Boundary Value Problems on the Half Line in the Theory of Colloids

RAVI P. AGARWALa,* and DONAL O’REGANb

aDepartment of Mathematical Sciences, Florida Institute of Technology, Melbourne, Fl 32901-6975, U.S.A.; bDepartment of Mathematics, National University of Ireland, Galway, Ireland

(Received 8 February 2002)

We present existence results for some boundary value problems defined on infinite intervals. In particular our discussion includes a problem which arises in the theory of colloids.

Key words: Boundary value problem, half line, colloids, existence

1 INTRODUCTION

In the theory of colloids [4, 7] it is possible to relate particle stability with the charge on the colloidal particle. We model the particle and its attendant electrical double layer using Poisson’s equation for a flat plate. If \(\Psi \) is the potential, \(\rho \) the charge density, \(D \) the dielectric constant and \(y \) the displacement, then we have

\[
\frac{d^2 \Psi}{dy^2} = -\frac{4\pi \rho}{D}.
\]

We assume the ions are point charged and their concentrations in the double layer satisfies the Boltzmann distribution

\[
c_i = c_i^* \exp\left(\frac{-z_i e \Psi}{\kappa T}\right),
\]

where \(c_i \) is the concentration of ions of type \(i \), \(c_i^* = \lim_{\Psi \to 0} c_i \), \(\kappa \) the Boltzmann constant, \(T \) the absolute temperature, \(e \) the electrical charge, and \(z \) the valency of the ion. In the neutral case, we have

\[
\rho = c_+ z_+ e + c_- z_- e \quad \text{or} \quad \rho = z e (c_+ - c_-)
\]

* Corresponding author. Tel.: 321-674-8091; Fax: 321-674-7412; E-mail: agarwal@fit.edu

ISSN 1024-123X print; ISSN 1563-5147 online © 2002 Taylor & Francis Ltd
where \(z = z_+ - z_- \). Then we have using

\[
c_+ = c \exp\left(\frac{-ze^\Psi}{\kappa T}\right) \quad \text{and} \quad c_- = c \exp\left(\frac{ze^\Psi}{\kappa T}\right),
\]

that

\[
\frac{d^2\Psi}{dy^2} = \frac{8\pi c e}{D} \sinh\left(\frac{ze^\Psi}{\kappa T}\right)
\]

where the potential initially takes some positive value \(\Psi(0) = \Psi_0 \) and tends to zero as the distance from the plate increases \(\text{i.e. } \Psi(\infty) = 0 \). Using the transformation

\[
\phi(y) = \frac{ze^\Psi(y)}{\kappa T} \quad \text{and} \quad x = \sqrt{\frac{4\pi cz^2 e^2}{\kappa TD} y},
\]

the problem becomes

\[
\begin{align*}
\frac{d^2\phi}{dx^2} &= 2 \sinh \phi, \quad 0 < x < \infty \\
\phi(0) &= c_1 \\
\lim_{x \to \infty} \phi(x) &= 0,
\end{align*}
\]

(1.1) where \(c_1 = \frac{z e^\Psi_0}{\kappa T} > 0 \). From a physical point of view we wish the solution \(\phi \) in (1.1) to also satisfy \(\lim_{x \to \infty} \phi'(x) = 0 \).

In this paper using the notion of upper and lower solutions (see [1, 2, 6]) we establish general existence results which guarantee the existence of \(BC(0, \infty) \) solutions to

\[
\begin{align*}
\frac{1}{p(t)} (p(t)y'(t))' &= q(t)f(t, y(t)), \quad 0 < t < \infty \\
-a_0y(0) + b_0 \lim_{t \to 0^+} p(t)y'(t) &= c_0, \quad a_0 > 0, \quad b_0 \geq 0 \\
\lim_{t \to \infty} y(t) &= 0;
\end{align*}
\]

(1.2) here \(BC(0, \infty) \) denotes the space of continuous, bounded functions from \([0, \infty)\) to \(\mathbb{R} \). Our theory not only complements some of the known results, \(\text{e.g.,} \ [5, 8] \), but also automatically produces the existence of a solution to (1.1). To establish these results we recall, for the convenience of the reader, the existence principle [3] we will use in Section 2. Consider the boundary value problem

\[
\begin{align*}
\frac{1}{p} (py')' &= qf(t, y), \quad 0 < t < \infty \\
-a_0y(0) + b_0 \lim_{t \to 0^+} p(t)y'(t) &= c_0, \quad a_0 > 0, \quad b_0 \geq 0 \\
y(t) \text{ bounded on } [0, \infty).
\end{align*}
\]

(1.3)
By an upper solution β to (1.3) we mean a function $\beta \in BC[0, \infty) \cap C^2(0, \infty)$, $p\beta' \in C[0, \infty)$ with
\[
\begin{aligned}
\frac{1}{p} (p\beta')' & \leq qf(t, \beta), \quad 0 < t < \infty \\
-a_0\beta(0) + b_0 \lim_{t \to 0^+} p(t)\beta'(t) & \leq c_0, \\
\beta(t) & \text{ bounded on } [0, \infty)
\end{aligned}
\] (1.4)

and by a lower solution α to (1.3) we mean a function $\alpha \in BC[0, \infty) \cap C^2(0, \infty)$, $p\alpha' \in C[0, \infty)$ with
\[
\begin{aligned}
\frac{1}{p} (p\alpha')' & \geq qf(t, \alpha), \quad 0 < t < \infty \\
-a_0\alpha(0) + b_0 \lim_{t \to 0^+} p(t)\alpha'(t) & \geq c_0, \\
\alpha(t) & \text{ bounded on } [0, \infty).
\end{aligned}
\] (1.5)

Theorem 1.1 [3] Let $f: [0, \infty) \times \mathbb{R} \to \mathbb{R}$ be continuous. Suppose the following conditions are satisfied:

\[
q \in C(0, \infty) \text{ with } q > 0 \text{ on } (0, \infty)
\] (1.6)

\[
p \in C[0, \infty) \cap C^1(0, \infty) \text{ with } p > 0 \text{ on } (0, \infty)
\] (1.7)

\[
\int_0^\mu \frac{ds}{p(s)} < \infty \text{ and } \int_0^\mu p(s)q(s) \, ds < \infty \text{ for any } \mu > 0
\] (1.8)

\[
\{ \text{ there exists } \alpha, \beta \text{ respectively lower and upper solutions of (1.3) with } \alpha(t) \leq \beta(t) \text{ for } t \in [0, \infty) \}
\] (1.9)

and

\[
\{ \text{ there exists a constant } M > 0 \text{ with } |f(t, u)| \leq M \text{ for } t \in [0, \infty) \text{ and } u \in [\alpha(t), \beta(t)] \}
\] (1.10)

Then (1.3) has a solution $y \in BC[0, \infty) \cap C^2(0, \infty)$, $py' \in C[0, \infty)$ with $\alpha(t) \leq y(t) \leq \beta(t)$ for $t \in [0, \infty)$. Also there exist constants A_0 and A_1 with $|p(t)y'(t)| \leq A_0 + A_1 \int_0^\mu p(s)q(s) \, ds$ for $t \in (0, \infty)$.

2 THE BOUNDARY CONDITION AT INFINITY

Motivated by the colloid example [4, 7] we discuss the boundary value problem

\[
\begin{aligned}
\frac{1}{p} (py')' & = qf(t, y), \quad 0 < t < \infty \\
-a_0y(0) + b_0 \lim_{t \to 0^+} p(t)y'(t) & = c_0, \quad a_0 > 0, \quad b_0 \geq 0, \quad c_0 \leq 0 \\
\lim_{t \to \infty} y(t) & = 0.
\end{aligned}
\] (2.1)
Theorem 2.1 Let \(f : [0, \infty) \times \mathbb{R} \to \mathbb{R} \) be continuous and suppose the following conditions hold:

\[q \in C(0, \infty) \text{ with } q > 0 \text{ on } (0, \infty) \quad (2.2) \]

\[p \in C[0, \infty) \cap C^1(0, \infty) \text{ with } p > 0 \text{ on } (0, \infty) \text{ and } \int_0^\infty \frac{ds}{p(s)} = \infty \quad (2.3) \]

\[\int_0^\mu \frac{ds}{p(s)} < \infty \text{ and } \int_0^\mu p(s)q(s)ds < \infty \text{ for any } \mu > 0 \quad (2.4) \]

\[f(t, 0) \leq 0 \text{ for } t \in (0, \infty) \quad (2.5) \]

\[\exists \, r_0 \geq \frac{-c_0}{a_0} \text{ with } f(t, r_0) \geq 0 \text{ for } t \in (0, \infty) \quad (2.6) \]

\[\exists \, M > 0 \text{ with } |f(t, u)| \leq M \text{ for } t \in [0, \infty) \text{ and } u \in [0, r_0] \quad (2.7) \]

\[\left\{ \begin{array}{l}
\exists \text{ a constant } m > 0 \text{ with } q(t)p^2(t)[f(t, u) - f(t, 0)] \geq m^2u \\
\text{for } t \in (0, \infty) \text{ and } u \in [0, r_0]
\end{array} \right. \quad (2.8) \]

\[\int_0^\infty p(x) \exp\left(-m \int_0^x \frac{ds}{p(s)} \right) q(x)|f(x, 0)| \, dx < \infty \quad (2.9) \]

\[\lim_{t \to \infty} t q(t)f(t, 0) = 0 \quad (2.10) \]

and

\[\left\{ \begin{array}{l}
\lim_{t \to \infty} \left(B_0 \int_0^\mu \frac{1}{p(s)} \int_0^x \frac{1}{p(x)} \, dx \, ds + C_0 \int_0^\mu \frac{ds}{p(s)} \right) = \infty \quad (2.11)
\end{array} \right. \]

for any constants \(B_0 > 0, C_0 \in \mathbb{R} \) and \(\mu > 0 \).

Then (2.1) has a solution \(y \in C[0, \infty) \cap C^2(0, \infty) \) with \(py' \in C[0, \infty) \) and \(0 \leq y(t) \leq r_0 \) for \(t \in [0, \infty) \).

Proof Now Theorem 1.1 (with \(\alpha = 0 \) and \(\beta = r_0 \)) guarantees that

\[\left\{ \begin{array}{l}
\frac{1}{p}(py')' = q(t)f(t, y), \quad 0 < t < \infty \\
-\alpha y(0) + b_0 \lim_{t \to 0^+} p(t)y'(t) = c_0 \\
y(t) \text{ bounded on } [0, \infty) \quad (2.12)
\end{array} \right. \]
has a solution \(y \in C[0, \infty) \cap C^2(0, \infty), \) \(py' \in C[0, \infty) \) and \(0 \leq y(t) \leq r_0 \) for \(t \in [0, \infty). \) Let \(g(x) = q(x)f(x, 0) \) and notice that

\[
w(t) = \exp \left(-m \int_0^t \frac{ds}{p(s)} \left[\frac{(-c_0)}{a_0 + b_0m} + \frac{(a_0 - b_0m)}{2m(a_0 + b_0m)} \int_0^\infty p(x) \exp \left(-m \int_0^x \frac{ds}{p(s)} \right) g(x) \, dx \right] \right) \\
- \frac{1}{2m} \exp \left(m \int_0^t \frac{ds}{p(s)} \int_0^\infty p(x) \exp \left(-m \int_0^x \frac{ds}{p(s)} \right) g(x) \, dx \right) \\
- \frac{1}{2m} \exp \left(-m \int_0^t \frac{ds}{p(s)} \int_0^\infty p(x) \exp \left(m \int_0^x \frac{ds}{p(s)} \right) g(x) \, dx \right)
\]

is a nonnegative solution of

\[
\begin{cases}
\frac{1}{p} (pw')' - \frac{m^2}{p^2(t)} w = g(t), & 0 < t < \infty \\
-a_0w(0) + \frac{b_0}{a_0 + b_0m} \int_0^\infty p(x) \exp \left(-m \int_0^x \frac{ds}{p(s)} \right) g(x) \, dx = c_0 \\
\text{lim}_{t \to \infty} w(t) = 0.
\end{cases}
\] (2.13)

Notice (2.10) and l'Hopital's rule guarantees that \(w(\infty) = 0. \)

Now let

\[
r(t) = y(t) - w(t).
\]

We first show \(r \) cannot have a local positive maximum on \([0, \infty). \) Suppose \(r \) has a local positive maximum at \(t_0 \in [0, \infty). \)

Case (i) \(\ t_0 \in [0, \infty). \)

For \(t > 0 \) notice from assumption (2.8) that

\[
\frac{1}{p} (pr')' = q(t)[f(t, y(t)) - f(t, 0)] - \frac{m^2}{p^2(t)} w(t) \geq \frac{m^2}{p^2(t)} [y(t) - w(t)].
\] (2.14)

We also have \(r'(t_0) = 0 \) and \(r''(t_0) \leq 0. \) However (2.14) yields

\[
r''(t_0) = \frac{1}{p(t_0)} (pr')'(t_0) \geq \frac{m^2}{p^2(t_0)} [y(t_0) - w(t_0)] > 0,
\]

a contradiction.

Case (ii) \(\ t_0 = 0. \)

Of course if \(b_0 = 0 \) we have a contradiction immediately. So suppose \(b_0 \neq 0. \) Then

\[
\lim_{t \to 0^+} \frac{p(t)}{b_0} r'(t) = \frac{a_0}{b_0} [y(0) - w(0)].
\] (2.15)
Now since \(y(0) - w(0) > 0 \) there exists \(\delta > 0 \) with \(y(t) - w(t) > 0 \) for \(t \in (0, \delta) \). Then (2.14) implies \((pr')' > 0 \) on \((0, \delta)\) and this together with (2.15) (i.e. \(\lim_{t \to 0^+} p(t)r'(t) > 0 \)) implies \(pr' > 0 \) on \((0, \delta)\), a contradiction.

Thus \(r(t) \) cannot have a local positive maximum on \([0, \delta)\). We now claim that \(r(t) \leq 0 \) on \([0, \infty)\). If \(r(t) \not\leq 0 \) on \([0, \infty)\) then there exists a \(c_1 > 0 \) with \(r(c_1) > 0 \). Now since \(r(t) \) cannot have a positive local maximum on \([0, \infty)\) it follows that \(r(t_2) > r(t_1) \) for all \(t_2 > t_1 \geq c_1 \); otherwise \(r(t) \) would have a local positive maximum on \([0, t_2)\). Thus \(r(t) \) is strictly increasing for \(t \geq c_1 \). Since both \(y(t) \) and \(w(t) \) are bounded on \([0, \infty)\) and \(\lim_{t \to \infty} w(t) = 0 \) then

\[
\lim_{t \to \infty} y(t) = \lim_{t \to \infty} [y(t) - w(t)] = \kappa \in (0, r_0].
\]

(2.16)

Now there exists \(c_2 \geq c_1 \) with \(y(t) \geq \kappa/2 \) for \(t \geq c_2 \). The differential equation and (2.8) imply that for \(t > 0 \) that we have

\[
(p(t)y'(t))' = p(t)q(t)f(t, y(t)) = p(t)q(t)[f(t, y(t)) - f(t, 0)] + p(t)q(t)f(t, 0) \\
\geq \frac{m^2}{p(t)}y(t) + p(t)q(t)f(t, 0).
\]

Consequently for \(t \geq c_2 \) we have

\[
(p(t)y'(t))' \geq \frac{m^2\kappa}{2p(t)} + p(t)q(t)f(t, 0) = \frac{1}{p(t)} \left[\frac{m^2\kappa}{2} + p^2(t)q(t)f(t, 0) \right].
\]

Assumption (2.10) implies that there is a constant \(c_3 \geq c_2 \) with

\[
(p(t)y'(t))' \geq \frac{m^2\kappa}{4p(t)} \quad \text{for} \quad t \geq c_3.
\]

Two integrations together with the fact that \(y \geq 0 \) on \([0, \infty)\) yields

\[
y(t) \geq p(c_3)y'(c_3) \int_{c_3}^{t} \frac{ds}{p(s)} + \frac{m^2\kappa}{4} \int_{c_3}^{t} \frac{1}{p(s)} \int_{c_3}^{s} \frac{1}{p(x)} \, dx \, ds
\]

(not also from Theorem 1.1 that there exist constants \(A_0 \) and \(A_1 \) with \(|p(t)y'(t)| \leq A_0 + A_1 \int_{0}^{t} p(s)q(s) \, ds \) for \(t \in (0, \infty) \)). Now assumption (2.11) implies that \(y \) is unbounded on \([0, \infty)\), a contradiction. Thus \(r(t) \leq 0 \) on \([0, \infty)\) and the result follows. \(\square \)

Notice in Theorem 3.1 that the solution \(y \) of (2.1) satisfies \(r(t) \leq 0 \) for \(t \in [0, \infty) \), and so \(y(t) \leq w(t) \) for \(t \in [0, \infty) \).

Corollary 2.2 Let \(f:\{0, \infty) \times R \to R \) be continuous and suppose (2.2)–(2.11) hold. Then (2.1) has a solution \(y \in C([0, \infty) \cap C^2([0, \infty) \) with \(py' \in C([0, \infty) \) and \(0 \leq y(t) \leq w(t) \) for \(t \in [0, \infty) \), with \(w \) given in Theorem 2.1.

The colloid [4, 7] example motivates our next result.

Theorem 2.3 Let \(f:\{0, \infty) \times R \to R \) be continuous and suppose (2.2)–(2.11) hold. In addition assume the following conditions hold:

\[
f(t, u) \geq 0 \quad \text{for} \quad t \in [0, \infty) \quad \text{and} \quad u \in [0, w(t)]; \quad \text{here} \ w \text{ is as in Theorem 2.1}
\]

(2.17)
and
\[\lim_{t \to \infty} p(t) \in (0, \infty]. \] (2.18)

Then (2.1) has a solution \(y \in C[0, \infty) \cap C^2(0, \infty) \) with \(py' \in C[0, \infty), \) \(0 \leq y(t) \leq w(t) \) for \(t \in [0, \infty) \) and \(\lim_{t \to \infty} y'(t) = 0. \)

Proof From Corollary 2.2 we know that there exists a solution \(y \in C[0, \infty) \cap C^2(0, \infty), \)
\(py' \in C[0, \infty) \) and \(0 \leq y(t) \leq w(t) \) for \(t \in [0, \infty), \) to (2.1). Also (2.17) and the differential equation yields
\[(py')' = p(t)q(t)f(t, y(t)) \geq 0 \quad \text{for} \quad t > 0, \] (2.19)
so \(py' \) is nondecreasing on \((0, \infty),\) and \(\lim_{t \to \infty} p(t)y'(t) \in [-\infty, \infty]. \)

Suppose there exists \(t_1 \in [0, \infty) \) with \(p(t_1)y'(t_1) > 0. \) Then
\[p(t)y'(t) \geq a_0 = p(t_1)y'(t_1) \quad \text{for} \quad t \geq t_1, \]
and so
\[y(t) \geq y(t_1) + a_0 \int_{t_1}^{t} \frac{ds}{p(s)} \quad \text{for} \quad t \geq t_1. \] (2.20)

That is
\[y(t) \geq a_0 \int_{t_1}^{t} \frac{ds}{p(s)} \quad \text{for} \quad t \geq t_1 \] (2.21)
(notice (2.3) implies that the right hand side of (2.21) goes to \(\infty \) as \(t \to \infty. \)) This contradicts \(0 \leq y(t) \leq r_0 \) for \(t \in [0, \infty). \) Thus \(p(t)y'(t) \leq 0 \) for \(t \in (0, \infty), \) and so
\[\lim_{t \to \infty} p(t)y'(t) = \kappa \in [-\infty, 0] \quad \text{and} \quad \lim_{t \to \infty} y'(t) \in [-\infty, 0]. \] (2.22)

In fact \(\kappa \in (-\infty, 0] \) from (2.19). Finally if \(\kappa < 0 \) then there exists \(t_2 > 0 \) with \(p(t)y'(t) \leq \kappa/2 \)
for \(t \geq t_2. \) Integrate from \(t_2 \) to \(t \) \((t \geq t_2) \) to get
\[y(t) \leq y(t_2) + \frac{\kappa}{2} \int_{t_2}^{t} \frac{ds}{p(s)} \leq r_0 + \frac{\kappa}{2} \int_{t_2}^{t} \frac{ds}{p(s)}. \] (2.23)

Now (2.23) together with (2.3) contradicts \(y \geq 0 \) on \([0, \infty). \) Consequently \(\lim_{t \to \infty} p(t) y'(t) = 0, \) and this together with (2.18) gives \(\lim_{t \to \infty} y'(t) = \lim_{t \to \infty} p(t)y'(t)/p(t) = 0. \)

\[\square \]

Example 2.1 (Colloid problem [4, 7]).

The boundary value problem
\[
\begin{aligned}
y'' &= 2 \sinh y, \quad 0 < t < \infty \\
y(0) &= c > 0 \\
\lim_{t \to \infty} y(t) &= 0
\end{aligned}
\] (2.24)
has a solution \(y \in C[0, \infty) \cap C^2(0, \infty) \) with
\[
0 \leq y(t) \leq ce^{-t} \quad \text{for } t \in [0, \infty).
\] (2.25)
To see this we will apply Corollary 2.2 with
\[
p = 1, \quad q = 1, \quad a_0 = 1, \quad c_0 = -c, \quad b_0 = 0 \quad \text{and} \quad r_0 = c.
\]
Clearly (2.1)–(2.7), (2.8) since \(f(t, u) - f(t, 0) = \sinh u \geq u \) for \(u \geq 0 \), (2.9)–(2.11) hold. Corollary 2.2 guarantees that (2.24) has a solution \(y \in C[0, \infty) \cap C^2(0, \infty) \) with
\[
0 \leq y(t) \leq w(t) \quad \text{for } t \in [0, \infty).
\]
It is immediate from (2.13) (since \(g = 0 \)) that
\[
w(t) = ce^{-t} \quad \text{for } t \in [0, \infty).
\]
Finally we remark that the solution \(y \) satisfies \(\lim_{t \to \infty} y'(t) = 0 \). To see this we need only check that (2.17)–(2.18) hold, but these are immediate.

References

