SOLUTIONS OF INITIAL VALUE PROBLEMS FOR A PAIR OF LINEAR FIRST ORDER ORDINARY DIFFERENTIAL SYSTEMS WITH INTERFACE-SPATIAL CONDITIONS

M. VENKATESULU and PALLAV KUMAR BARUAH
Sri Sathya Sai Institute of Higher Learning
Department of Mathematics and Computer Science
Prasanthinilayam 515134 (A.P.) INDIA

(Received April, 1995; Revised August, 1995)

ABSTRACT

Solutions of initial value problems associated with a pair of ordinary differential systems \((L_1, L_2)\) defined on two adjacent intervals \(I_1\) and \(I_2\) and satisfying certain interface-spatial conditions at the common end (interface) point are studied.

Key words: Interface-Spatially Mixed Conditions, Ordinary Differential Systems, Equations, Initial Value Problems, Linearly Independent Solutions, Fundamental Systems.

AMS (MOS) subject classifications: 34AXX, 34A10, 34A15.

1. Introduction

In the studies of acoustic waveguides in ocean [1], optical fiber transmission [4], soliton theory [3], etc., we encounter a new class of problems of the type

\[
L_1f_1 = \sum_{k=0}^{n} P_k \frac{df_1^k}{dt^k} = \theta f_1 \text{ defined on an interval } I_1
\]

and

\[
L_2f_2 = \sum_{k=0}^{m} Q_k \frac{df_2^k}{dt^k} = \theta_2 f_2 \text{ defined on an adjacent interval } I_2,
\]

where \(\theta_1, \theta_2\) are constants, intervals \(I_1\) and \(I_2\) have common end (interface) point \(t = c\), and the functions \(f_1, f_2\) are required to satisfy certain interface conditions at \(t = c\). In most of the cases, the complete set of physical conditions on the system gives rise to self adjoint eigenvalue problems associated with the pair \((L_1, L_2)\). In some cases, however, the physical conditions at the interface may be inadequate to describe the problem in a mathematically sound manner. In such a situation, when the problem is formulated mathematically, it becomes ill-posed, and therefore cannot be solved effectively (uniquely) using existing methods. With the introduction of interface-spatial conditions (entirely a new concept), we shall be able to convert these ill-posed problems into well-posed problems and this justifies their mathematical study.

In a series of papers, we wish to develop a unified approach to these interface-spatial problems for both the regular and the singular cases. In the present paper, for the first time, we...
shall study the initial value problems (IVPs) for a pair of linear first order ordinary differential systems satisfying certain interface-spatial conditions.

Before proving the main theorems, we introduce a few notations and make some assumptions. For any compact interval J of \mathbb{R} and for any non-negative integer k, let $C^k(J)$ denote the space of k-times continuously differentiable complex-valued functions defined on J. If I is a non-compact interval of \mathbb{R}, $C^k(I)$ denotes the collection of all complex-valued functions f defined on I whose restriction $f|_J$ to any compact subinterval J of I belongs to $C^k(J)$. Let $AC^k(I)$ denote the space of all complex-valued functions f which have $(k-1)$ derivatives on I, and, the $(k-t)$th derivative is absolutely continuous over each compact subinterval of I. Let $I_1 = (a, c]$, $I_2 = [c, b]$, $-\infty < a < c < b < +\infty$, and let $f^{(j)}$ denote the jth derivative of f. For a matrix A, let $R(A)$ and $\rho(A)$ denote the range and rank of A. Let \mathbb{C}^n denote the complex n-dimensional space.

Let $A_1(t)$ ($A_2(t)$) be matrix valued functions of order $n \times n$ ($m \times m$), whose entries belong to $C^0(I_1)$ ($C^0(I_2)$). Let $b_1(t)$ ($b_2(t)$) be a vector-valued function of order $n \times 1$ ($m \times 1$), whose entries are integrable over every compact subinterval of I_1 (I_2).

Let the functions $P_k \in C^k(I_1)$ ($k = 0, 1, \ldots, n$) $Q_k \in C^k(I_2)$ ($k = 0, 1, \ldots, m$) $P_n(t) \not= \emptyset$ on I_1 and $Q_m(t) \not= \emptyset$ on I_2. Let $g_1(g_2)$ be a measurable complex-valued function defined on I_1 (I_2) which is integrable over every compact subinterval of I_1 (I_2).

Without loss of generality, we assume $n \geq m$. Let A and B be $m \times n$ and $m \times m$ matrices with complex entries respectively, and $R(A) = R(B)$. Consequently, $\rho(A) = \rho(B) =: d$ ($\leq m$). Let N be a subspace of $R(A)$, and the dimension of N equals d'. Let $t_i \in I_i$ ($i = 1, 2$), $C = \text{column} (c_0, c_1, \ldots, c_{n-1}) \in \mathbb{C}^n$, and $D = \text{column}(d_0, d_1, \ldots, d_{m-1}) \in \mathbb{C}^m$. Let $Y_1 = \text{column} (y_{11}, y_{12}, \ldots, y_{1n})$ and $Y_2 = \text{column}(y_{21}, y_{22}, \ldots, y_{2m})$.

Consider the following interface-spatially mixed pair of linear first order ordinary differential systems:

$$Y' = A_1(t)Y_1 + b_1(t), \quad t \in I_1,$$
$$Y' = A_2(t)Y_2 + b_2(t), \quad t \in I_2,$$
$$AY_1(c) - BY_2(c) \in N. \quad (3)$$

Also, consider the initial conditions

$$Y_1(c) = C \quad (4)$$
$$Y_2(c) = D. \quad (5)$$

We call problems (1)-(3) and (4)(5) the interface-spatially mixed initial value problems (IFSVIP) (I) ((II)).

Consider the following interface-spatially mixed pair of linear ordinary differential equations (of orders n and m):

$$L_1f_1 = \sum_{k=0}^{n} P_k \frac{d^2 f_1}{dt^2} = g_1, \quad t \in I_1,$$
$$L_2f_2 = \sum_{k=0}^{m} Q_k \frac{d^2 f_2}{dt^2} = g_2, \quad t \in I_2,$$
$$A\tilde{f}_1(c) - B\tilde{f}_2(c) \in N, \quad (8)$$

where

$$\tilde{f}_1 = \text{column}(f_1, f_{1}^{(1)}, \ldots, f_{1}^{(n-1)}),$$

$$\tilde{f}_2 = \text{column}(f_2, f_{2}^{(1)}, \ldots, f_{2}^{(m-1)}).$$
and
\[\tilde{f}_2 = \text{column } (f_2, f_2^{(1)}, \ldots, f_2^{(m-1)}). \]

Also consider the initial conditions
\begin{align*}
 f_1^{(j)}(t_1) &= c_j \quad (j = 0, 1, \ldots, n-1), \\
 f_2^{(j)}(t_2) &= d_j \quad (j = 0, 1, \ldots, m-1).
\end{align*}

We call problems (6)-(8) and (9) ((10)) the interface-spatially mixed initial value problems (IFSIVP) (I') ((II')).

Definition 1: We call a pair of vector-valued functions \((Y_1, Y_2)\), defined on \(I_1 \times I_2\), an interface-spatially mixed (IFS) solution of (1)-(2) if
\begin{enumerate}
 \item \(Y_{1j} \in AC^1(I_1) \ (j = 1, \ldots, n)\),
 \item \(Y_1\) satisfies equation (1) for almost all \(t \in I_1\),
 \item \(Y_{2j} \in AC^1(I_2) \ (j = 1, \ldots, m)\),
 \item \(Y_2\) satisfies equation (2) for almost all \(t \in I_2\),
 \item the pair \((Y_1, Y_2)\) satisfies relation (3).
\end{enumerate}

Definition 2: We call a pair of complex-valued functions \((f_1, f_2)\), defined on \(I_1 \times I_2\), an interface-spatially mixed (IFS) solution of (6)-(7) if
\begin{enumerate}
 \item \(f_1 \in AC^n(I_1)\) and satisfies equation (6) for almost all \(t \in I_1\),
 \item \(f_2 \in AC^m(I_2)\) and satisfies equation (7) for almost all \(t \in I_2\),
 \item the pair \((f_1, f_2)\) satisfies relation (8).
\end{enumerate}

Definition 3: We call a pair of vector-valued functions \((Y_1, Y_2)\), defined on \(I_1 \times I_2\), an interface-spatially mixed solution of IFSIVP(I) ((II)) if
\begin{enumerate}
 \item \((Y_1, Y_2)\) is an IFS solution of (1)-(2)
 \item \(Y_1(Y_2)\) satisfies condition (4) ((5)).
\end{enumerate}

Definition 4: We call a pair of complex-valued functions \((f_1, f_2)\), defined on \(I_1 \times I_2\), an interface-spatially mixed solution of IFSIVP(I') ((II')) if
\begin{enumerate}
 \item \((f_1, f_2)\) is a IFS solution of (6)-(7)
 \item \((f_1, f_2)\) satisfies condition (9) ((10)).
\end{enumerate}

Definition 5: We say that a collection of non-trivial pairs \((Y_{11}, Y_{12}), \ldots, (Y_{p1}, Y_{p2})\) are linearly independent if for any set of scalars \(\alpha_1, \ldots, \alpha_p\),
\[\sum_{i=0}^{p} \alpha_i(Y_{i1}, Y_{i2}) = (0, 0) \]
implies that \(\alpha_1 = \alpha_2 = \ldots = \alpha_p = 0\).

Similarly, we define the linear independency of a collection of pairs \((f_{11}, f_{12}), \ldots, (f_{p1}, f_{p2})\).

Definition 6: By an IFS fundamental system for the IFSIVP(I) ((II)), we mean a set of linearly independent IFS solutions of IFSIVP(I) ((II)) which span the IFS solution space of IFSIVP(I) ((II)).

Similarly, we define a fundamental system for the IFSIVP(I') ((II')).
2. Main Theorems

Theorem 1: (a) If either $b_1(t) \neq 0$, $b_2(t) \neq 0$, or C is a nonzero vector, then the IFSIVP(I) has an IFS fundamental system consisting of “$m - d + d' + 1$” linearly independent IFS solutions of IFSIVP(I). If $b_1(t) \equiv 0$, $b_2(t) \equiv 0$, and C is a zero vector, then the IFSIVP(I) has an IFS fundamental system consisting of “$m - d + d'$” linearly independent IFS solutions of IFSIVP(I).

(b) If either $b_1(t) \neq 0$, $b_2(t) \neq 0$, or D is a nonzero vector, then the IFSIVP(II) has a fundamental system consisting of “$n - d + d' + 1$” linearly independent IFS solutions of IFSIVP(II). If $b_1(t) \equiv 0$, $b_2(t) = 0$, and D is a zero vector, then the IFSIVP(II) has an IFS fundamental system consisting of “$n - d + d'$” linearly independent IFS solutions of IFSIVP(II).

Proof: Since the components of $b_1(t)$ are measurable complex-valued functions integrable on I_1 by Theorem 2.1 [2], there exists a unique vector-valued function $\phi(t) = \text{column}(\phi_1(t), \phi_2(t), \ldots, \phi_n(t))$ defined on I_1 with $\phi_j \in AC^1(I_1)$ such that

$$\phi'(t) = A_1(t)\phi(t) + b_1(t), \ t \in I_1,$$

$$\phi(t_1) = C.$$

Let $\phi(c) = \eta$. Since $R(A) = R(B)$, there exists a vector $\beta^0 \in \mathbb{C}^m$ such that $A\eta = B\beta^0$. If $A\eta \neq 0$, β^0 is a nonzero vector, and if $A\eta = 0$, then we take β^0 to be zero vector. Since $\rho(B) = d$, there exist $(m - d)$ linearly independent vectors $\beta^1, \beta^2, \ldots, \beta^{m-d} \in \mathbb{C}^m$ which are solutions of $B\beta = 0$. Clearly, $\beta^0, \beta^0 + \beta^1, \ldots, \beta^0 + \beta^{m-d}$ are $(m - d + 1)$ or $(m - d)$ linearly independent solutions of $A\eta = B\beta$, affected by $A\eta \neq 0$ or $A\eta = 0$.

Also, since the components of $b_2(t)$ are measurable complex-valued functions integrable on I_2, there exists a unique vector-valued function $\psi(t) = \text{column}(\psi_1(t), \ldots, \psi_n(t))$ defined on I_2 with $\psi_j \in AC^1(I_2)$ such that

$$\psi'(t) = A_2(t)\psi(t) + b_2(t), \ t \in I_2,$$

$$\psi_0(c) = \beta^0.$$

Let $\psi(1) = \text{column}(\psi_1(1), \ldots, \psi_n(1))$, defined on I_2 with $\psi_j \in AC^1(I_2)$, be the unique vector-valued function such that

$$\psi(t) = A_2(t)\psi(t), \ t \in I_2,$$

$$\psi(c) = \beta^i, \ i = 1, \ldots, m - d.$$

Clearly, $\psi_1, \ldots, \psi_{m-d}$ are linearly independent and if $\beta^0 \neq 0$, then $\psi_0, \ldots, \psi_{m-d}$ are also linearly independent.

Choose a basis $\alpha^1, \ldots, \alpha^d'$ for N, and let $\beta = \beta^{m-d} + i$ be a solution of

$$-B\beta^{m-d} + i = \alpha^i \ (i = 1, \ldots, d').$$

Since α^i are linearly independent $\beta^{m-d} + d'$ are also linearly independent. In fact, $\beta^1, \ldots, \beta^{m-d} + d'$ are linearly independent.

Again, let $\psi(t)$, defined on I_2, be a unique vector-valued function such that

$$\psi(t) = A_2(t)\psi(t), \ t \in I_2,$$

$$\psi(c) = \beta^i \ (i = m - d + 1, \ldots, m - d + d').$$

Clearly, $\psi_1, \ldots, \psi_{m-d+d'}$ are linearly independent.

Now, define

$$(Y_{01}, Y_{02}) = (\phi, \psi_0),$$
Clearly, each pair \((Y_{i1}, Y_{i2})\) \((i = 0, 1, \ldots, m - d + d')\) is an IFS solution of (1)-(2). Moreover, if \(b_1(t) \neq 0, b_2(t) \neq 0,\) or \(C \neq 0,\) then the pair \((\phi, \psi_0)\) is nontrivial.

Claim: For \(b_1(t) \neq 0, b_2 \neq 0\) or \(C \neq 0,\) \(\{(Y_{i1}, Y_{i2}), i = 0, \ldots, m - d + d'\}\) is an IFS fundamental system for the IFSIVP(I).

Let \(\sum_{i=0}^{m-d+d'} a_i(Y_{i1}, Y_{i2}) = (0, 0),\) where \(a_i\)s are scalars. Then
\[
\sum_{i=0}^{m-d+d'} a_i Y_{i1} = 0 \quad \text{and} \quad \sum_{i=0}^{m-d+d'} a_i Y_{i2} = 0. \tag{11}
\]
Consequently, we get
\[
\sum_{i=1}^{m-d+d'} a_i \left[A\phi(c) - B(\psi_0(c) + \psi_1(c)) \right] + a_0 \left[A\phi(c) - B\psi_0(c) \right] = 0,
\]
i.e.,
\[
\sum_{i=m-d}^{m-d+d'} a_i \phi = 0, \quad \text{which implies that} \quad a_i = 0 \quad (i = m - d + 1, \ldots, m - d + d').
\]
Hence, relation (11) becomes
\[
\sum_{i=0}^{m-d} a_i \phi = 0 \quad \text{and} \quad \sum_{i=1}^{m-d} a_i (\psi_0 + \psi_1) + A_0 \psi_0 = 0. \tag{12}
\]
Again, from relation (12), we get
\[
\left(\sum_{i=0}^{m-d} a_i \right) \psi_0(c) + \sum_{i=1}^{m-d} a_i \psi_1(c) = 0,
\]
i.e.,
\[
\left(\sum_{i=0}^{m-d} a_i \right) \beta^0 + \sum_{i=1}^{m-d} a_i \beta^i = 0. \tag{13}
\]
If \(\beta^0 \neq \emptyset,\) then \(\beta^0, \beta^1, \ldots, \beta^m - d\) are linearly independent and hence \(a_i = 0 \quad (i = 0, 1, \ldots, m - d).\) If \(\beta^0 = 0,\) then relation (13) gives \(a_i = 0 \quad (i = 1, \ldots, m - d)\) and from relation (12) we get \(a_0(\phi, \psi_0) = (0, 0),\) which implies that \(a_0 = 0.\) Thus, \((Y_{i1}, Y_{i2})\) \((i = 0, 1, \ldots, m - d + d')\) are linearly independent.

Now, let \((Y_1, Y_2)\) be any solution of the IFSIVP(I). We note that \(Y_1 = \phi.\)

Case (i): Suppose that \(AY_1(c) - BY_2(c) = 0.\) Furthermore, since \(A\phi(c) - B\psi_0(c) = 0,\) we get \(B(Y_2(c) - \psi_0(c)) = 0,\) which implies that \(Y_2(c) - \psi_0(c)\) belongs to the null space of \(B.\) Therefore, there exist constants \(a_i \quad (i = 1, \ldots, m - d)\) such that
\[
Y_2(c) - \psi_0(c) = \sum_{i=1}^{m-d} a_i \beta^i,
\]
i.e.,
\[
Y_2(c) = \beta^0 + \sum_{i=1}^{m-d} a_i \beta^i = (1 - \sum_{i=1}^{m-d} a_i) \beta^0 + \sum_{i=1}^{m-d} a_i (\beta^0 + \beta^i)
= (1 - \sum_{i=1}^{m-d} a_i) \psi_0(c) + \sum_{i=1}^{m-d} a_i (\psi_0(c) + \psi_1(c))
= (1 - \sum_{i=1}^{m-d} a_i) Y_0(c) + \sum_{i=1}^{m-d} a_i Y_i(c).\]
Thus, by the uniqueness of the solution of IVPs for a system of ordinary differential equations, we have

\[(Y_1, Y_2) = (1 - \sum_{i=1}^{m-d} a_i)(Y_{01}, Y_{02}) + \sum_{i=1}^{m-d} a_i(Y_{i1}, Y_{i2}). \]

Case (ii): Suppose that \(AY_1(c) - BY_2(c) = \xi = \sum_{i=1}^{d'} a_i^+ m-d \alpha_i \), where \(a_i^+ \) are scalars.

Define a pair \((K_1, K_2)\) by

\[
(K_1, K_2) = (1 - \sum_{i=m-d+1}^{m-d+d'} a_i)(Y_{01}, Y_{02}) + \sum_{i=m-d+1}^{m-d+d'} a_i(Y_{i1}, Y_{i2}).
\]

Then \((K_1, K_2)\) is an IFS solution of IFSIVP(I). Consequently, we get

\[B(Y_2(c) - K_2(c)) = 0. \]

Therefore, there exist scalars \(a_i \) \((i = 1, \ldots, m-d)\) such that

\[Y_2(c) - K_2(c) = \sum_{i=1}^{m-d} a_i \beta_i, \]

i.e.,

\[Y_2(c) = K_2(c) + \sum_{i=1}^{m-d} a_i \beta_i \]

\[= K_2(c) - (\sum_{i=1}^{m-d} a_i)\beta_0 + \sum_{i=1}^{m-d} a_i(\beta_0 + \beta_i) \]

\[= K_2(c) - (\sum_{i=1}^{m-d} a_i)\psi_0(c) + \sum_{i=1}^{m-d} a_i(\psi_0(c) + \psi_i(c)) \]

\[\vdots \]

Thus,

\[(Y_1, Y_2) = (K_1, K_2) - \sum_{i=1}^{m-d} a_i(Y_{01}, Y_{02}) + \sum_{i=1}^{m-d} a_i(Y_{i1}, Y_{i2}) \]

\[= (1 - \sum_{i=1}^{m-d} a_i)(Y_{01}, Y_{02}) + \sum_{i=1}^{m-d} a_i(Y_{i1}, Y_{i2}). \]

Hence, the claim is proved. If \(b_1(t) \equiv 0, b_2(t) \equiv 0, \) and \(C = 0, \) then \((\phi, \psi_0)\) is a trivial pair and the pairs \((Y_{i1}, Y_{i2}) \) \((i = 1, \ldots, m-d+d')\) form an IFS fundamental system for the IFSIVP(I).

This completes the proof of part (a). Part (b) can be proved similarly.

Theorem 2: There exist exactly \(n + m-d + d' \) linearly independent (IFS) solutions of

\[
Y_1' = A_1(t)Y_1, \quad t \in I_1, \tag{16}
\]

\[
Y_2' = A_2(t)Y_2, \quad t \in I_2, \tag{17}
\]

satisfying the interface-spatial conditions

\[AY_1(c) - BY_2(c) \in N. \tag{18} \]

Proof: Since \(\rho(A) = \rho(B) = d, \) there exists a basis \(\{\eta^1, \ldots, \eta^n\} \) for \(\mathbb{C}^n \) such that \(\{\eta^1, \ldots, \eta^{n-d}\} \) forms a basis for the null-space of \(A, \) and a basis \(\{\beta^1, \ldots, \beta^m\} \) for \(\mathbb{C}^m \) such that \(\{\beta^{d+1}, \ldots, \beta^m\} \) forms a basis for the null space of \(B. \)

Let \(\tilde{\gamma}_i \) (whose components belong to \(AC^1(I_1) \)) be the unique solution of
IVPs for a Pair of ODS with IFS Conditions

\[Y'_1 = A_1(t)Y_1, \quad t \in I_1, \]
\[Y_1(c) = \eta^i \quad (i = 1, \ldots, n). \]

Since \(R(A) = R(B) \), for each \(i = n - d + 1, \ldots, n \), there exist scalars \(\theta_j^i \) \((j = 1, \ldots, d) \) such that

\[A\eta^i = \sum_{j=1}^{d} \theta_j^i B \beta^j. \]

Let \(\hat{Y}_{i2} \) (with components belonging to \(AC(I_2) \)) be the unique solution of

\[Y'_2 = A_2(t)Y_2, \quad t \in I_2, \]
\[Y_2(c) = B\beta^i - n + d \quad (i = n + 1, \ldots, n + m - d). \]

Let \(\{\alpha^1, \ldots, \alpha^{d'}\} \) be a basis for \(N \) and choose \(\hat{\beta}^i \in \mathbb{C}^m \) such that

\[-B\hat{\beta}^i = \alpha^i \quad (i = 1, \ldots, d'). \]

Let \(\hat{Y}_{i2} \) (with components belonging to \(AC^1(I_2) \)) be the unique solution of

\[Y'_2 = A_2(t)Y_2, \quad t \in I_2, \]
\[Y_2(c) = \hat{\beta}^i - n - m + d \quad (i = n + m - d + 1, \ldots, n + m - d + d'). \]

Define the pairs

\[(Y_{i1}, Y_{i2}) = \begin{cases}
(\hat{Y}_{i1}, 0) & (i = 1, \ldots, n - d), \\
(\hat{Y}_{i1}, \hat{Y}_{i2}) & (i = n - d + 1, \ldots, n), \\
(0, \hat{Y}_{i2}) & (i = n + 1, \ldots, n + m - d + d').
\end{cases} \]

Clearly each pair \((Y_{i1}, Y_{i2})\) is a nontrivial IFS solution of (16)-(18).

Claim: \((Y_{i1}, Y_{i2}) \quad (i = 1, \ldots, n + m - d + d')\) form an IFS fundamental system for the IFS solutions of (16)-(18).

First, we shall show that the pairs \((Y_{i1}, Y_{i2})\) are linearly independent. To this end, let

\[\sum_{i=1}^{n+m-d+d'} a_i (Y_{i1}, Y_{i2}) = (0, 0), \quad \text{where } a_i \text{s are scalars.} \]

Then,

\[\sum_{i=1}^{n} a_i \hat{Y}_{i1} = 0 \quad \text{and} \quad \sum_{i = n - d + 1}^{n+m-d+d'} a_i \hat{Y}_{i2} = 0. \quad (19) \]

Since \(\hat{Y}_{i1}(c) \quad (i = 1, \ldots, n + m - d + d') \) are linearly independent, from the first equation of relation (19) we get \(a_i = 0 \quad (i = 1, \ldots, n) \). Consequently, the second equation reduces to

\[\sum_{i = n + 1}^{n + m - d + d'} a_i Y_{i2} = 0. \quad (20) \]

Evaluating the above expression at \(t = c \) and then applying the matrix \(B \) to the resulting expression, we get

\[\sum_{i = n + m - d + 1}^{n + m - d + d'} a_i \alpha^i - n - m + d = 0, \]

which implies that \(a_i = 0 \), for \(i = n + m - d + 1, \ldots, n + m - d + d' \). Thus, relation (20) reduces to
\[n + m - d \sum_{i = n + 1}^{n + m - d} a_i \hat{Y}_{i2} = 0, \]
and since \(\hat{Y}_{i2}(c) \) \((i = n + 1, \ldots, n + m - d)\) are linearly independent (this fact can be easily verified), it follows that
\[a_i = 0 \quad (i = n + 1, \ldots, n + m - d). \]

This proves the linear independency of \((Y_{i1}, Y_{i2})\).s.

Next, let \((Y_1, Y_2)\) be any IFS solution of (16)-(18). Choose scalars \(a_i\) \((i = 1, \ldots, n)\) such that
\[Y_1(c) = \sum_{i = 1}^{n} a_i \eta_i. \]

Case (1): Suppose that \(AY_1(c) - BY_2(c) = 0\).

Define the pair \((K_1, K_2) = \sum_{i = 1}^{n} a_i (Y_{i1}, Y_{i2})\).

Then \(K_1(c) = \sum_{i = 1}^{n} a_i Y_{i1}(c) = Y_1(c).\) Hence, \(Y_1 = K_1\) and \(B(Y_2(c) - K_2(c)) = 0\), which implies that
\[Y_2(c) = K_2(c) + \sum_{i = n + 1}^{n + m - d} a_i \beta^i - n + d \]
for some scalars \(a_i\).s,

i.e.,
\[Y_2(c) = K_2(c) + \sum_{i = n + 1}^{n + m - d} a_i Y_{i2}(c). \]

Thus,
\[(Y_1, Y_2) = (K_1, K_2) + \sum_{i = n + 1}^{n + m - d} a_i (Y_{i1}, Y_{i2}) \]
\[= \sum_{i = 1}^{n + m - d} a_i (Y_{i1}, Y_{i2}). \]

Case (2): Suppose that \(A(Y_1(c) - B Y_2(c)) = \xi = \sum_{i = n + m - d + d'} a_i \alpha^i - n - m + d\), where \(a_i\) are scalars.

Define \((H_1, H_2) = \sum_{i = n + m - d + 1}^{n + m - d + d'} a_i (Y_{i1}, Y_{i2}).\)

Then \(A(H_1(c) - Y_1(c)) - B(H_2(c) - Y_2(c)) = 0\), and therefore, by case (1),
\[(Y_1 - H_1, Y_2 - H_2) = \sum_{i = 1}^{n + m - d} a_i (Y_{i1}, Y_{i2}) \]
for some scalars \(a_i\).s.

Thus,
\[(Y_1, Y_2) = (H_1, H_2) + \sum_{i = 1}^{n + m - d} a_i (Y_{i1}, Y_{i2}) \]
\[= \sum_{i = 1}^{n + m - d + d'} a_i (Y_{i1}, Y_{i2}). \]

This completes the proof.

Remark 1: The assumption \(d' = d\) yields that there are no explicit boundary conditions at the interface point.

If \(d' = 0\), then the interface-spatial condition becomes
\[AY_1(c) - BY_2(c) = 0, \]
which is generally called the *interface condition*.

Since higher order ordinary differential equations can be converted into a system of first order
IVPs for a Pair of ODS with IFS Conditions

Theorem 3: (a) If either $g_1 \neq 0$, $g_2 \neq 0$, or $c_0, c_1, \ldots, c_{n-1}$ are not all zeros, then the IFSIVP(I') has a fundamental system consisting of \(m-d+d'+1\) linearly independent IFS solutions of IFSIVP(I'). If $g_1 \equiv 0$, $g_2 \equiv 0$, and $c_0, c_1, \ldots, c_{n-1}$ are all zeros, then the IFSIVP(I') has a IFS fundamental system consisting of \(m-d+d'\) linearly independent solutions of IFSIVP(I').

(b) If either $g_1 \neq 0$, $g_2 \neq 0$, or $d_0, d_1, \ldots, d_{n-1}$ are not all zeros, then the IFSIVP(II') has a IFS fundamental system consisting of \(n-d+d'+1\) linearly independent IFS solutions of IFSIVP(II'). If $g_1 \equiv 0$, $g_2 \equiv 0$, and $d_0, d_1, \ldots, d_{n-1}$ are all zeros, then the IFSIVP(II') has an IFS fundamental system consisting of \(n-d+d'\) linearly independent IFS solutions of IFSIVP(II').

Theorem 4: There exist exactly \(n+m-d+d'\) linearly independent (IFS) solutions of

\[
L_1 f_1 = 0, \quad t \in I_1,
\]

\[
L_2 f_2 = 0, \quad t \in I_2,
\]

satisfying the interface-spatial conditions

\[A \tilde{f}_1(c) - B \tilde{f}_2(c) \in N.\]

Remark 4: For $d' = d$, Theorems 3 and 4 reduce to Theorems 1 and 4 of [6].

For $d' = 0$, Theorems 3 and 4 reduce to Theorems 3 and 6 of [6].

For $d' = 0$ as well as for the $(m \times n)$ matrix A given by

\[
A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 1 & 0 & \cdots & 0
\end{pmatrix}
\]

and B equal to the $(m \times m)$ identity matrix, Theorems 3 and 4 reduce to Theorems 2 and 5 of [6].

3. Physical Examples

Example 1 - Acoustic waveguides in ocean [1]: The following problem is encountered in the study of acoustic waves in the ocean consisting of two layers: an outer layer of finite depth and an inner layer of infinite depth:

\[
L_1 f_1 = \frac{d^2 f_1}{dt^2} + k_1^2 f_1 = \lambda f_1, \quad 0 \leq t \leq d_1,
\]

\[
L_2 f_2 = \frac{d^2 f_2}{dt^2} + k_2^2 f_2 = \lambda f_2, \quad d_1 \leq t \leq +\infty,
\]

together with the end point conditions given by

\[f_1(0) = 0, \quad \lim_{t \to \infty} f_2^{(1)}(t) = 0,
\]

and the interface conditions given by
\[f_1(d_1) = f_2(d_1), \quad 1/\rho_1 f_1'(d_1) = 1/\rho_2 f_2'(d_1). \]

(25)

Here \(\rho_1, \rho_2 \) are constant densities of the two layers, \(k_1, k_2 \) are the constants which depend upon the frequency constant and the constant sound velocities \(c_1, c_2 \) of the two layers, respectively, \(\lambda \) is an unknown constant, \(d_1 \) denotes the depth of the outer layer, and \(f_1, f_2 \) stand for the depth eigenfunctions.

In this example, the interface conditions at \(t = d_1 \) of the two layers can be written in the matrix form

\[
\begin{pmatrix}
1 & 0 \\
0 & 1/\rho_1
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
f_1(d_1) \\
f_1'(d_1)
\end{pmatrix}
\end{pmatrix}
= \begin{pmatrix}
1 & 0 \\
0 & 1/\rho_1
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
f_2(d_1) \\
f_2'(d_1)
\end{pmatrix}
\end{pmatrix}.
\]

Here \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_2 \end{pmatrix} \), \(\text{rank} \ A = \text{rank} \ B = 2 \), \(m = n = d = 2 \) and \(d' = 0 \).

Hence, by Theorem 3 and Remark 2, there exist a unique IFS solution for any IFSIVP associated with (22)-(23) and (25). Also, by Theorem 4 and Remark 2, there exist exactly two linearly independent IFS solutions of problems (22)-(23) and (25).

Example 2 - Optical fiber transmission [4]: In the study of wave optics of step index fiber, we encounter the following problem

\[
\begin{align*}
L_1 f_1 = & \frac{d^2 f_1}{dt^2} + 1/\rho_1 \frac{df_1}{dt} + (\eta_1 k_0^2 - \nu^2/t^2) f_1 = \beta^2 f_1, \quad 0 < t \leq a, \\
L_2 f_2 = & \frac{d^2 f_2}{dt^2} + 1/\rho_2 \frac{df_2}{dt} + (\eta_2 k_0^2 - \nu^2/t^2) f_2 = \beta^2 f_2, \quad a < t < +\infty,
\end{align*}
\]

(26)

(27)

together with the interface conditions at \(t = a \), given by

\[
|f_1(t)| < +\infty, \quad |f_2(t)| = 0.
\]

(29)

Here \(\eta_1 \) and \(\eta_2 \) are the refractive indices of the core and cladding, respectively, \(\beta \) is the wave propagation constant, \(\nu \) is an integer \(k_0 = w/c, \) \(c \) is the propagation velocity and \(w \) is the wave frequency and \(f_1 \) and \(f_2 \) are the field (electromagnetic) distributions of core and cladding, respectively.

In this example, relation (28) gives continuity conditions at \(t = a \). Here \(A \) and \(B \) are the \(2 \times 2 \) identity matrices, \(n = m = d = 2 \) and \(d' = 0 \). Hence, by Theorem 3 and Remark 2, there exists a unique IFS solution for IFSIVP associated with (26)-(28). Also, by Theorem 4 and Remark 2, there exist exactly two linearly independent IFS (continuous) solutions of (26)-(28).

Example 3 - One-dimensional scattering in quantum theorem [3]: In quantum theory, the one-dimensional time-independent scattering problem with the delta function scattering potential is represented by the problem

\[
L_1 f_1 = \frac{d^2 f_1}{dt^2} + k^2 f_1 = 0, \quad -\infty < t \leq 0,
\]

(30)

\[
L_2 f_2 = \frac{d^2 f_2}{dt^2} + (k^2 - \nu_0) f_2 = 0, \quad 0 \leq t < +\infty,
\]

(31)

together with the interface conditions given by

\[
f_1(0) - f_2(0) = 0,
\]

(32)
where \(k^2 = 2mE/h^2 \), \(\nu_0 \) is a constant, and the functions \(f_1 \) and \(f_2 \) are associated with the flux density of the particle of the two regions, respectively. Here, \(m \) denotes the mass of the particle, \(E \) denotes its total energy, and \(h \) denotes the Planck constant divided by \(2\pi \). In this example, the interface conditions at \(t = 0 \) of the two regions can be written in the matrix form

\[
\begin{pmatrix}
1 & 0 \\
\nu_0 & 1
\end{pmatrix}
\begin{pmatrix}
f_1(0) \\
f^{(1)}_1(0)
\end{pmatrix} =
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
f_2(0) \\
f^{(1)}_2(0)
\end{pmatrix}
\]

Here

\[
A = \begin{pmatrix} 1 & 0 \\ \nu_0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\]

\(\text{rank } A = \text{rank } B = 2, \ m = n = d = 2, \ \text{and } d' = 0. \)

Hence, by Theorem 3 and Remark 2, there exists a unique IFS solution of any IFSIVP associated with (30)-(33). Also, by Theorem 4 and Remark 2, there exist exactly two linearly independent IFS solutions of (30)-(33).

Example 4: In this illustrative example, consider the following problem:

\[
L_1 f_1 = \frac{d^2 f_1}{dt^2} - k_1^2 f_1 = 0, \quad a < t < c,
\]

\[
L_2 f_2 = \frac{d^2 f_2}{dt^2} + k_2^2 f_2 = 0, \quad c < t < b,
\]

together with interface condition

\[
f_1(c) = f_2(c)
\]

and the end point conditions

\[
f_1(a) = 0 = f_2(b),
\]

where \(k_1 \) and \(k_2 \) are constants. Problems (34)-(37) can be thought of as the transverse vibrations of a string stretched between \(a \) and \(b \), fixed at \(a \) and \(b \), with different uniform linear densities (in the portion) between \(a \) and \(c \) and between \(c \) and \(b \), and plucked at the point \(t = c \).

In this example, there is only one condition at the interface (i.e., the continuity condition), and no definite relation between the derivatives is available. Therefore, we may take

\[
f^{(1)}_1(c) - f^{(1)}_2(c) = \alpha, \quad \alpha \in \mathbb{R}.
\]

We note that relation (38) is not at all a restriction on derivatives. Consequently, relation (36) and (38) can be written as

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
f_1(c) \\
f^{(1)}_1(c)
\end{pmatrix} -
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
f_2(c) \\
f^{(1)}_2(c)
\end{pmatrix} \in N,
\]

where \(N = \) the linear span of \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \).

Here, \(A = B = \) the \(2 \times 2 \) identity matrix, \(n = m = d = 2, \) and \(d' = 1. \) Therefore, by Theorem 3, there exist one or two linearly independent IFS solutions of the IFSIVP associated with problems (34)-(36) depending on whether the initial data is zero or nonzero. Also, by Theorem 4, there exist three linearly independent IFS solutions of problems (34)-(36).
Remark 3: The results of this paper are used in studying the deficiency indices and self-adjoint boundary value problems associated with \((L_1, L_2)\) satisfying interface-spatial conditions which we shall establish elsewhere.

Acknowledgement

The authors dedicate the work to the chancellor of the Institute Bhagawan Sri Sathya Sai Baba.

References

