Research Article

Weingarten and Linear Weingarten Type Tubular Surfaces in \mathbb{E}^3

Yılmaz Tuncer,1 Dae Won Yoon,2 and Murat Kemal Karacan1

1 Department of Mathematics, Arts and Science Faculty, Usak University, 64200 Usak, Turkey
2 Department of Mathematic Education and RINS, Gyeongsang National University, Jinju 660701, Republic of Korea

Correspondence should be addressed to Yılmaz Tuncer, yilmaz.tuncer@usak.edu.tr

Received 5 January 2011; Revised 30 March 2011; Accepted 26 April 2011

Academic Editor: Victoria Vampa

We study tubular surfaces in Euclidean 3-space satisfying some equations in terms of the Gaussian curvature, the mean curvature, the second Gaussian curvature, and the second mean curvature. This paper is a completion of Weingarten and linear Weingarten tubular surfaces in Euclidean 3-space.

1. Introduction

Let f and g be smooth functions on a surface M in Euclidean 3-space \mathbb{E}^3. The Jacobi function $\Phi(f, g)$ formed with f, g is defined by

$$\Phi(f, g) = \det \begin{pmatrix} f_s & f_t \\ g_s & g_t \end{pmatrix}, \quad (1.1)$$

where $f_s = \partial f/\partial s$ and $f_t = \partial f/\partial t$. In particular, a surface satisfying the Jacobi equation $\Phi(K, H) = 0$ with respect to the Gaussian curvature K and the mean curvature H on a surface M is called a Weingarten surface or a W-surface. Also, if a surface satisfies a linear equation with respect to K and H, that is, $aK + bH = c$, $(a, b, c) \neq (0, 0, 0)$, $a, b, c \in \mathbb{R}$, then it is said to be a linear Weingarten surface or a LW-surface [1].

When the constant $b = 0$, a linear Weingarten surface M reduces to a surface with constant Gaussian curvature. When the constant $a = 0$, a linear Weingarten surface M reduces to a surface with constant mean curvature. In such a sense, the linear Weingarten surfaces can be regarded as a natural generalization of surfaces with constant Gaussian curvature or with constant mean curvature [1].
If the second fundamental form II of a surface M in E^3 is nondegenerate, then it is regarded as a new pseudo-Riemannian metric. Therefore, the Gaussian curvature K_{II} is the second Gaussian curvature on M [1].

For a pair (X,Y), $X \neq Y$, of the curvatures K, H, K_{II} and H_{II} of M in E^3, if M satisfies $\Phi(X,Y) = 0$ by $aX + bY = c$, then it said to be a (X,Y)-Weingarten surface or (X,Y)-linear Weingarten surface, respectively [1].

Several geometers have studied W-surfaces and LW-surfaces and obtained many interesting results [1–9]. For the study of these surfaces, Kühnel and Stamou investigated ruled (X,Y)-Weingarten surfaces in Euclidean 3-space E^3 [7, 9]. Also, Baikoussis and Koufogiorgos studied helicoidal (H, K_{II})-Weingarten surfaces [10]. Dillen, and sodsiri, and Kühnel, gave a classification of ruled (X,Y)-Weingarten surfaces in Minkowski 3-space E^3, where $(X,Y) \in \{K, H, K_{II}\}$ [2–4]. Koufogiorgos, Hasanis, and Koutroufiotis investigated closed ovaloid (X,Y)-linear Weingarten surfaces in E^3 [11, 12]. Yoon, Blair and Koufogiorgos classified ruled (X,Y)-linear Weingarten surfaces in E^3 [8, 13, 14]. Ro and Yoon studied tubes in Euclidean 3-space which are (K, H), (K, K_{II}), (H, K_{II})-Weingarten, and linear Weingarten tubes, satisfying some equations in terms of the Gaussian curvature, the mean curvature, and the second Gaussian curvature [1].

Following the Jacobi equation and the linear equation with respect to the Gaussian curvature K, the mean curvature H, the second Gaussian curvature K_{II}, and the second mean curvature H_{II}, an interesting geometric question is raised: classify all surfaces in Euclidean 3-space satisfying the conditions

$$\Phi(X,Y) = 0,$$
$$aX + bY = c,$$

where $X, Y \in \{K, H, K_{II}, H_{II}\}$, $X \neq Y$ and $(a, b, c) \neq (0, 0, 0)$.

In this paper, we would like to contribute the solution of the above question by studying this question for tubes or tubular surfaces in Euclidean 3-space E^3.

2. Preliminaries

We denote a surface M in E^3 by

$$M(s,t) = (m_1(s,t), m_2(s,t), m_3(s,t)).$$

Let U be the standard unit normal vector field on a surface M defined by

$$U = \frac{M_s \wedge M_t}{\|M_s \wedge M_t\|},$$

where $M_s = \partial M(s,t)/\partial s$. Then, the first fundamental form I and the second fundamental form II of a surface M are defined by, respectively,

$$I = Eds^2 + 2Fds \, dt + Gdt^2,$$
$$II = eds^2 + 2fds \, dt + gdt^2,$$
where

\[E = \langle M_s, M_s \rangle, \quad F = \langle M_s, M_t \rangle, \quad G = \langle M_t, M_t \rangle, \]
\[e = -(M_s, U_s) = \langle M_{ss}, U \rangle, \quad f = -(M_s, U_t) = \langle M_{st}, U \rangle, \quad g = -(M_t, U_t) = \langle M_{tt}, U \rangle, \]

(2.4)

On the other hand, the Gaussian curvature \(K \) and the mean curvature \(H \) are

\[K = \frac{eg - f^2}{EG - F^2}, \]
\[H = \frac{Eg - 2Ff + Ge}{2(EG - F^2)}, \]

respectively. From Brioschi’s formula in a Euclidean 3-space, we are able to compute \(K_{II} \) and \(H_{II} \) of a surface by replacing the components of the first fundamental form \(E, F, \) and \(G \) by the components of the second fundamental form \(e, f, \) and \(g, \) respectively [14]. Consequently, the second Gaussian curvature \(K_{II} \) of a surface is defined by

\[K_{II} = \frac{1}{(|e| - f^2)^2} \begin{vmatrix} -\frac{1}{2}e_{tt} + f_{st} - \frac{1}{2}g_{ss} & \frac{1}{2}e_s & f_s - \frac{1}{2}e_t \\ f_t - \frac{1}{2}g_s & e & f \\ \frac{1}{2}g_t & f & g \end{vmatrix}, \]

(2.6)

and the second mean curvature \(H_{II} \) of a surface is defined by

\[H_{II} = H - \frac{1}{2\sqrt{|\text{det} II|}} \sum_{ij} \frac{\partial}{\partial u^i} \left(\sqrt{|\text{det} II|} L^{ij} \frac{\partial}{\partial u^j} (\ln \sqrt{|K|}) \right), \]

(2.7)

where \(u^i \) and \(u^j \) stand for “s” and “t”, respectively, and \(L^{ij} = (L_{ij})^{-1} \), where \(L_{ij} \) are the coefficients of the second fundamental form [3, 4].

Remark 2.1. It is well known that a minimal surface has a vanishing second Gaussian curvature, but that a surface with the vanishing second Gaussian curvature need not to be minimal [14].

3. Weingarten Tubular Surfaces

Definition 3.1. Let \(\alpha : [a, b] \to \mathbb{E}^3 \) be a unit-speed curve. A tubular surface of radius \(\lambda > 0 \) about \(\alpha \) is the surface with parametrization

\[M(s, \theta) = \alpha(s) + \lambda [N(s) \cos \theta + B(s) \sin \theta], \]

(3.1)
$a \leq s \leq b$, where $N(s), B(s)$ are the principal normal and the binormal vectors of α, respectively [1].

The curvature and the torsion of the curve α are denoted by κ, τ. Then, Frenet formula of $\alpha(s)$ is defined by

\[
\begin{bmatrix}
T' \\
N' \\
B'
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix},
\]

(3.2)

Furthermore, we have the natural frame $\{M_S, M_\theta\}$ given by

\[
M_s = (1 - \lambda \kappa \cos \theta)T - \lambda \tau \sin \theta N + \lambda \tau \cos \theta B,
\]

\[
M_\theta = -\lambda \sin \theta N + \lambda \cos \theta B.
\]

(3.3)

The components of the first fundamental form are

\[
E = \lambda^2 \tau^2 + \sigma^2, \quad F = \lambda^2 \tau, \quad G = \lambda^2,
\]

(3.4)

where $\sigma = 1 - \lambda \kappa \cos \theta$.

On the other hand, the unit normal vector field U is obtained by

\[
U = \frac{M_s \wedge M_\theta}{||M_s \wedge M_\theta||} = -\varepsilon \cos \theta N - \varepsilon \sin \theta B.
\]

(3.5)

As $\lambda > 0$, ε is the sign of σ such that if $\sigma < 0$, then $\varepsilon = -1$ and if $\sigma > 0$, then $\varepsilon = 1$. From this, the components of the second fundamental form of M are given by

\[
e = \varepsilon \lambda \tau^2 - \varepsilon \kappa \cos \theta \sigma, \quad f = \varepsilon \lambda \tau, \quad g = \varepsilon \lambda.
\]

(3.6)

If the second fundamental form is nondegenerate, $eg - f^2 \neq 0$, that is, κ, σ and $\cos \theta$ are nowhere vanishing. In this case, we can define formally the second Gaussian curvature K_{II} and the second mean curvature H_{II} on M. On the other hand, the Gauss curvature K, the
mean curvature \(H \), the second Gaussian curvature \(K_{II} \) and the second mean curvature \(H_{II} \) are obtained by using (2.5), (2.6) and (2.7) as follows:

\[
K = -\frac{\kappa \cos \theta}{\lambda \sigma}, \\
H = \frac{\varepsilon (1 - 2\lambda \kappa \cos \theta)}{2\lambda \sigma},
\]

\[
K_{II} = -\frac{\varepsilon \kappa (\cos^2 \theta - 6\kappa \lambda \cos^3 \theta + 4\kappa^2 \lambda^2 \cos^4 \theta + 1)}{4 \cos \theta \sigma},
\]

\[
H_{II} = \frac{1}{8 \varepsilon \kappa^3 \cos^3 \theta \sigma^3} \left(\sum_{i=0}^{6} g_i \cos^i \theta \right),
\]

and where the coefficients \(g_i \) are

\[
g_0 = 3 \lambda^2 \kappa^2 \tau^2, \\
g_1 = 2 \lambda \kappa (\kappa_s \tau - \kappa \tau_s) \sin \theta - \left(1 + 6 \lambda^2 \tau^2 \right) \kappa^3, \\
g_2 = 2 \lambda^2 \kappa^2 (\kappa \tau_s - 4 \kappa_s \tau) \sin \theta + \lambda \left(3 (\kappa_s)^2 + 3 \kappa^4 - 2 \kappa \kappa_{ss} - \kappa^2 \tau^2 \right), \\
g_3 = 2 \lambda^2 \kappa \left(2 \kappa^2 \tau^2 - \kappa^3 + \kappa \kappa_{ss} - 3 (\kappa_s)^2 \right) - \kappa^3, \\
g_4 = 16 \lambda \kappa^4, \\
g_5 = -20 \lambda \kappa^5, \\
g_6 = 8 \lambda^3 \kappa^6.
\]

Differentiating \(K \), \(K_{II} \), \(H \), and \(H_{II} \) with respect to \(s \) and \(\theta \), after straightforward calculations, we get,

\[
K_s = -\frac{\kappa_s \cos \theta}{\lambda \sigma^2}, \quad K_\theta = \frac{\kappa \sin \theta}{\lambda \sigma^2}, \\
H_s = -\frac{\varepsilon \kappa_s \cos \theta}{2 \sigma^2}, \quad H_\theta = \frac{\varepsilon \kappa \sin \theta}{2 \sigma^2},
\]

\[
(K_{II})_s = \frac{\varepsilon \kappa_s (8 \lambda^3 \kappa^3 \cos^5 \theta - 18 \lambda^2 \kappa^2 \cos^4 \theta + 12 \lambda \kappa \cos^3 \theta - \cos^2 \theta - 1)}{4 \cos \theta \sigma^2},
\]

\[
(K_{II})_\theta = -\frac{\varepsilon \kappa \sin \theta (8 \lambda^3 \kappa^3 \cos^5 \theta - 18 \lambda^2 \kappa^2 \cos^4 \theta + 12 \lambda \kappa \cos^3 \theta + \sin^2 \theta - 2 \lambda \kappa \cos \theta)}{4 \cos^2 \theta \sigma^2},
\]

\[
(H_{II})_s = \frac{1}{8 \varepsilon \kappa^4 \cos^3 \theta \sigma^3} \left(\sum_{i=0}^{6} f_i \cos^i \theta \right),
\]

\[
(H_{II})_\theta = \frac{1}{8 \varepsilon \kappa^4 \cos^3 \theta \sigma^3} \left(\sum_{i=0}^{6} f_i \cos^i \theta \right).
\]
and where \(f_i \) are

\[
\begin{align*}
 f_0 &= 3\kappa^2\tau(\kappa_s\tau - 2\kappa\tau_s), \\
 f_1 &= 2\kappa(2\kappa_s(\kappa_s\tau - \kappa\tau_s) - \kappa\kappa_{ss}\tau) \sin \theta + (3\kappa\tau_s - 2\kappa_s\tau) 6\lambda\kappa^3\tau, \\
 f_2 &= 2\lambda\kappa^2(9\kappa_s(\kappa\tau_s - \kappa\tau) + 2\kappa\kappa_{ss}\tau) \sin \theta + 6\lambda^2\kappa^4\tau(3\kappa_s\tau - 2\kappa\tau_s) + \kappa_s\left(9(\kappa_s)^2 - 10\kappa\kappa_{ss}\right) \\
 &+ \kappa^2\tau(2\kappa\tau_s - \kappa_s\tau), \\
 f_3 &= 2\lambda^2\kappa^3(\kappa_s(16\kappa_s\tau - 7\kappa\tau_s) - 4\kappa\kappa_{ss}) \sin \theta \\
 &+ 2\lambda\kappa\left(15\kappa\kappa_s\kappa_{ss} - \left((\kappa_s)^2 + \kappa^4\right)\kappa_s + \kappa^2\tau(2\tau\kappa_s - 5\kappa\tau_s)\right), \\
 f_4 &= 2\lambda^2\kappa^2\left(5\kappa_s\left((\kappa_s)^2 - 2\kappa\kappa_{ss}\right) + 2\kappa^2\tau(2\kappa\tau_s - 3\tau\kappa_s) + \kappa^4\kappa_s\right) - 2\kappa^4\kappa_s, \\
 f_5 &= 6\lambda\kappa^3\kappa_s, \\
 f_6 &= -4\lambda^2\kappa^6\kappa_s, \\
 (H_{\parallel})_\theta &= \frac{1}{8\varepsilon\lambda\kappa^3\cos^4\theta\sigma^4} \left(\sum_{i=0}^{6} h_i \cos^i \theta\right),
\end{align*}
\]

(3.14) (3.15)

and where the coefficients \(h_i \) are

\[
\begin{align*}
 h_0 &= -9\lambda\kappa^2\tau^2 \sin \theta, \\
 h_1 &= 2\kappa^3\left(1 + 15\lambda^2\tau^2\right) \sin \theta + 4\lambda\kappa(\kappa\tau_s - \kappa_s\tau), \\
 h_2 &= \lambda\left(2\kappa\kappa_{ss} - 8\kappa^4 + \kappa^2\tau^2\left(1 - 30\lambda^2\tau^2\right) - 3(\kappa_s)^2\right) \sin \theta + 6\lambda^2\kappa^2(3\kappa_s\tau - 2\kappa\tau_s), \\
 h_3 &= 4\lambda^2\kappa\left(2\kappa^4 - \kappa^2\tau^2 - 2\kappa\kappa_{ss} + 3(\kappa_s)^2\right) \sin \theta + 2\lambda\kappa\left(\kappa_s\tau - \kappa\tau_s + 4\lambda^2\kappa^2(\kappa\tau_s - 4\kappa_s\tau)\right), \\
 h_4 &= 2\lambda\kappa^3\left(3\lambda^2(2\kappa\tau_s^2 - \kappa^3 + \kappa_{ss}) + \kappa\right) \sin \theta + 2\lambda^2\kappa^2\left(4(\kappa\tau_s - \tau\kappa_s) - 9\lambda(\kappa_s)^3\right), \\
 h_5 &= 6\lambda^2\kappa^3\left(4\kappa_s\tau_s - \kappa\tau_s\right) - \kappa^2 \sin \theta, \\
 h_6 &= 4\lambda^3\kappa^6 \sin \theta.
\end{align*}
\]

(3.16)

Now, we consider a tubular surface \(M \) in \(E^3 \) satisfying the Jacobi equation \(\Phi(K, H_{\parallel}) = 0 \). By using (3.9), (3.13), and (3.15), we obtain \(\Phi(K, H_{\parallel}) \) in the following form:

\[
K_s(H_{\parallel})_\theta - K_\theta(H_{\parallel})_s = -\varepsilon 4\lambda^2\kappa^6\sigma^3\cos^3\theta \sum_{i=0}^{4} \mu_i \cos^i \theta,
\]

(3.17)
Mathematical Problems in Engineering

with respect to the Gaussian curvature K and the second mean curvature H_{II}, where

\[
\begin{align*}
 u_0 &= -3\lambda \tau \kappa^2 (\kappa_s \tau + \kappa \tau_s) \sin \theta, \\
 u_1 &= \kappa^3 \left(6\lambda^2 \tau^2 + 1\right) \kappa_s + 6\lambda^2 \kappa \tau \tau_s \sin \theta - \lambda \kappa^2 \kappa_s \tau + \lambda \kappa^3 \tau_{ss}, \\
 u_2 &= \lambda \left(\kappa^2 \kappa_{ssss} - 4\kappa \kappa_s \kappa_{ss} - 3\kappa^4 \kappa_s + 3(\kappa_s)^3 + \kappa^3 \tau \tau_s\right) \sin \theta + \lambda \kappa^3 \left(3\kappa_s \tau_s + 4\kappa_s \tau - \kappa \tau_{ss}\right), \\
 u_3 &= \lambda \kappa \left(7\lambda \kappa \kappa_s \kappa_{ss} - \lambda \kappa^2 \kappa_{ssss} - 6\lambda (\kappa_s)^3 + 2\lambda \kappa^4 \kappa_s - 4\lambda \kappa^3 \tau \tau_s\right) \sin \theta \\
 &\quad + \left(\kappa \kappa_{ss} \tau + \kappa \kappa_s \tau_s - (\kappa_s)^2 \tau - \kappa^2 \tau_{ss}\right), \\
 u_4 &= -\lambda \kappa^2 \left(4\kappa \kappa_s \tau_s - 4\tau (\kappa_s)^2 - \kappa^2 \tau_{ss} + \kappa \kappa_{ss} \tau\right). \quad (3.18)
\end{align*}
\]

Then, by $\Phi(K, H_{II}) = 0$, (3.17) becomes

\[
\sum_{i=0}^{4} u_i \cos^i \theta = 0. \quad (3.19)
\]

Hence, we have the following theorem.

Theorem 3.2. Let M be a tubular surface defined by (3.1) with nondegenerate second fundamental form. M is a (K, H_{II})-Weingarten surface if and only if M is a tubular surface around a circle or a helix.

Proof. Let us assume that M is a (K, H_{II})-Weingarten surface, then the Jacobi equation (3.19) is satisfied. Since polynomial in (3.19) is equal to zero for every θ, all its coefficients must be zero. Therefore, the solutions of $u_0 = u_1 = u_2 = u_3 = u_4 = 0$ are $\kappa_s = 0$, $\tau = 0$ and $\kappa_s = 0$, $\tau_s = 0$ that is, M is a tubular surface around a circle or a helix, respectively.

Conversely, suppose that M is a tubular surface around a circle or a helix, then it is easily to see that $\Phi(K, H_{II}) = 0$ is satisfied for the cases both $\kappa_s = 0$, $\tau = 0$ and $\kappa_s = 0$, $\tau_s = 0$. Thus M is a (K, H_{II})-Weingarten surface.

We suppose that a tubular surface M with nondegenerate second fundamental form in E^3 is (H, H_{II})-Weingarten surface. From (3.10), (3.13), and (3.15), $\Phi(H, H_{II})$ is

\[
H_s(H_{II})_o - H_0(H_{II})_s = \frac{1}{8\lambda \kappa^3 \sigma^3 \cos^3 \theta} \sum_{i=0}^{4} v_i \cos^i \theta, \quad (3.20)
\]

with respect to the variable $\cos \theta$, where

\[
\begin{align*}
 v_0 &= 3\lambda \tau \kappa^2 (\kappa \tau_s + \kappa_s \tau) \sin \theta, \\
 v_1 &= -\kappa^3 \left(\kappa_s + 6\lambda^2 \tau (\kappa_s \tau + \kappa \tau_s)\right) \sin \theta + \lambda \kappa^2 (\kappa_{ss} \tau - \kappa \tau_{ss}),
\end{align*}
\]
\[
v_2 = \lambda \left(3\kappa_4 \kappa_s - 3(\kappa_s)^3 + 4\kappa \kappa_s \kappa_{ss} - \kappa^3 \tau_s - \kappa^2 \kappa_{sss}\right) \sin \theta \\
+ \lambda^2 \kappa^3 (\kappa \tau_{ss} - 3 \kappa_s \tau_s - 4 \kappa_{ss} \tau), \\
v_3 = \lambda^2 \kappa \left(6(\kappa_s)^3 + \kappa^2 \kappa_{sss} - 7 \kappa \kappa_s \kappa_{ss} - 2 \kappa^4 \kappa_s + 4 \kappa^3 \tau_s \right) \sin \theta \\
+ \lambda \kappa \left(2 \tau_{ss} + (\kappa_s)^2 \tau - \kappa \kappa_s \tau - \kappa \kappa_s \tau_s \right), \\
v_4 = -\lambda^2 \kappa^2 \left(\kappa^2 \tau_{ss} - 4 \kappa \kappa_s \tau - 4 \kappa \kappa_s \tau_s + 4 (\kappa_s)^2 \tau \right).
\]

(3.21)

Then, by \(\Phi (H, H_{\parallel}) = 0 \), (3.22) becomes in following form:

\[
\sum_{i=0}^{4} v_i \cos^i \theta = 0.
\]

(3.22)

Thus, we state the following theorem.

Theorem 3.3. Let \(M \) be a tubular surface defined by (3.1) with nondegenerate second fundamental form. \(M \) is a \((H, H_{\parallel})\)-Weingarten surface if and only if \(M \) is a tubular surface around a circle or a helix.

Proof. Considering \(\Phi (H, H_{\parallel}) = 0 \) and by using (3.13), one can obtain the solutions \(\kappa_s = 0, \tau = 0, \) and \(\kappa_s = 0, \tau_s = 0 \) of the equations \(v_0 = v_1 = v_2 = v_3 = v_4 = 0 \) for all \(\theta \). Thus, it is easily proved that \(M \) is a \((H, H_{\parallel})\)-Weingarten surface if and only if \(M \) is a tubular surface around a circle or a helix.

We consider a tubular surface \(M \) is \((K_{\parallel}, H_{\parallel})\)-Weingarten surface with nondegenerate second fundamental form in \(E^3 \). By using (3.11), (3.12), (3.13), and (3.15), \(\Phi (K_{\parallel}, H_{\parallel}) \) is

\[
(K_{\parallel})_{\theta} (H_{\parallel})_{\theta} - (K_{\parallel})_{\theta} (H_{\parallel})_{s} = \frac{-1}{16 \lambda \kappa^3 \sigma^2 \cos^2 \theta} \sum_{i=0}^{9} \omega_i \cos^i \theta,
\]

(3.23)

where

\[
\omega_0 = 3 \lambda \tau \kappa^2 (\kappa \tau_s - 2 \kappa_s \tau) \sin \theta, \\
\omega_1 = \kappa^3 \left(\kappa_s + 18 \lambda \tau (\kappa_s \tau - 2 \kappa \tau_s)\right) \sin \theta + \lambda \kappa \left(4 \kappa_s (\kappa \tau_s - \kappa_s \tau) + \kappa \kappa_s \tau_s - \kappa^2 \tau_{ss}\right), \\
\omega_2 = \left\{6 \kappa \kappa_{ss} - 18 \lambda \tau \kappa^2 \tau - 3 \kappa^4 - 6(\kappa_s)^2 - 2 \kappa^2 \tau^2\right\} \lambda \kappa_s + 4 \left(3 \lambda^2 \kappa^2 - 1 \right) \lambda \kappa^3 \tau \tau_s - \lambda \kappa^2 \kappa_{sss} \sin \theta + 3 \lambda^2 \kappa^2 \left(\kappa_s (6 \kappa_s \tau - 5 \kappa \tau_s) - 2 \kappa \kappa_{ss} \tau + \kappa^2 \tau_{ss}\right),
\]
Theorem 3.4. Let M be a tubular surface defined by (3.1) with nondegenerate second fundamental form. M is a (K_{II}, H_{II})-Weingarten surface if and only if M is a tubular surface around a circle or a helix.

Proof. It can be easily proved similar to Theorems 3.2 and 3.3.

Consequently, we can give the following main theorem for the end of this part.
Theorem 3.5. Let \((X, Y) \in \{(K, H), (H, K), (H, K_\parallel), (K, H, H_\parallel)\}\), and let \(M\) be a tubular surface defined by (3.1) with nondegenerate second fundamental form. \(M\) is a \((X, Y)\)-Weingarten surface if and only if \(M\) is a tubular surface around a circle or a helix.

Thus, the study of Weingarten tubular surfaces in 3-dimensional Euclidean space is completed with [1].

4. Linear Weingarten Tubular Surfaces

In last part of this paper, we study on \((K, H_\parallel), (H, H_\parallel), (H, K_\parallel), (K, H, H_\parallel), (K, H, K_\parallel), (H, K_\parallel, H_\parallel), (K, K_\parallel, H_\parallel)\) linear Weingarten tubular surfaces in \(E^3\). \((K, H), (K, K_\parallel),\) and \((H, K_\parallel)\) linear Weingarten tubes are studied in [1].

Let \(a_1, a_2, a_3, a_4,\) and \(b\) be constants. In general, a linear combination of \(K, H, K_\parallel\) and \(H_\parallel\) can be constructed as

\[
a_1 K + a_2 H + a_3 K_\parallel + a_4 H_\parallel = b. \tag{4.1}
\]

By the straightforward calculations, we obtained the reduced form of (4.1)

\[
8b\kappa^2 \varepsilon \sigma^3 \cos^3 \theta + \sum_{i=0}^{8} p_i \cos^i \theta = 0, \tag{4.2}
\]

where the coefficients are

\[
p_0 = 3a_4 \lambda \kappa^2 \tau^2,
\]
\[
p_1 = a_4 \kappa \left(2 \lambda (\kappa \tau - \kappa \tau_\parallel) \sin \theta - \kappa^2 \left(6 \lambda^2 \tau^2 + 1\right)\right),
\]
\[
p_2 = a_4 \lambda \left(2 \lambda \kappa^2 (\kappa \tau_\parallel - 4 \kappa_\tau_\parallel) \sin \theta + \kappa^2 \left(3 \kappa^2 - \tau^2\right) - 2 \kappa \kappa_\parallel + 3 \kappa_\parallel^2\right) + 2 a_3 \lambda \kappa^4,
\]
\[
p_3 = a_4 \kappa \left(2 \lambda^2 (\kappa \kappa_\parallel - \kappa^4 + 2 \kappa^2 \tau^2 - 3 \kappa_\parallel^2) - 5 \kappa^2\right) - 4 a_2 \kappa^3 - 4 a_3 \lambda^2 \kappa^3,
\]
\[
p_4 = 8 a_1 \epsilon \kappa^4 + 16 a_2 \lambda \kappa^4 + 2 a_3 \lambda \kappa^4 \left(1 + \lambda^2 \kappa^2\right) + 17 a_4 \lambda \kappa^4,
\]
\[
p_5 = -16 a_1 \epsilon \lambda \kappa^5 - 20 a_2 \lambda^2 \kappa^5 - 16 a_3 \lambda^2 \kappa^5 - 20 a_4 \lambda^2 \kappa^5,
\]
\[
p_6 = 8 a_1 \epsilon \lambda^2 \kappa^6 + 8 a_2 \lambda^3 \kappa^6 + 34 a_3 \lambda^3 \kappa^6,
\]
\[
p_7 = -28 a_3 \lambda^4 \kappa^7,
\]
\[
p_8 = 8 a_3 \lambda^5 \kappa^8.
\]

Then, \(p_0, p_1, p_2, p_7,\) and \(p_8\) are zero for any \(b \in IR\). If \(a_4 \neq 0\) or \(a_5 \neq 0\), from \(p_0 = p_1 = p_7 = p_8 = 0\), one has \(\kappa = 0\). Hence, we can give the following theorems.
Theorem 4.1. Let \((X, Y) \in \{(K, H_{II}), (H, H_{II}), (K_{II}, H_{II})\}\). Then, there are no \((X, Y)\)-linear Weingarten tubular surfaces \(M\) in Euclidean 3-space defined by (3.1) with nondegenerate second fundamental form.

Theorem 4.2. Let \((X, Y, Z) \in \{(H, K_{II}, H_{II}), (K, K_{II}, H_{II}), (K, H, H_{II}), (K, H, K_{II})\}\). Then, there are no \((X, Y, Z)\)-linear Weingarten tubular surfaces \(M\) in Euclidean 3-space defined by (3.1) with nondegenerate second fundamental form.

Theorem 4.3. Let \(M\) be a tubular surface defined by (3.1) with nondegenerate second fundamental form. Then, there are no \((K, H, K_{II}, H_{II})\)-linear Weingarten surface in Euclidean 3-space.

Consequently, the study of linear Weingarten tubular surfaces in 3-dimensional Euclidean space is completed with [1].

Acknowledgments

The authors would like to thank the referees for the helpful and valuable suggestions.

References

Submit your manuscripts at http://www.hindawi.com