An Inequality on Solutions of Heat Equation*

DU-WON BYUN†

Department of Mathematics, Inha University, 253 Yong Hyun-Dong, Nam-ku, In-chon 402-751, Korea

(Received 28 April 1997; Revised 17 October 1997)

Let \(v(x, t) \) be the solution of the initial value problem for the \(n \) dimensional heat equation. Then, for any \(a \) and for any \(t_0 > 0 \), an inequality about \(v(a, t) \) and \(v(x, t_0) \) is obtained.

Keywords: Heat equation; Integral transform; Positive matrix; Reproducing kernel

1991 **Mathematics subject Classification.** Primary 35K05; Secondary 30C40

1. **INTRODUCTION**

For a positive integer \(n \), we consider the \(n \) dimensional heat equation

\[
\begin{align*}
\Delta v(x, t) & = \partial_t v(x, t), \quad x \in \mathbb{R}^n \text{ and } t > 0; \\
v(x, 0) & = F(x), \quad x \in \mathbb{R}^n
\end{align*}
\]

where \(\Delta \) is the \(n \) dimensional Laplacian and \(F \) is a member in the space \(L^2(\mathbb{R}^n) \) for the Lebesgue measure on \(\mathbb{R}^n \). Then, the solution is represented by

\[
v(x, t) = \left(\frac{1}{2\sqrt{\pi t}} \right)^n \int_{\mathbb{R}^n} F(\xi) \exp \left\{ -\frac{|x - \xi|^2}{4t} \right\} \, d\xi, \quad (1.2)
\]
Furthermore, from the expression (1.2) we know that the solution $v(x, t)$
can be holomorphically extended on the n dimensional complex space
\mathbb{C}^n with respect to the space variable x. For the time variable t also,
$v(x, t)$ can be holomorphically extended on the right half plane
$D = \{ z | \Re z > 0 \}$ of the complex plane \mathbb{C}. These facts are found in [4,6].

In this paper, for any $a \in \mathbb{R}^n$ and for a fixed time t_0, we derive an
inequality which expresses the relation of $v(a, t)$ and $v(x, t_0)$. Our
inequality is the generalization of an inequality in [6] for the n
dimension.

Theorem For an initial values F in $L^2(\mathbb{R}^n)$ let $v(x, t)$ be the solution of
the n dimensional heat equation (1.1). Then, for any $a \in \mathbb{R}^n$ and for any
to > 0, the following inequality is valid:

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |\partial_t v(a, z)|^2 x^{n/2} \, dx \, dy \leq C(n, t_0) \int_{\mathbb{C}^n} |v(w, t_0)|^2 \exp \left(-\frac{|\tau|^2}{2t_0} \right) \, d\lambda \, d\tau,$$

where $z = x + iy$ ($x, y \in \mathbb{R}$), $w = \lambda + i\tau$ ($\lambda, \tau \in \mathbb{R}^n$). Moreover, the equality
holds if and only if F is a member in $M(n, a)$. Here, $C(n, t_0) =
n\Gamma(n/2)/(2^{n+1}\pi^{n-1}t_0^{n/2})$ and $M(n, a)$ is the closure of the space spanned
linearly by

$$\left\{ f(\xi) = e^{-|\xi-a|^2} \text{ on } \mathbb{R}^n \mid a \in D \right\}$$

in $L^2(\mathbb{R})$.

2. SOME HOLOMORPHIC FUNCTION SPACES

We let $K(z, u)$ be the Bergman kernel on the domain D with respect to
the measure $dx \, dy/\pi$. It is explicitly represented by $K(z, u) = 1/(z + \bar{u})^2$.
For any $q \geq 1$, we consider the Hilbert space

$$H_q = \left\{ f: \text{holomorphic in } D \mid \right.$$}

$$\left. \|f\|^2_{H_q} = \frac{1}{\pi \Gamma(2q - 1)} \int_{\mathbb{C}^n} |f(z)|^2 K(z, z)^{1-q} \, dx \, dy < \infty, \right.$$}

$$z = x + iy \}. \right.$$
Then, the kernel function
\[K_q(z, u) = \Gamma(2q)K(z, u)^q, \quad (z, u) \in D \times D, \]
is the reproducing kernel of \(H_q \) in the following sense: for any \(z \in D \), \(K(\cdot, z) \) is the member in \(H_q \) and every member \(f \) in \(H_q \) is represented by
\[f(z) = \langle f, K_q(\cdot, z) \rangle_{H_q}, \quad z \in D, \]
where \(\langle \cdot, \cdot \rangle_{H_q} \) is the inner product in the Hilbert space \(H_q \) (refer to [2,3]). Meanwhile, the kernel function \(K_q \) can be represented by
\[K_q(z, u) = \int_0^\infty e^{-\xi \zeta} e^{-\xi_q \xi} e^{2q-1} d\xi, \quad z, u \in D, \quad (2.1) \]
and the right hand side of (2.1) converges for all \(q > 0 \). Hence, for any \(q \) with \(0 < q < 1 \), the function \(K_q \) also determines the \(H_q \) that admits the reproducing kernel \(K_q(z, u) \) (see [1,7]). For any \(q > 0 \), we denote
\[K_q(z, u) = \Gamma(2q)K(z, u)^q, \quad z, u \in D, \]
and we also consider the Hilbert space
\[A_q = \left\{ g: \text{holomorphic in } D \mid \right. \]
\[\|g\|^2_{A_q} = \frac{1}{\pi \Gamma(2q + 1)} \int_D \int_D |g'(z)|^2 K(z, z)^{-q} dx dy < \infty, \]
\[\lim_{x \to \infty} g(x) = 0 \} . \]
Since the mapping \(f \mapsto f' \) is the isometry from \(H_q \) onto \(H_{q+1} \), \(H_q = A_q \), and \(K_q(z, u) \) is the reproducing kernel of \(A_q \) (see [3]).

3. PROOF OF THEOREM

Following the theory of generalized integral transforms [5], we prove our theorem. First, for \(a = 0 \), we consider the integral transform
\[\mathcal{H}F(z) = \left(\frac{1}{2\sqrt{\pi z}} \right)^n \int_{\mathbb{R}^n} F(\xi) \exp \left(-\frac{\xi^2}{4z} \right) d\xi = v(0, z), \quad z \in D, \]
For any $t_0 > 0$, we calculate the kernel form

$$T_n(z, u) = \left(\frac{1}{4\pi \sqrt{zu}} \right)^n \int_{\mathbb{R}^n} \exp \left(-\frac{\xi^2}{4z} - \frac{\xi^2}{4u} \right) d\xi$$

$$= \left(\frac{1}{2\sqrt{\pi}} \right)^n K(z, u)^{n/4}.$$

Since the function $T_n(z, u)$ is positive matrix on D, it determines the reproducing kernel Hilbert space S_n (see [1, 7]). On the other hand, the space S_n is characterized by

$$S_n = \left\{ f: \text{holomorphic in } D \mid \frac{2^{3n/2+1}\pi^{n/2-1}}{n\Gamma(n/2)} \int_D |f'(z)|^2 x^{n/2} dx dy < \infty \right\}.$$

Hence we have the norm inequality

$$\|v(0, z)\|_{S_n}^2 \leq \int_{\mathbb{R}^n} |F(\xi)|^2 d\xi. \quad (3.1)$$

For the orthogonal complement N^\perp of the null space

$$N = \bigcap_{z \in D} \{ F \in L^2(\mathbb{R}^n) \mid \mathcal{H}F(z) = 0 \},$$

the equality in (3.1) holds if and only if F is a member in N^\perp. In fact, N^\perp is the closure of the space in $L^2(\mathbb{R}^n)$ which is linearly spanned by members of the family

$$\{ G(\xi) = \exp(-\alpha|\xi|^2) \mid \alpha \in D \},$$

and so $N^\perp = M(n, 0)$. From [4], the norm equality

$$\left(\frac{1}{2\pi t_0} \right)^{n/2} \int_{\mathbb{R}^n} |v(w, t_0)|^2 \exp \left(-\frac{r^2}{2t_0} \right) d\lambda dr = \int_{\mathbb{R}^n} |F(\xi)|^2 d\xi. \quad (3.2)$$

holds, and from (3.1) and (3.2) our inequality is obtained for $a = 0$.
For any $a \in \mathbb{R}^n$, since
\[
 v(a, t) = \left(\frac{1}{2\sqrt{\pi t}} \right)^n \int_{\mathbb{R}^n} F(\xi) \exp \left(-\frac{|a - \xi|^2}{4t} \right) d\xi
\]
\[
 = \left(\frac{1}{2\sqrt{\pi t}} \right)^n \int_{\mathbb{R}^n} F(\xi + a) \exp \left(-\frac{|\xi|^2}{4t} \right) d\xi,
\]
we have
\[
 \|v(a, t)\|_{S_n}^2 \leq \int_{\mathbb{R}^n} |F(\xi + a)|^2 d\xi = \int_{\mathbb{R}^n} |F(\xi)|^2 d\xi. \tag{3.3}
\]

From (3.2) and (3.3), the inequality (1.3) is valid. Meanwhile, the equality in (3.3) holds if and only if $F(\xi + a) \in M(n, 0)$. Therefore the proof has been completed.

References