almost all $\pi \in \hat{G}$.

This is entirely clear from the preceding result once it is recognized that

a. the space \mathcal{H}^\pm in (14) is equal to the space (0) if and only if almost each space \mathcal{H}^\pm_π equals (0), and

b. $\pi(D)$ fails to be essentially self-adjoint on a set of positive measure if and only if either $\mathcal{H}^+_\pi \neq (0)$ on a set of positive measure, or $\mathcal{H}^-_\pi \neq (0)$ on a set of positive measure.

If we let $\mathcal{H} = L^2(G)$, so that m is the Plancherel measure and $\mathcal{H}_0 = \mathcal{D}(G)$, we obtain the theorem stated in the introduction.

Let us mention some related results with only summary indication of proof.

Theorem 1.8. Under the same preconditions as in Theorem 1.7, let D_1 and D_2 be left invariant symmetric differential operators such that $R^{H}(D_1)$ and $R^{H}(D_2)$ are essentially self-adjoint. Then $R^{H}(D_1)$ and $R^{H}(D_2)$ strongly commute if and only if $\pi(D_1)$ and $\pi(D_2)$ strongly commute for m-almost all $\pi \in \hat{G}$.

This will be a consequence of the following two propositions:

Proposition 1.9. Let D be a symmetric left invariant differential operator such that $R^H(D)$ is essentially self-adjoint. Let M_0 be the set of elements $\pi \in \hat{G}$ such that $\pi(D)$ is essentially self-adjoint. Let E be the spectral measure corresponding to the self-adjoint closure of $R^H(D)$, and for $\pi \in M_0$ let E_π be the spectral measure belonging to the closure of $R^{H\pi}(D)$. Then we have:

$$E(\Delta) f = \int_{M_0} E_\pi(\Delta) f_d \pi dm(\pi)$$

for every Borel subset $\Delta \subset \mathbb{R}$ and $f \in \mathcal{H}$.

Proof. Let T be the closure of $R^{H}(D)$ and E its spectral measure. Then, since T commutes with the projections P_M, the $E(\Delta)$ also commutes with the P_M. Hence there exist spectral measures E_π in the spaces \mathcal{H}_π such that formula (15) is valid ($M_0 = \{ \pi : \mathcal{H}^\pm_\pi = (0) \}$) is a measurable subset of \hat{G} whose complement has measure 0 by Theorem 1.7). Let $T_\pi = \int \lambda E_\pi(d\lambda)$ be the corresponding self-adjoint operator. It can then be proved that for almost all π, T_π is equal to the closure of $R^{H\pi}(D)$. We only indicate the principle of the proof. Let G_π be the graph of T_π, G_M the graph of $TP_M = P_M T$, and let G be the graph in $\mathcal{D}'(G) \times \mathcal{D}'(G)$ of the operator D. Then we show that $(G_\pi)_{\pi \in M_0}$ is a measurable family of Hilbert subspaces of $\mathcal{D}' \times \mathcal{D}'$, and that $G_M = \int_{M_0} G_\pi dm(\pi)$ for all M. Now we know that G_M is contained in G, a closed subspace of $\mathcal{D}' \times \mathcal{D}'$; this implies $G_\pi \subset G$ for almost all π. But for those π, T_π is a restriction of the adjoint, or closure of $R^{H\pi}(D)$, and so being maximal symmetric, T_π equals this closure. □

Remark 1.10. The relation between the graphs mentioned above, by projection on the first space, gives the following relation between the domains of the operator T and T_π, viewed, with their graph norms, as Hilbert subspaces of $\mathcal{D}'(G)$:

$$D_T = \int_{M_0} D_{T_\pi} dm(\pi)$$

(16)
Next consider some abstract Hilbert space K_π in which the representation π, or rather a member of π, takes place, and let $\overline{K_\pi}$ and $\overline{\pi}$ denote respectively the conjugate space and representation. Then there exists an isomorphism:

$$\Phi : \overline{K_\pi} \otimes K_\pi \to H_\pi$$

which transforms $\overline{\pi} \otimes \pi$ into the double representation $L_{H_\pi}^* R_{H_\pi}^*$.

Proposition 1.11. With the same conventions as in proposition 1.9, let, for $\pi \in M_0$, F_π be the spectral measure in K_π corresponding to the closure of $\pi(D)$, and let I_π be the identity in $\overline{K_\pi}$. Then we have:

$$E_\pi(\Delta) = \Phi(I_\pi \otimes F_\pi(\Delta))\Phi^{-1}$$ \hspace{1cm} (17)

for all Borel sets $\Delta \subset \mathbb{R}$.

Proof. Choose an orthonormal basis in the space $\overline{K_\pi}$. Then the tensor product becomes a direct sum of copies of K_π, which is transformed by Φ into a direct sum:

$$H_\pi = \sum_k \otimes \mathcal{H}_\pi^k$$

such that each space \mathcal{H}_π^k is minimal right invariant with $R_{\mathcal{H}_\pi^k} \in \pi$. Let F^k denote the spectral measure in \mathcal{H}_π^k corresponding to F. Then we should show that $E_\pi(\Delta)f = \sum_k F^k(\Delta)f_k$, f_k being the orthogonal projection of f on the space \mathcal{H}_π^k.

We shall do this, and simplify the notation by dropping the index π throughout the remainder of the proof. Let $E'(\Delta)f = \sum_k F^k(\Delta)f_k$. Then E' is a spectral measure in the space $H = H_\pi$. Let $T = \int \lambda E'(d\lambda)$ and let $T_k = \int \lambda F^k(d\lambda)$. Then T_k is equal to the closure of $R_{\mathcal{H}_\pi^k}(D)$. The domain D_T of T is composed of the elements $f \in H$, such that for all k, f_k belongs to the domain of T_k, and $
abla_k ||T_k f_k||^2 < +\infty$. Moreover, we then have $Tf = \sum_k T_k f_k$. Let j and j_k denote the inclusions of H, respectively \mathcal{H}_π^k, in $D'(G)$. Then, if $f = j^* \phi$ belongs to H_0, $f_k = j_k^* \phi \in H_0^k \subset D_{T_k}$, and $T_k f_k = j_k^* D \phi$ is the projection of $j^* D \phi$ onto \mathcal{H}_π^k. Thus f belongs to the domain of T and $Tf = j^* D \phi = Df$. This means that T is an extension of the operator $R_{\mathcal{H}}(D)$, and so T equals the closure of this operator and $E' = E$, as was to be shown.

Addendum to §1

The argument in the proof of 1.1, part b, only made use of the fact that \mathcal{H}_0 is invariant under the operators $R_{\mathcal{H}}(\phi)$. In particular, it can be applied to the analytic vectors. Let us state and prove the result explicitly in this case:

Theorem 1.12. Let U be a unitary representation of G. Let $D \in \mathcal{U}$, and let $U_\omega(D)$ be the restriction of $U_\infty(D)$ to the space of analytic vectors for U. Then $U_\omega(D)$ and $U_\infty(D)$ have the same closure.
Proof. Let $\mathcal{H}, \mathcal{H}_{\omega}$ and \mathcal{H}_{∞} be the representation space and the subspaces of analytic and C^∞-vectors respectively. If $f \in \mathcal{H}_{\omega}$ and $v(x) = U(x)f$ is the corresponding analytic function, we have $U(g)U(\phi)f = \int \phi(x)v(gx)dx$, which is an analytic function of g by direct integration of the power series, at least if ϕ has its support in a sufficiently small coordinate patch. Thus \mathcal{H}_{ω} is invariant under the operators $U(\phi)$. Now let $f \in \mathcal{H}_{\infty}$. By the theorem of Dixmier and Malliavin ([3] Theorem 3.3) we may assume $f = U(\phi)h$ for some $h \in \mathcal{H}$, and $\phi \in \mathcal{D}(G)$. Let $h_n \in \mathcal{H}_{\omega}$ tend to h (Nelson’s theorem [7]). Then $f_n = U(\phi)h_n$ belongs to \mathcal{H}_{ω}, tends to f, and $U_{\omega}(D)f_n = U(D\phi)h_n$ tends to $U(D\phi)h = U_\infty(D)f$. Thus the closure of $U_{\omega}(D)$ extends $U_\infty(D)$, and so these two operators have the same closure.

An analogous assertion and argument is obviously valid for any subspace \mathcal{H}_0 of \mathcal{H}_{∞} which is dense in \mathcal{H} and invariant under the operators $U(\phi), \phi \in \mathcal{D}(G)$. For example, if, as in the introduction, $U = \tau$ is the quasi-regular representation in $L^2(X)$, we may take $\mathcal{H}_0 = \mathcal{D}(X)$.

Thus the theorem of Dixmier and Malliavin according to which the Gårding domain actually coincides with the space of C^∞-vectors, entails some simplification in the situation as described by Nelson and Stinespring ([12] §1).

2. Examples on the Heisenberg group

Let G now be the group of upper-triangular matrices

$$
\begin{bmatrix}
1, & x, & z \\
0, & 1, & y \\
0, & 0, & 1
\end{bmatrix}
$$

abbreviated (x, y, z). The Lie algebra \mathfrak{g} is identified as usual with the strictly upper triangular matrices, and we put:

$$
X = \begin{bmatrix}
0, & 1, & 0 \\
0, & 0, & 0 \\
0, & 0, & 0
\end{bmatrix}, \quad Y = \begin{bmatrix}
0, & 0, & 0 \\
0, & 0, & 1 \\
0, & 0, & 0
\end{bmatrix}, \quad Z = \begin{bmatrix}
0, & 0, & 1 \\
0, & 0, & 0 \\
0, & 0, & 0
\end{bmatrix}
$$

Let U^r be the unitary representation on $L^2(\mathbb{R})$ defined by

$$
[U^r(x, y, z)f](t) = \exp \imath r[(z + ty)f(t + x)]
$$

Then, to summarise the relevant facts, U^r is irreducible for every $r \in \mathbb{R} = \mathbb{R} \setminus \{0\}$, $\hat{G}_1 = \hat{G}$, the map $r \mapsto \chi_r$ which associates with $r \in \mathbb{R}$, the character of U^r, is a homeomorphism of \mathbb{R} onto its image in $\mathcal{D}(G)$, and one has the formula:

$$
\delta = \int \chi_r|r|dr
$$

Thus \mathbb{R} may be identified with a (Borel) subset of \hat{G}, and $|r|dr$ with the Plancherel measure [2], [9]. It is known moreover, that the space of C^∞-vectors for U^r is precisely the Schwartz space $\mathcal{S}(\mathbb{R})$ ([2] (1.4)). Since we have:

$$
U_{\infty}^r(X) = \frac{d}{dt}, \quad U_{\infty}^r(Y) = \imath rt, \quad U_{\infty}^r(Z) = \imath r
$$
we see that, as D describes \mathcal{U}, $U^r_\infty(D)$ describes precisely the set of linear differential operators with polynomial coefficients. Now $\mathcal{D}(\mathbb{R})$ being dense in $\mathcal{S}(\mathbb{R})$ for the topology of $\mathcal{S}(\mathbb{R})$, the closure of any operator $U^r_\infty(D)$ is equal to the closure of its restriction to $\mathcal{D}(\mathbb{R})$. In particular, $U^r_\infty(D)$ and its restriction to $\mathcal{D}(\mathbb{R})$ are simultaneously essentially self-adjoint. This self-adjointness will henceforth be described by saying that $U^r(D)$ is essentially self-adjoint.

Let us now consider three examples:

Example 2.1. $D = -X^2 + Y^4$. Then $U^r(D) = -(\frac{d}{dt})^2 + r^4 t^4$. It is well known that this operator is essentially self-adjoint for all $r \in \mathbb{R}$ (see [4] XIII.6.15 or [13] X.28). Thus, by Theorem 1.7, D, with domain $\mathcal{D}(G)$, is essentially self-adjoint in $L^2(G)$.

Example 2.2. (Harmonic oscillator). $D = -X^2 - Y^2$. Then $U^r(D) = -(\frac{d}{dt})^2 + r^2 t^2$. Here again, $U^r(D)$ is essentially self-adjoint for all $r \in \mathbb{R}$, and so D is essentially self-adjoint.

We mention this example because of the (rather farfetched) possibility to draw the inverse conclusion. For instance, if Z being central, D commutes with the elliptic operator $X^2 + Y^2 + Z^2$, and so D is essentially self-adjoint by the theorem of Nelson and Stinespring ([12] 2.4). By Theorem 1.7 it follows that $U^r(D)$ is essentially self-adjoint for almost all r. The fact that there are no exceptions can be seen directly as follows: For $r \neq 0$, let T_r be the unitary operator in $L^2(\mathbb{R})$ defined by $[T_r f](t) = |r|^\frac{1}{2} f(|r|^\frac{1}{2} t)$. Then we have:

$$U^r(D) = |r| T_r U^1(D) T_r^{-1}$$

i.e. up to a factor, the various operators $U^r(D)$ are unitarily equivalent. Thus, if one is essentially self-adjoint, so are the others.

Remark The operator $D = -X^2 - Y^2$ has an absolutely continuous spectrum, in spite of the fact that for each $r \in \mathbb{R}_+$, $U^r(D)$ has a purely discrete spectrum.

Although this is probably known a proof is included to keep this paper self-contained (an alternative suggested by the referee is to use [13] Thm XIII.85 and 86 and the method of [11]).

First note that, $U^r(D)$ being strictly positive, its spectral measure, which we denote F_r, is concentrated on $\mathbb{R}_+^+ = (0, +\infty)$. Therefore, by Propositions 1.4 and 1.9, the spectral measure E of D is also concentrated on \mathbb{R}_+^+ (this can of course also be seen by checking that $D = X^*X + Y^*Y$ is strictly positive, i.e. positive and injective). Now let Δ be a subset of \mathbb{R}_+^+ which has Lebesque measure equal to 0. Then, to show that $E(\Delta) = 0$, it is sufficient, by proposition 1.4 and 1.9, to show that the set S of all $r \in \mathbb{R}_+$ such that $F_r(\Delta) \neq 0$ is negligible with respect to the Plancherel measure, i.e. a set of Lebesque measure zero. But by (18) we have

$$F_r(\Delta) = T_r F_1 \left(\frac{1}{|r|} \Delta \right) T_r^{-1}$$

and so $S = \{ r \in \mathbb{R}_+ : F_1 \left(\frac{1}{|r|} \Delta \right) \neq 0 \}$. Now let μ be a positive bounded measure on \mathbb{R}_+^+ having the same sets of measure zero as F_1, and let ρ be a strictly positive
function on \mathbb{R}^+, regarded as group, integrable with respect to the Haar measure $\frac{d\rho}{r}$. Then the convolution product $\rho \ast \mu$ on \mathbb{R}^+ is absolutely continuous, and so we have $0 = \rho \ast \mu(\Delta) = \int \rho(r) \mu\left(\frac{1}{r} \Delta\right) \frac{d\rho}{r}$. Hence $\mu\left(\frac{1}{r} \Delta\right) = 0$ almost everywhere on \mathbb{R}^+. Consequently, S is negligible as asserted.

A similar remark and argument applies to the operator in example 2.1.

Example 2.3. $D = -X^2 - Y^4$. Then $U^r(D) = -(\frac{d}{dr})^2 - r^4 t^4$. The operator $U^r(D)$ is not essentially self-adjoint for any $r \neq 0$. In fact ‘both’ solutions of the equation $U^r(D)f = if$ belong to $L^2(\mathbb{R})$.

This is a consequence of Wintner’s theorem ([13] X.9 or [4] XIII.6.20) and of Kodaira’s theorem relating the defect indices of the operator on $[0, +\infty), (-\infty, 0]$ and $(-\infty, +\infty)$ (see [4] XIII.2.26). Thus, by Theorem 1.7, the operator D, with domain $\mathcal{D}(G)$, is not essentially self-adjoint in $L^2(G)$. With respect to the coordinates (x, y, z), $-D$ has the expression:

$$
\left(\frac{\partial}{\partial x}\right)^2 + \left(\frac{\partial}{\partial y} + x \frac{\partial}{\partial z}\right)^4
$$

(20)

By exchanging X and Y, or on the line $\frac{d}{dr}$ and $i \tau t$, one obtains a slightly simpler example of a left invariant differential operator on the Heisenberg group, which is not essentially self-adjoint, namely:

$$
\left(\frac{\partial}{\partial x}\right)^4 + \left(\frac{\partial}{\partial y} + x \frac{\partial}{\partial z}\right)^2
$$

(21)

References

E. G. F. Thomas
Universiteit Groningen
Mathematisch Instituut
Postbus 800, 9700 AV
The Netherlands
E.G.F.Thomas@math.rug.nl

Received December 20, 2000
and in final form May 17, 2001