Research Article

Computing Exact Solutions to a Generalized Lax-Sawada-Kotera-Ito Seventh-Order KdV Equation

Alvaro H. Salas,1,2 Cesar A. Gómez S,3 and Bernardo Acevedo Frias4

1 Universidad de Caldas, Calle 65 No. 26-10, P.O. Box: Apartado Aéreo 275, Manizales, Caldas, Colombia
2 Department of Mathematics, Universidad Nacional de Colombia, Carrera 27 No. 64-60, P.O. Box: Apartado Aéreo 275, Manizales, Colombia
3 Department of Mathematics, Universidad Nacional de Colombia, Calle 45, Carrera 30. P.O. Box: Apartado Aéreo 52465, Bogota, Colombia
4 Department of Mathematics, Universidad Nacional de Colombia, P.O. Box: Apartado Aéreo 127, Manizales, Colombia

Correspondence should be addressed to Alvaro H. Salas, asalash2002@yahoo.com

Received 24 December 2009; Revised 5 May 2010; Accepted 4 August 2010

Academic Editor: Katica R. Stevanovic Hedrih

Copyright © 2010 Alvaro H. Salas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Cole-Hopf transform is used to construct exact solutions to a generalization of both the seventh-order Lax KdV equation (Lax KdV7) and the seventh-order Sawada-Kotera-Ito KdV equation (Sawada-Kotera-Ito KdV7).

1. Introduction

Many direct and computational methods have been used to handle nonlinear partial differential equations (NLPDE’s). Some methods used in a satisfactory way to obtain exact solutions to NLPDE’s are inverse scattering method [1], Hirota bilinear method [2, 3], Backlund transformations [4], Painlevé analysis [5], Lie groups [6], the tanh method [7], the generalized tanh method [8, 9], the extended tanh method [10–12], the improved tanh-coth method [13, 14], the Exp-function method [15–17], the projective Riccati equation method [18], the generalized projective Riccati equations method [19–24], the extended hyperbolic function method [25], variational iteration method [26, 27], He’s polynomials [28], homotopy perturbation method [29], and many other methods [30]. However, there is not a unified method that could be used to handle all NLPDE’s; in this sense, the implementation of new
methods or variants of the some well-known methods is relevant. The principal objective of this paper consists in obtaining exact traveling wave solutions which include periodic and soliton solutions to a particular case of the general seventh-order KdV (KdV7), which is a generalization of the seventh-order Sawada-Kotera-Ito (SKI-KdV7) equation, by using a variant of the exp-function method. The general seventh-order KdV (KdV7) equation [31] reads

\[u_t + au^3 u_x + bu^3 x + cu_x u_{xx} + du^2 u_{xxx} + eu_{2x} u_{3x} + fu_x u_{4x} + gu u_{5x} + u_{7x} = 0. \]

(1.1)

The (KdV7) was introduced initially by Pomeau et al. [32] for discussing the structural stability of KdV equation under a singular perturbation. Some particular cases of (1.1) are

(i) seventh-order Lax KdV equation [1, 6] \((a = 140, b = 70, c = 280, d = 70, e = 70, f = 42, g = 14)\):

\[u_t + 140u^3 u_x + 70u^3 x + 280 u_x u_{xx} + 70u^2 u_{xxx} + 70 u_{2x} u_{3x} + 42 u_x u_{4x} + 14 u u_{5x} + u_{7x} = 0; \]

(1.2)

(ii) seventh-order Sawada-Kotera-Ito equation [1, 8–10] \((a = 252, b = 63, c = 378, d = 126, e = 63, f = 42, g = 21)\):

\[u_t + 252u^3 u_x + 63u^3 x + 378 u_x u_{xx} + 126u^2 u_{xxx} + 63 u_{2x} u_{3x} + 42 u_x u_{4x} + 21 uu_{5x} + u_{7x} = 0; \]

(1.3)

(iii) seventh-order Kaup-Kupershmidt equation [1, 7] \((a = 2016, b = 630, c = 2268, d = 504, e = 252, f = 147, g = 42)\):

\[u_t + 2016u^3 u_x + 630u^3 x + 2268 u_x u_{xx} + 504u^2 u_{xxx} + 252 u_{2x} u_{3x} + 147 u_x u_{4x} + 42 uu_{5x} + u_{7x} = 0. \]

(1.4)

2. Generalization of the Lax KdV7 and the Sawada-Kotera-Ito KdV7

Observe that (1.2) and (1.3) satisfy the relation

\[a = \frac{d}{63} (e + f + g). \]

(2.1)

For this reason we will study equation

\[u_t + \frac{d}{63} (e + f + g) u^3 u_x + bu^3 x + cu_x u_{xx} + du^2 u_{xxx} + eu_{2x} u_{3x} + fu_x u_{4x} + gu u_{5x} + u_{7x} = 0. \]

(2.2)

We seek solutions to (2.2) in the Cole-Hopf form

\[u(t, x) = A \partial_x \tanh(\xi), \]

(2.3)
where A is some constant to be determined later and

$$\zeta = \zeta(t, x) = \mu(x + \lambda t + \delta), \quad \mu, \delta, \lambda = \text{const.} \quad (2.4)$$

Substituting (2.3) into (2.2), we obtain a polynomial equation in the variable $\zeta = \exp(\xi)$. Equating the coefficients of the different powers of ξ to zero, we obtain following algebraic system:

$$\lambda + 64\mu^6 = 0,$$

$$64\mu^5(A(e + f + g) - 247\mu) + 5\lambda = 0,$$

$$64\mu^4 \left(A^2(b + c + d) - 3A\mu(5e + 9f + 19g) + 4293\mu^2 \right) + 9\lambda = 0,$$

$$64\mu^3 \left(A^3 d(e + f + g) - 63A^2\mu(3b + 5c + 11d) + 126A\mu^2(28e + 46f + 151g) - 983997\mu^3 \right) + 315\lambda = 0. \quad (2.5)$$

Eliminating $A, \lambda, \text{and } \mu$ from system (2.5) gives

$$b = d + \frac{1}{126}(e + f + g)(e - 5f + 10g),$$

$$c = \frac{5}{21}g(e + f + g) - 2d. \quad (2.6)$$

It is easy to verify that (1.2) and (1.3) are particular cases of general KdV7 equation (1.1) subject to (2.1) and (2.6). This motivates us to define the generalized Lax-Sawada-Kotera-Ito seventh-order equation (LSKI KdV7) as follows:

$$u_t + \frac{1}{63}d(e + f + g)u^3u_x + \left(d + \frac{1}{126}(e + f + g)(e - 5f + 10g) \right)u_x^3$$

$$+ \left(\frac{5}{21}g(e + f + g) - 2d \right)uu_xu_{xx} + du^2u_{xxx} + eu_{2x}u_{3x} + fu_{x}u_{4x} + guu_{5x} + u_{7x} = 0. \quad (2.7)$$

3. Solutions to Generalized LSKI KdV7

In order to look for solutions to (2.7), we will use the exp ansatz

$$u(\xi) = p + \frac{q}{1 + r \exp(-\xi) + s \exp(\xi)}, \quad (3.1)$$

where $p, q, r, \text{and } s$ are some constants. Substituting (3.1) into (2.7) gives an algebraic system. Solving it, we obtain

$$\lambda = -\frac{1}{63}d(e + f + g)p^3 - \mu^2 \left(dp^2 + g\mu^2 + \mu^4 \right), \quad q = \frac{126\mu^2}{e + f + g}, \quad s = \frac{1}{4r}, \quad r = r, \quad \mu = \mu. \quad (3.2)$$
From (2.4), (3.1), and (3.2), we obtain following solution to (2.7) subject:

\[
 u(x, t) = p + \frac{126\mu^2}{(e + f + g)\left(1 + r \exp(\xi) + (1/4r) \exp(-\xi)\right)},
\]

\[
 \xi = \mu(x + \lambda t + \delta),
\]

\[
 \lambda = -\frac{1}{63} d(e + f + g)p^3 - \mu^2 \left(dp^2 + gp\mu^2 + \mu^4\right).
\]

In particular, if \(r = 1/2 \), equation (3.3) gives

\[
 u(x, t) = p + \frac{63\mu^2}{e + f + g} \sech^2\left(\frac{\mu}{2}(x + \lambda t + \delta)\right),
\]

\[
 \lambda = -\frac{1}{63} d(e + f + g)p^3 - \left(dp^2 + gp\mu^2 + \mu^4\right)\mu^2.
\]

Replacing \(\mu \) with \(\mu\sqrt{-1} \) gives the following periodic solutions:

\[
 u(x, t) = p - \frac{63\mu^2}{e + f + g} \sec^2\left(\frac{\mu}{2}(x + \lambda t + \delta)\right),
\]

\[
 \lambda = -\frac{1}{63} d(e + f + g)p^3 + \left(dp^2 - gp\mu^2 + \mu^4\right)\mu^2.
\]

On the other hand, if \(r = -1/2 \), equation (3.3) gives

\[
 u(x, t) = p - \frac{63\mu^2}{e + f + g} \csc^2\left(\frac{\mu}{2}(x + \lambda t + \delta)\right),
\]

\[
 \lambda = -\frac{1}{63} d(e + f + g)p^3 - \left(dp^2 - gp\mu^2 + \mu^4\right)\mu^2.
\]

Replacing \(\mu \) with \(\mu\sqrt{-1} \) gives the following periodic solutions:

\[
 u(x, t) = p - \frac{63\mu^2}{e + f + g} \csc^2\left(\frac{\mu}{2}(x + \lambda t + \delta)\right),
\]

\[
 \lambda = -\frac{1}{63} d(e + f + g)p^3 + \left(dp^2 - gp\mu^2 + \mu^4\right)\mu^2.
\]
4. Solutions to Sawada-Kotera-Ito KdV7 Equation

From (3.3)–(3.7) with \(d = 126, e = 63, f = 42\), and \(g = 21\), we obtain the following analytic solutions to equation (1.3):

\[
\begin{align*}
\frac{d u}{d x} + u \frac{d u}{d t} + p_1 u &= 0, \\
\frac{d u}{d x} + u \frac{d u}{d t} + p_2 u &= 0, \\
\frac{d u}{d x} + u \frac{d u}{d t} + p_3 u &= 0.
\end{align*}
\]

\(\frac{d u}{d x} + u \frac{d u}{d t} + p_4 u = 0, \quad \frac{d u}{d x} + u \frac{d u}{d t} + p_5 u = 0.

5. Conclusions

We exhibited an equation that generalizes both seventh-order Lax equation and seventh-order Sawada-Kotera-Ito equation. At the same time, we obtained exact solutions to these equations with the aid of a Cole-Hopf ansatz. These same ideas are suitable for the seventh-order Kaup-Kupershmidt equation. We think that some of the solutions in this work are new in the open literature. We may apply other methods to find exact solutions to a variety of nonlinear PDE’s. See [3, 12–52].

References

