Research Article

Existence Results for a Nonlinear Semipositone Telegraph System with Repulsive Weak Singular Forces

Fanglei Wang, Yunhai Wang, and Yukun An

1 College of Science, Hohai University, Nanjing 210098, China
2 College of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Correspondence should be addressed to Fanglei Wang, leizi1123@163.com

Received 10 September 2011; Accepted 9 November 2011

Academic Editor: Sebastian Anita

Copyright © 2011 Fanglei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using the fixed point theorem of cone expansion/compression, we consider the existence results of positive solutions for a nonlinear semipositone telegraph system with repulsive weak singular forces.

1. Introduction

In this paper, we are concerned with the existence of positive solutions for the nonlinear telegraph system:

\begin{align}
 u_{tt} - u_{xx} + c_1 u_t + a_1(t, x) u &= f(t, x, v), \\
 v_{tt} - v_{xx} + c_2 v_t + a_2(t, x) v &= g(t, x, u),
\end{align}

with doubly periodic boundary conditions

\begin{align}
 u(t + 2\pi, x) &= u(t, x + 2\pi) = u(t, x), \quad (t, x) \in \mathbb{R}^2, \\
 v(t + 2\pi, x) &= v(t, x + 2\pi) = v(t, x), \quad (t, x) \in \mathbb{R}^2.
\end{align}

In particular, the function \(f(t, x, v) \) may be singular at \(v = 0 \) or superlinear at \(v = +\infty \), and \(g(t, x, u) \) may be singular at \(u = 0 \) or superlinear at \(u = +\infty \).
In the latter years, the periodic problem for the semilinear singular equation

\[x'' + a(t)x = \frac{b(t)}{x^\lambda} + c(t), \] (1.3)

with \(a, b, c \in L^1[0,T] \) and \(\lambda > 0 \), has received the attention of many specialists in differential equations. The main methods to study (1.3) are the following three common techniques:

(i) the obtainment of a priori bounds for the possible solutions and then the applications of topological degree arguments;

(ii) the theory of upper and lower solutions;

(iii) some fixed point theorems in a cone.

We refer the readers to see [1–7] and the references therein.

Equation (1.3) is related to the stationary version of the telegraph equation

\[u_{tt} - u_{xx} + cu + \lambda u = f(t,x,u), \] (1.4)

where \(c > 0 \) is a constant and \(\lambda \in \mathbb{R} \). Because of its important physical background, the existence of periodic solutions for a single telegraph equation or telegraph system has been studied by many authors; see [8–16]. Recently, Wang utilize a weak force condition to enable the achievement of new existence criteria for positive doubly periodic solutions of nonlinear telegraph system through a basic application of Schauder’s fixed point theorem in [17]. Inspired by these papers, here our interest is in studying the existence of positive doubly periodic solutions for a semipositone nonlinear telegraph system with repulsive weak singular forces by using the fixed point theorem of cone expansion/compression.

Lemma 1.1 (see [18]). Let \(E \) be a Banach space, and let \(K \subset E \) be a cone in \(E \). Assume that \(\Omega_1, \Omega_2 \) are open subsets of \(E \) with \(0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2 \), and let \(T : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \rightarrow K \) be a completely continuous operator such that either

(i) \(\|Tu\| \leq \|u\|, \ u \in K \cap \partial \Omega_1 \) and \(\|Tu\| \geq \|u\|, \ u \in K \cap \partial \Omega_2 \); or

(ii) \(\|Tu\| \geq \|u\|, \ u \in K \cap \partial \Omega_1 \) and \(\|Tu\| \leq \|u\|, \ u \in K \cap \partial \Omega_2 \).

Then, \(T \) has a fixed point in \(K \cap (\overline{\Omega}_2 \setminus \Omega_1) \).

This paper is organized as follows: in Section 2, some preliminaries are given; in Section 3, we give the main results.

2. Preliminaries

Let \(T^2 \) be the torus defined as

\[T^2 = \left(\frac{\mathbb{R}}{2\pi \mathbb{Z}} \right) \times \left(\frac{\mathbb{R}}{2\pi \mathbb{Z}} \right). \] (2.1)

Doubly \(2\pi \)-periodic functions will be identified to be functions defined on \(T^2 \). We use
the notations
\[
L^p(\mathbb{T}^2), C(\mathbb{T}^2), C^\alpha(\mathbb{T}^2), D(\mathbb{T}^2) = C^\infty(\mathbb{T}^2), \ldots
\] (2.2)
to denote the spaces of doubly periodic functions with the indicated degree of regularity. The space \(D'(\mathbb{T}^2)\) denotes the space of distributions on \(\mathbb{T}^2\).

By a doubly periodic solution of (1.1)-(1.2) we mean that a \((u,v) \in L^1(\mathbb{T}^2) \times L^1(\mathbb{T}^2)\) satisfies (1.1)-(1.2) in the distribution sense; that is,
\[
\begin{align*}
\int_{\mathbb{T}^2} u(q_{tt} - q_{xx} - c_1q_t + a_1(t,x)q) \, dt \, dx &= \int_{\mathbb{T}^2} f(t,x,v) \, dt \, dx, \\
\int_{\mathbb{T}^2} v(q_{tt} - q_{xx} - c_2q_t + a_2(t,x)q) \, dt \, dx &= \int_{\mathbb{T}^2} g(t,x,u) \, dt \, dx,
\end{align*}
\] (2.3)

First, we consider the linear equation
\[
u_{tt} - u_{xx} + c_iu_t - \lambda_iu = h_i(t,x), \quad \text{in } D'(\mathbb{T}^2),
\] (2.4)

where \(c_i > 0, \lambda_i \in \mathbb{R}\), and \(h_i(t,x) \in L^1(\mathbb{T}^2), \quad (i = 1, 2)\).

Let \(\mathcal{E}_{\lambda_i}\) be the differential operator
\[
\mathcal{E}_{\lambda_i} = u_{tt} - u_{xx} + c_iu_t - \lambda_iu,
\] (2.5)
acting on functions on \(\mathbb{T}^2\). Following the discussion in [14], we know that if \(\lambda_i < 0\), then \(\mathcal{E}_{\lambda_i}\) has the resolvent \(R_{\lambda_i}^*\):
\[
R_{\lambda_i} : L^1(\mathbb{T}^2) \rightarrow C(\mathbb{T}^2), \quad h_i \mapsto u_i,
\] (2.6)

where \(u_i\) is the unique solution of (2.4), and the restriction of \(R_{\lambda_i}\) on \(L^p(\mathbb{T}^2)\) \((1 < p < \infty)\) or \(C(\mathbb{T}^2)\) is compact. In particular, \(R_{\lambda_i} : C(\mathbb{T}^2) \rightarrow C(\mathbb{T}^2)\) is a completely continuous operator.

For \(\lambda_i = -c_i^2/4\), the Green function \(G_i(t,x)\) of the differential operator \(\mathcal{E}_{\lambda_i}\) is explicitly expressed; see lemma 5.2 in [14]. From the definition of \(G_i(t,x)\), we have
\[
\begin{align*}
G_i := \text{ess inf } G_i(t,x) &= \frac{e^{-c_i \|/2}}{(1 - e^{-c_i \|})^2}, \\
\overline{G}_i := \text{ess sup } G_i(t,x) &= \frac{(1 + e^{-c_i \|})}{2(1 - e^{-c_i \|})^2}.
\end{align*}
\] (2.7)

Let \(E\) denote the Banach space \(C(\mathbb{T}^2)\) with the norm \(\|u\| = \max_{(t,x) \in \mathbb{T}^2}|u(t,x)|\), then \(E\) is an ordered Banach space with cone
\[
K_0 = \big\{ u \in E \mid u(t,x) \geq 0, \ \forall (t,x) \in \mathbb{T}^2 \big\}.
\] (2.8)

For convenience, we assume that the following condition holds throughout this paper:
\begin{enumerate}[(H1)]
\item \(a_i(t,x) \in C(\mathbb{T}^2, \mathbb{R}^+), \ 0 < a_i(t,x) \leq c_i^2/4\text{ for } (t,x) \in \mathbb{T}^2, \text{ and } \int_{\mathbb{T}^2} a_i(t,x) \, dt \, dx > 0.\)
\end{enumerate}
Next, we consider (2.4) when \(-\lambda \) is replaced by \(a_i(t,x) \). In [10], Li has proved the following unique existence and positive estimate result.

Lemma 2.1. Let \(h_i(t,x) \in L^1(\mathbb{T}^2); \) is the Banach space \(C(\mathbb{T}^2) \). Then; (2.4) has a unique solution \(u_i = P_i h_i; \) \(P_i : L^1(\mathbb{T}^2) \to C(\mathbb{T}^2) \) is a linear bounded operator with the following properties;

(i) \(P_i : C(\mathbb{T}^2) \to C(\mathbb{T}^2) \) is a completely continuous operator;

(ii) if \(h_i(t,x) > 0, \) then a.e. \((t,x) \in \mathbb{T}^2, \ P_i[h_i(t,x)] \) has the positive estimate

\[
G_i\|h_i\|_{L^1} \leq P_i[h_i(t,x)] \leq \frac{G_i}{G_i\|a_i\|_{L^1}}\|h_i\|_{L^1}. \tag{2.9}
\]

3. Main Result

In this section, we establish the existence of positive solutions for the telegraph system

\[
\begin{align*}
v_{tt} - v_{xx} + c_1v_t + a_1(t,x)v &= f(t,x,u), \\
v_{tt} - v_{xx} + c_2v_t + a_2(t,x)v &= g(t,x,u).
\end{align*}
\tag{3.1}
\]

where \(a_i \in C(\mathbb{R}^2, \mathbb{R}^+) \) and \(f(t,x,v) \) may be singular at \(v = 0 \). In particular, \(f(t,x,v) \) may be negative or superlinear at \(v = +\infty \). \(g(t,x,u) \) has the similar assumptions. Our interest is in working out what weak force conditions of \(f(t,x,v) \) at \(v = 0, g(t,x,u) \) at \(u = 0 \) and what superlinear growth conditions of \(f(t,x,v) \) at \(v = +\infty, g(t,x,u) \) at \(u = +\infty \) are needed to obtain the existence of positive solutions for problem (1.1)-(1.2).

We assume the following conditions throughout.

(H2) \(f, g : \mathbb{T}^2 \times (0, \infty) \to \mathbb{R} \) is continuous, and there exists a constant \(M > 0 \) such that

\[
f_1(t,x,u) + M \geq 0, \quad f_2(t,x,u) + M \geq 0, \quad \forall (t,x) \in \mathbb{T}^2 \text{ and } u,v \in (0, \infty). \tag{3.2}
\]

(H3) \(F(t,x,v) = f(t,x,v) + M \leq j_1(v) + h_1(v) \) for \((t,x,v) \in \mathbb{T}^2 \times (0, \infty) \) with \(j_1 > 0 \) continuous and nonincreasing on \((0, \infty) \), \(h_1 \geq 0 \) continuous on \((0, \infty) \) and \(h_1/j_1 \) nondecreasing on \((0, \infty) \).

\[
G(t,x,u) = g(t,x,u) + M \leq j_2(u) + h_2(u) \text{ for } (t,x,u) \in \mathbb{T}^2 \times (0, \infty) \text{ with } j_2 > 0 \text{ continuous and nonincreasing on } (0, \infty), \ h_2 \geq 0 \text{ continuous on } (0, \infty) \text{ and } h_2/j_2 \text{ nondecreasing on } (0, \infty).
\]

(H4) \(F(t,x,v) = f(t,x,v) + M \geq j_3(v) + h_3(v) \) for all \((t,x,v) \in T^2 \times (0, \infty) \) with \(j_3 > 0 \) continuous and nonincreasing on \((0, \infty) \), \(h_3 \geq 0 \) continuous on \((0, \infty) \) with \(h_3/j_3 \) nondecreasing on \((0, \infty) \);

\[
G(t,x,u) = g(t,x,u) + M \geq j_4(u) + h_4(u) \text{ for all } (t,x,u) \in \mathbb{T}^2 \times (0, \infty) \text{ with } j_4 > 0 \text{ continuous and nonincreasing on } (0, \infty), \ h_4 \geq 0 \text{ continuous on } (0, \infty) \text{ with } h_4/j_4 \text{ nondecreasing on } (0, \infty).
\]

(H5) There exists

\[
r > \frac{M\|\omega_1\|}{\delta_1},
\tag{3.3}
\]
such that

\[r \geq \frac{4\pi^2 G_1}{G_1 \| a_1 \|_{L^1}} I_1 \cdot I_2, \]

(3.4)

here

\[I_1 = j_1 \left(\frac{G_2 j_4 (r) \left(1 + \frac{h_4 (\delta_1 r - M \| \omega_1 \|)}{j_4 (\delta_1 r - M \| \omega_1 \|)} \right) 4\pi^2 - M \| \omega_2 \|}{G_2 \| a_2 \|_{L^1}} \right), \]

\[I_2 = 1 + \frac{h_1 \left(\left(\frac{4\pi^2 G_1}{G_2 \| a_2 \|_{L^1}} j_2 (\delta_1 r - M \| \omega_1 \|) \{ 1 + \frac{h_2 (r)}{j_2 (r)} \} \right) 4\pi^2 - M \| \omega_2 \|}{j_1 \left(\left(\frac{4\pi^2 G_1}{G_2 \| a_2 \|_{L^1}} j_2 (\delta_1 r - M \| \omega_1 \|) \{ 1 + \frac{h_2 (r)}{j_2 (r)} \} \right) 4\pi^2 - M \| \omega_2 \| \right)}, \]

(3.5)

where \(\delta_1 = \frac{G_1^2 \| a_1 \|_{L^1}}{G_2} \in (0, 1) \), and \(\omega_1(t, x) \) is the unique solution to problem:

\[u_{tt} - u_{xx} + c_1 u_t + a_1(t, x) u = 1, \]

\[u(t + 2\pi, x) = u(t, x + 2\pi) = u(t, x), \]

(3.6)

(H6) There exists \(R > r \), such that

\[4\pi^2 G_1 I_3 \cdot I_4 \geq R, \]

\[\delta_2 j_4 (R) \left(1 + \frac{h_4 (\delta_1 R - M \| \omega_1 \|)}{j_4 (\delta_1 R - M \| \omega_1 \|)} \right) > M, \]

(3.7)

where

\[I_3 = G_1 j_3 \left(\frac{4\pi^2 G_2}{G_2 \| a_2 \|_{L^1}} j_2 (\delta_1 R - M \| \omega_1 \|) \left(1 + \frac{h_2 (R)}{j_2 (R)} \right) \right), \]

\[I_4 = 1 + \frac{h_3 \left(\frac{G_2 j_4 (R) \left(1 + \frac{h_4 (\delta_1 R - M \| \omega_1 \|)}{j_4 (\delta_1 R - M \| \omega_1 \|)} \right) 4\pi^2 - M \| \omega_2 \|}{j_3 \left(\frac{G_2 j_4 (R) \left(1 + \frac{h_4 (\delta_1 R - M \| \omega_1 \|)}{j_4 (\delta_1 R - M \| \omega_1 \|)} \right) 4\pi^2 - M \| \omega_2 \| \right)} \right), \]

(3.8)

Theorem 3.1. Assume that (H1)–(H6) hold. Then, the problem (1.1)–(1.2) has a positive doubly periodic solution \((u, v)\).

Proof. To show that (1.1)–(1.2) has a positive solution, we will prove that

\[u_{tt} - u_{xx} + c_1 u_t + a_1(t, x) u = F(t, x, v - M \omega_2), \]

\[v_{tt} - v_{xx} + c_2 v_t + a_2(t, x) v = G(t, x, u - M \omega_1) \]

(3.9)
has a solution $(\tilde{u}, \tilde{v}) = (u + M\omega_1, v + M\omega_2)$ with $\tilde{u} > M\omega_1, \tilde{v} > M\omega_2$ for $(t, x) \in \mathbb{T}^2$. In addition, by Lemma 2.1, it is clear to see that $(u, v) \in C^2(\mathbb{T}^2) \times C^2(\mathbb{T}^2)$ is a solution of (3.9) if and only if $(u, v) \in C(\mathbb{T}^2) \times C(\mathbb{T}^2)$ is a solution of the following system:

\begin{equation}
\begin{aligned}
u &= P_1(F(t, x, v - M\omega_2)), \\
v &= P_2(G(t, x, u - M\omega_1)).
\end{aligned}
\end{equation}

(3.10)

Evidently, (3.10) can be rewritten as the following equation:

\begin{equation}
u = P_1(F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2)).
\end{equation}

(3.11)

Define a cone $K \subset E$ as

\begin{equation}
K = \{u \in E : u \geq 0, u \geq \delta_1\|u\|\}.
\end{equation}

(3.12)

We define an operator $T : E \to K$ by

\begin{equation}(Tu)(t, x) = P_1(F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2))
\end{equation}

(3.13)

for $u \in E$ and $(t, x) \in \mathbb{T}^2$. We have the conclusion that $T : E \to E$ is completely continuous and $T(K) \subseteq K$. The complete continuity is obvious by Lemma 2.1. Now, we show that $T(K) \subseteq K$. For any $u \in K$, we have

\begin{equation}
Tu = P_1(F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2)).
\end{equation}

(3.14)

From (H1)--(H3) and Lemma 2.1, we have

\begin{equation}
\begin{aligned}
Tu &= P_1(F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2)) \\
&\geq G_1\|F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2)\|_{L^1}, \\
\|Tu\| &= P(F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2)) \\
&\leq \frac{G_1}{G_1\|a_1\|_{L^1}}\|F(t, x, P_2(G(t, x, u - M\omega_1)) - M\omega_2)\|_{L^1}.
\end{aligned}
\end{equation}

(3.15)

So, we get

\begin{equation}
Tu \geq \frac{G_1^2\|a_1\|_{L^1}}{G_1}\|Tu\| \geq \delta_1\|Tu\|,
\end{equation}

(3.16)

namely, $T(K) \subseteq K$.

Let

\begin{equation}
\Omega_r = \{u \in E : \|u\| < r\}, \quad \Omega_R = \{u \in E : \|u\| < R\}.
\end{equation}

(3.17)

Since $r \leq \|u\| \leq R$ for any $u \in K \cap (\overline{\Omega_R} \setminus \Omega_r)$, we have $0 < \delta_1 r - M\|\omega\| \leq u - M\omega_1 \leq R$.

First, we show

$$
\|Tu\| \leq \|u\|, \quad \text{for } u \in K \cap \partial \Omega_r.
$$ \hfill (3.18)

In fact, if $u \in K \cap \partial \Omega_r$, then $\|u\| = r$ and $u \geq \delta_1 r > M\|\omega_1\|$ for $(t, x) \in \Omega$. By (H3) and (H4), we have

$$
P_2(G(t, x, u - M\omega_1)) \leq \frac{G_2}{G_2\|a_2\|_{L_1}} \|G(t, x, u - M\omega_1)\|_{L_1},
$$

$$
\leq \frac{G_2}{G_2\|a_2\|_{L_1}} \left\| \frac{h_2(u - M\omega_1)}{j_2(u - M\omega_1)} \right\|_{L_1},
$$

$$
\leq \frac{G_2}{G_2\|a_2\|_{L_1}} j_2(\delta_1 r - M\|\omega_1\|) \left(1 + \frac{h_2(r)}{j_2(r)}\right) 4\pi^2,
$$

$$
P_2(G(t, x, u - M\omega_1)) \geq \frac{G_2}{G_2\|a_2\|_{L_1}} \|G(t, x, u - M\omega_1)\|_{L_1},
$$

$$
\geq \frac{G_2}{G_2\|a_2\|_{L_1}} j_4(u - M\omega_1) \left(1 + \frac{h_4(u - M\omega_1)}{j_4(u - M\omega_1)}\right) \|\omega_1\|_{L_1},
$$

$$
\geq \frac{G_2}{G_2\|a_2\|_{L_1}} j_4(r) \left(1 + \frac{h_4(\delta_1 r - M\|\omega_1\|)}{j_4(\delta_1 r - M\|\omega_1\|)}\right) 4\pi^2.
$$ \hfill (3.20)

In addition, we also have

$$
P_2(G(t, x, u - M\omega_1)) \geq \frac{G_2 j_4(r)}{G_2\|a_2\|_{L_1}} \left(1 + \frac{h_4(\delta_1 r - M\|\omega_1\|)}{j_4(\delta_1 r - M\|\omega_1\|)}\right) 4\pi^2
$$

$$
\geq \frac{G_2 j_4(R)}{G_2\|a_2\|_{L_1}} \left(1 + \frac{h_4(\delta_1 r - M\|\omega_1\|)}{j_4(\delta_1 r - M\|\omega_1\|)}\right) 4\pi^2
$$

$$
> \frac{G_2}{G_2\|a_2\|_{L_1}} \cdot M4\pi^2
$$

$$
> M\omega_2,
$$ \hfill (3.21)

by (H5), (H6), and (3.20).

So, we have

$$
Tu = P_1(F(t, x, v - M\omega_2))
$$

$$
\leq \frac{G_1}{G_1\|a_1\|_{L_1}} \|F(t, x, v - M\omega_2)\|_{L_1},
$$

$$
\leq \frac{G_1}{G_1\|a_1\|_{L_1}} \left\| j_1(v - M\omega_2) \left(1 + \frac{h_1(v - M\omega_2)}{j_1(v - M\omega_2)}\right) \right\|_{L_1}.
for \((t, x) \in T^2\), since \(\delta_1 r - M\|\omega_1\| \leq u - M\omega_1 \leq r\).

This implies that \(\|Tu\| \leq \|u\|\); that is, (3.18) holds.

Next, we show

\[\|Tu\| \geq \|u\|, \quad \text{for } u \in K \cap \partial\Omega_R. \]

(3.23)

If \(u \in K \cap \partial\Omega_R\), then \(\|u\| = R\) and \(u \geq \delta R > M\|\omega_1\|\) for \((t, x) \in T^2\). From (H4) and (H6), we have

\[
Tu = P_1(F(t, x, v - M\omega_1))
\]

\[
\geq G_1 \left\| j_3(v - M\omega_2) \left\{ 1 + \frac{h_3(v - M\omega_2)}{j_5(v - M\omega_2)} \right\} \right\|_{L^1}
\]

\[
\geq G_1 \left\| j_3(P_2(G(t, x, u - M\omega_1)) - M\omega_2) \times \left\{ 1 + \frac{h_3(P_2(G(t, x, u - M\omega_1)) - M\omega_2)}{j_5(P_2(G(t, x, u - M\omega_1)) - M\omega_2)} \right\} \right\|_{L^1}
\]

\[
\geq G_1 \left\| j_3 \left(\frac{G_2}{G_2\|a_2\|_{L^1}} j_2(\delta_1 R - M\|\omega_1\|) \left\{ 1 + \frac{h_2(R)}{j_2(R)} \right\} 4\pi^2 \right) \right\|_{L^1}
\]

\[
\times \left\{ 1 + \frac{h_3(G_2 j_4(R) \{ 1 + h_4(\delta_1 R - M\|\omega_1\|) / j_4(\delta_1 R - M\|\omega_1\|) \} 4\pi^2 - M\|\omega_2\|) \} \right\} \right\|_{L^1}
\]

\[
\geq R = \|u\|
\]

(3.24)

for \((t, x) \in T^2\), since \(\delta_1 R - M\|\omega_1\| \leq u - M\omega_1 \leq R\).

This implies that \(Tu \geq \|u\|\); that is, (3.23) holds.

Finally, (3.18), (3.23), and Lemma 1.1 guarantee that \(T\) has a fixed point \(u \in K \cap \partial\Omega_R \setminus \Omega\) with \(r \leq \|u\| \leq R\). Clearly, \(u > M\omega_1\).
Since
\[
P_2(G(t, x, u - M\omega_1)) \geq G_2\|G(t, x, M\omega_1)\|_{L^1},
\]
\[
\geq G_2\left\| f_1(u - M\omega_1) \left(1 + \frac{h_4(u - M\omega_1)}{j_4(u - M\omega_1)} \right) \right\|_{L^1},
\]
\[
\geq G_2f_4(R) \left\{ 1 + \frac{h_4(\delta_1r - M\|\omega_1\|)}{j_4(\delta_1r - M\|\omega_1\|)} \right\} 4\pi^2
\]
\[
> \frac{G_2}{G_2\|a_2\|_{L^1}} M4\pi^2
\]
\[
\geq M\omega_2,
\]
then we have a doubly periodic solution \((u, v)\) of (3.9) with \(u > M\omega_1, v > M\omega_2\), namely, \((u - M\omega_1, v - M\omega_2) > (0, 0)\) is a positive solution of (1.1) with (1.2).

Similarly, we also obtain the following result.

Theorem 3.2. Assume that (H1)–(H4) hold. In addition, we assume the following.

(H7) There exists
\[
r > \frac{M\|\omega_2\|}{\delta_2},
\]

such that
\[
r \geq 4\pi^2 \frac{G_2}{G_2\|a_2\|_{L^1}} I_5 \cdot I_6,
\]

here
\[
I_5 = j_2 \left(4\pi^2 \frac{G_1}{G_1\|a_1\|_{L^1}} \right) \left\{ 1 + \frac{h_3(\delta_2r - M\|\omega_2\|)}{j_3(\delta_2r - M\|\omega_2\|)} \right\} - M\|\omega_1\|,
\]
\[
I_6 = 1 + \frac{h_2 \left(4\pi^2 \frac{G_1}{G_1\|a_1\|_{L^1}} \right) j_1(\delta_2r - M\|\omega_2\|) \left\{ 1 + h_1(r)/j_1(r) \right\}}{j_2 \left(4\pi^2 \frac{G_1}{G_1\|a_1\|_{L^1}} \right) j_1(\delta_2r - M\|\omega_2\|) \left\{ 1 + h_1(r)/j_1(r) \right\}}.
\]

(H8) There exists \(R > r\), such that
\[
4\pi^2 G_2 I_7 \cdot I_8 \geq R,
\]
\[
\delta_1j_3(R) \left\{ 1 + \frac{h_3(\delta_2r - M\|\omega_2\|)}{j_3(\delta_2r - M\|\omega_2\|)} \right\} > M,
\]

\[
\geq M\omega_2,
\]
then we have a doubly periodic solution \((u, v)\) of (3.9) with \(u > M\omega_1, v > M\omega_2\), namely, \((u - M\omega_1, v - M\omega_2) > (0, 0)\) is a positive solution of (1.1) with (1.2).
where

\[I_7 = j_4 \left(\frac{4\pi^2 G_1}{G_2 \|a_1\|_L^1} j_1 (\delta_2 R - M \|\omega_2\|) \left\{ 1 + \frac{h_1(R)}{j_1(R)} \right\} \right), \]

\[I_8 = 1 + \frac{h_4 \left(4\pi^2 G_1 j_3(R) \left\{ 1 + h_3(\delta_2 R - M \|\omega_2\|) / j_3(\delta_2 R - M \|\omega_2\|) \right\} - M \|\omega_1\| \right)}{j_4 \left(4\pi^2 G_1 j_3(R) \left\{ 1 + h_3(\delta_2 R - M \|\omega_2\|) / j_3(\delta_2 R - M \|\omega_2\|) \right\} - M \|\omega_1\| \right)}. \]

Then, problem (1.1)-(1.2) has a positive periodic solution.

4. An Example

Consider the following system:

\[
\begin{align*}
 u_{tt} - u_{xx} + 2u_t + \sin^2(t + x)u &= \mu \left(v^{-\alpha} + v^\beta + k_1(t, x) \right), \\
 v_{tt} - v_{xx} + 2v_t + \cos^2(t + x)v &= \lambda \left(u^{-\alpha} + u^\beta + k_2(t, x) \right), \\
 u(t + 2\pi, x) &= u(t, x + 2\pi) = u(t, x), \quad (t, x) \in \mathbb{R}^2, \\
 v(t + 2\pi, x) &= v(t, x + 2\pi) = v(t, x), \quad (t, x) \in \mathbb{R}^2,
\end{align*}
\]

where \(c_1 = c_2 = 2, \mu, \lambda > 0, \alpha, \tau > 0, \beta, \sigma > 1, a_1(t, x) = \sin^2(t + x), a_2(t, x) = \cos^2(t + x) \in C(\mathbb{T}^2, \mathbb{R}^+), k_i : \mathbb{T}^2 \to \mathbb{R} \) is continuous. When \(\mu \) is chosen such that

\[\mu < \sup_{u \in ((M\|\omega_1\|)/\delta_1, \infty)} \frac{G\|a_1\|_L^1}{G^4\pi^2} \frac{I^1}{I^2}, \]

here we denote

\[
\begin{align*}
 I^1 &= u \left(\frac{G\lambda u^{-\tau}}{G\|a_1\|_L^1} \left\{ 1 + (\delta_1 u - M \|\omega_1\|)^{\sigma+\tau} \right\} 4\pi^2 - M \|\omega_2\| \right)^\sigma, \\
 I^2 &= 1 + \left(\frac{G}{G\|a_2\|_L^1} \lambda (\delta_1 u - M \|\omega_1\|)^{-\tau} (1 + u^\sigma + 2Hu^\tau) 4\pi^2 \right)^{\beta+\sigma} + 2H \left(\frac{G}{G\|a_2\|_L^1} \lambda (\delta_1 u - M \|\omega_1\|)^{-\tau} (1 + u^\sigma + 2Hu^\tau) 4\pi^2 \right),
\end{align*}
\]

where \(H = \max\{\|k_1\|, \|k_2\|\} \) and the Green function \(G_1 = G_2 = G \). Then, problem (4.1) has a positive solution.
Mathematical Problems in Engineering

To verify the result, we will apply Theorem 3.1 with $M = \max \{\mu H, \lambda H\}$ and

\[
\begin{align*}
j_1(v) &= j_3(v) = \mu v^\alpha, \quad h_1(v) = \mu (v^\beta + 2H), \quad h_3(v) = \mu v^\beta, \\
j_2(u) &= j_4(u) = \lambda u^\tau, \quad h_2(u) = \mu (u^\sigma + 2H), \quad h_4(u) = \mu u^\sigma.
\end{align*}
\]

(4.4)

Clearly, (H1)–(H4) are satisfied.

Set

\[
T(u) = \frac{G\|a_1\|_{L^1}}{G^4\pi^2} \frac{I_1^1}{I_2^2}, \quad u \in \left(\frac{(M\|\omega_1\|)}{\delta_1}, +\infty \right).
\]

(4.5)

Obviously, $T((M\|\omega_1\|)/\delta_1) = 0$, $T(\infty) = 0$, then there exists $r \in ((M\|\omega_1\|)/\delta_1, +\infty)$ such that

\[
T(r) = \sup_{u \in ((M\|\omega_1\|)/\delta_1, \infty)} \frac{G\|a_1\|_{L^1}}{G^4\pi^2} \frac{I_1^1}{I_2^2}.
\]

(4.6)

This implies that there exists

\[
r \in \left(\frac{(M\|\omega_1\|)}{\delta_1}, +\infty \right),
\]

(4.7)

such that

\[
\mu < \sup_{u \in ((M\|\omega_1\|)/\delta_1, \infty)} \frac{G\|a_1\|_{L^1}}{G^4\pi^2} \frac{I_1^1}{I_2^2}.
\]

(4.8)

So, (H5) is satisfied.

Finally, since

\[
\frac{R \left(\frac{G\|a_2\|_{L^1}}{G^4\pi^2} \lambda (\delta_1 R - M\|\omega_1\|)^\tau (1 + R^\sigma + 2HR^\tau)4\pi^2 \right)^\alpha}{\mu G \left[1 + \left(\frac{G\lambda R^\tau}{G^4\pi^2} \left(1 + (\delta_1 R - M\|\omega_1\|)^\sigma + 2HR^\tau \right) \right] 4\pi^2 - M\|\omega_2\| \right) \alpha} \to 0 \quad \text{as} \quad R \to \infty,
\]

(4.9)

this implies that there exists R. In addition, for fixed r, R, choosing λ sufficiently large, we have

\[
\delta_2 \lambda R^\tau \left(1 + (\delta_1 r - M\|\omega_1\|)^\sigma + \tau \right) > M.
\]

(4.10)

Thus, (H6) is satisfied. So, all the conditions of Theorem 3.1 are satisfied.

References

Submit your manuscripts at http://www.hindawi.com