AN ABSTRACT INVERSE PROBLEM

M. CHOULLI

Université de France-Comté
Laboratory de Mathématiques
25030, route de Gray, Besançon cédex
FRANCE

ABSTRACT

In this paper we consider an inverse problem that corresponds to an abstract integrodifferential equation. First, we prove a local existence and uniqueness theorem. We also show that every continuous solution can be locally extended in a unique way. Finally, we give sufficient conditions for the existence and a stability of the global solution.

Key words: inverse problem, abstract integrodifferential equation, existence, uniqueness, stability.

AMS (MOS) subject classification: 351%.

1. INTRODUCTION

Let \(X, Y \) be two Banach spaces, and let \(A: D(A) \subseteq X \to X \) be a linear operator. Let \(T > 0, F_1, F_2: [0, T] \times X \times Y \to X, L: X \to Y, v: [0, T] \to Y \), and \(z \in X \) be given data.

We consider the following problem: find \((u, p): [0, T] \to X \times Y \) such that

\[
\begin{align*}
 u'(t) &= Au(t) + F_1(t, u(t), p(t)) + \int_0^t F_2(s, u(s), p(t-s)) ds, \quad 0 \leq t \leq T, \\
 u(0) &= z, \\
 Lu(t) &= v(t), \quad 0 \leq t \leq T.
\end{align*}
\]

Such a problem has been considered previously by Prilepko, Orlovskii in [6,7], Lorenzi, Sinestrari in [4], and the author in [1].

The local existence and uniqueness result is obtained by Prilepko, Orlovskii for the case \(F_2 = 0 \), and by Lorenzi, Sinestrari for the case \(Y \) is a subspace of \(L(X) \), \(F_1(t, u, p) = pBz \), and \(F_2(t, u, p) = pBu \), where \(B \) is some given linear operator in \(X \). The stability problem has been studied by Lorenzi and Sinestrari in [5].

In [1] the author treats the case of \(Y = C[0, T]^n (n \geq 1), F_1(t, u, (p_1, \ldots, p_n)) = \sum_1^n p_i y_i, \; y_i \in X(1 \leq i \leq n) \) and \(F_2 = 0 \). Then a global existence and uniqueness theorem is obtained.

1Received: January 1990; Revised: October 1990.
The present work is concerned with a generalization of those results.

Throughout this paper we assume:

\((H1) \)
A is a closed linear operator with a dense domain generating a strongly continuous semigroup \(e^{At} \). Without loss of generality, we suppose that \(e^{At} \) is equibounded:

\[\| e^{At} \| \leq M, t \geq 0 \] for some \(M \geq 1 \).

\((H2) \)
\(x \in D(A) \),

\((H3) \)
\(L \in L(X,Y) \),

\((H4) \)
\(v \in C^1([0,T]: Y) \), and \(v(0) = Lx \).

\((H5,1) \)
\(F_1 \) and \(AF_1 \) are continuous in \([0,T] \times D(A) \times Y \).

For each \(r > 0 \), there exist positive continuous real valued functions \(g_{1,i}(r, \cdot) \), \(i = 0,1 \) such that

\((H5,2) \)
\[\| F_1(t, u_1, p_1) \|_{D(A)} \leq g_{1,0}(r, t), \]

\((H5,3) \)
\[\| F_1(t, u_1, p_1) - F_1(t, u_2, p_2) \|_{D(A)} \leq g_{1,1}(r, t)(\| u_1 - u_2 \|_{D(A)} + \| p_1 - p_2 \|_Y), \]

for each \((u_i, p_i) \in \{(u, p) \in D(A) \times Y, \| u \|_{D(A)} + \| p \|_Y \leq r \}, i = 1, 2, \) and \(t \in [0, T] \).

\((H6,1) \)
\[\int_0^t F_2 \text{ and } A \int_0^t F_2 \text{ are continuous in } [0, T] \times D(A) \times Y. \]

For each \(r > 0 \), there exist positive continuous real valued functions \(g_{2,i}(r, \cdot) \), \(i = 0,1 \), such that

\((H6,2) \)
\[\| \int_0^t F_2(s, u_1(s), p_1(t-s))ds \|_{D(A)} \leq \int_0^t g_{2,0}(r, s)ds, \]

\((H6,3) \)
\[\| \int_0^t \left(F_2(s, u_1(s), p_1(t-s)) - F_2(s, u_2(s), p_2(t-s)) \right)ds \|_{D(A)} \]
\[\leq \int_0^t g_{2,1}(r, s)(\| u_1(s) - u_2(s) \|_{D(A)} + \| p_1(s) - p_2(s) \|_Y)ds, \]

for each \((u_i, p_i) \in \{(u, p) \in C([0,T]: D(A) \times Y), \sup_{0 \leq s \leq t} (\| u(s) \|_{D(A)} + \| p(s) \|_Y) \leq r \}, i = 1, 2, \) and \(t \in [0, T] \).

There exist continuous function \(H_1: [0,T] \times Y \times Y \rightarrow Y \) with the following properties. For each \(r > 0 \) there exist positive continuous real valued functions \(C(r, \cdot) \) such that

\((H7,1) \)
\[\| H_1(t, u_1, p_1) - H_1(t, u_2, p_2) \|_Y \leq C(r, t)(\| u_1 - u_2 \|_{D(A)} + \| p_1 - p_2 \|_Y), \]

for each \((u_i, p_i) \in \{(u, p) \in Y \times Y, \| u \|_Y + \| p \|_Y \leq r \}, i = 1, 2, \) and \(t \in [0, T] \).

\(K: p \rightarrow H_1(t, v(t), p) \) has an inverse \(\Phi(t, \cdot) \) continuous map \(t \mapsto \Phi(t, w) \), and there exist positive continuous real valued function \(k \), such that
An Abstract Inverse Problem

\[(H7, 2) \quad \| \Phi(t, w_1) - \Phi(t, w_2) \|_Y, t \in [0, T], w_i \in Y, i = 1, 2. \]

\[(H7, 3) \quad LF_1(t, u, p) = H_1(t, Lu, p), (u, p) \in D(A) \times Y, \text{ and } t \in [0, T]. \]

2. **Existence of the Local Solution**

In this section we prove that the local solution of our inverse problem is obtained by a fixed point theorem. Let

\[a(t) = M \| x \|_{D(A)} + \| \Phi(t, 0) \|_Y + k(t) \| v'(t) - Le^{At}Az \|_Y, t \in [0, T], r_0 = 2 \sup_{0 \leq t \leq T} a(t), \]

\[g_i(r_0, t, s) = M(1 + k(t) \| L \|)(g_{1,i}(r_0, s) + (t - s)g_{2,i}(r_0, s)) + k(t) \| L \| g_{2,i}(r_0, s), \quad 0 \leq s \leq t \leq T, \]

\[i = 0, 1, \text{ and let } T_0 \in [0, T] \text{ be such that} \]

\[T_0 \sup_{0 \leq s \leq t \leq T} g_0(r_0, t, s) \leq \frac{r_0}{2}, \text{ and } T_0 \sup_{0 \leq s \leq t \leq T} g_1(r_0, t, s) = \gamma < 1. \]

Let \(Z(T_0) = C([0, T_0]; D(A) \times Y) \) equipped with the norm

\[\| (u, p) \|_{Z(T_0)} = \sup_{0 \leq t \leq T_0} (\| u(t) \|_{D(A)} + \| p(t) \|_Y). \]

Then, we define the mapping

\[\Psi: Z(T_0) \to Z(T_0); (u, p) \mapsto (U, P), \]

where

\[U(t) = e^{At}x + \int_0^t e^{A(t-s)}F_1(s, u(s), p(s))ds \]

\[+ \int_0^t e^{A(t-s)} \int_0^s F_2(\sigma, u(\sigma), p(s-\sigma))d\sigma ds, \]

\[P(t) = \Psi(t, v'(t) - Le^{At}Az - \int_0^t LF_2(s, u(s), p(t-s))ds \]

\[- \int_0^t Le^{A(t-s)}AF_1(s, u(s), p(t-s))ds \]

\[- \int_0^t Le^{A(t-s)}A \int_0^s F_2(\sigma, u(\sigma), p(s-\sigma))d\sigma ds, 0 \leq t \leq T_0. \]

Proposition 1. There exists a unique \((u_0, p_0)\) in \(B(r_0, T_0)\) satisfying \((u_0, p_0) = \Psi(u_0, p_0)\),

where \(B(r_0, T_0)\) denotes the closed ball of \(Z(T_0)\) with the center 0 and radius \(r_0\).
Proof. We claim that Ψ is a strict contraction from $B(r_0, T_0)$ into itself. Hence, according to the fixed point theorem, there is a unique (u_0, p_0) in $B(r_0, T_0)$ such that $(u_0, p_0) = \Psi(u_0, p_0)$.

Let (u_i, p_i) in $B(r_0, T_0), (U_i, P_i) = \Psi(u_i, p_i), i = 1, 2,$ and t in $[0, T_0]$.

We have then

$$\| U_1(t) \|_{D(A)} \leq M \| x \|_{D(A)} + M \int_0^t \| F_1(s, u(s), p(s)) \|_{D(A)} ds$$

$$+ M \int_0^t \| \int_0^s F_2(\sigma, u(\sigma), p(s-\sigma)) d\sigma \|_{D(A)} ds.$$

Using (H5) and (H6) we obtain

$$\| U_1(t) \|_{D(A)} \leq M \| x \|_{D(A)} + M \int_0^t g_{1,0}(r_0, s) ds + M \int_0^t g_{2,0}(r_0, \sigma) d\sigma ds$$

$$\leq M \| x \|_{D(A)} + M \int_0^t (g_{1,0}(r_0, s) + (t-s)g_{2,0}(r_0, s)) ds.$$

From (H7,2) we deduce

$$\| P_1(t) \|_{Y} \leq \| \Phi(t, 0) \|_{Y} + k(t) \| v'(t) - L e^{At}Az \|$$

$$- \int_0^t L F_2(s, u(s), p(t-s)) ds - \int_0^t L e^{A(t-s)} A F_1(s, u(s), p(t-s)) ds$$

$$- \int_0^t L e^{A(t-s)} A \int_0^s F_2(\sigma, u(\sigma), p(s-\sigma)) d\sigma ds \|_{Y}.$$

Hence

$$\| P_1(t) \|_{Y} \leq \| \Phi(t, 0) \|_{Y} + k(t) \| v'(t) - L e^{At}Az \| + \| L \| k(t) \int_0^t g_{2,0}(r_0, s) ds$$

$$+ M \| L \| k(t) \int_0^t (g_{1,0}(r_0, s) + (t-s)g_{2,0}(r_0, s)) ds.$$

Thus

$$\| U_1(t) \|_{D(A)} + \| P_1(t) \|_{Y} \leq \| x \|_{D(A)} + \| \Phi(t, 0) \|_{Y} + k(t) \| v'(t) - L e^{At}Az \|$$

$$+ \| L \| k(t) \int_0^t g_{2,0}(r_0, s) ds$$

$$+ M(1 + \| L \| k(t)) \int_0^t (g_{1,0}(r_0, s) + (t-s)g_{2,0}(r_0, s)) ds$$

$$\leq a(t) + \int_0^t g_1(r_0, t, s) ds.$$
This implies that
\[\| (U_1, P_1) \|_{Z(T_0)} \leq \tau_0. \]

On the other hand, in the same way as above, it is easily seen that
\[\| U_1(t) - U_2(t) \|_{D(A)} + \| P_1(t) - P_2(t) \|_Y \]
\[\leq \int_0^t g_2(\tau_0, t, s) \left(\| u_1(s) - u_2(s) \|_{D(A)} + \| p_1(s) - p_2(s) \|_Y \right) ds \]
\[\leq \gamma \sup_{0 \leq s \leq t} \left(\| u_1(s) - u_2(s) \|_{D(A)} + \| p_1(s) - p_2(s) \|_Y \right) ds. \]

It follows that
\[\| (U_1, P_1) - (U_2, P_2) \|_{Z(T_0)} \leq \gamma \| (u_1, p_1) - (u_2, p_2) \|_{Z(T_0)}. \]

Our claim is proven.

Proposition 2. \((u, p)\) is a solution of the inverse problem (1) – (3) in \([0, T]\) iff \((u, p) = \Psi(u, p)\).

Proof. It is well known that the solution of Cauchy problem (1) and (2) is given by \(u(t) = U(t)\). Therefore, it suffices to show
\[Lu(t) = v(t) \text{ iff } p(t) = \Psi(t, v'(t) - \int_0^t LF_2(s, u(s), p(t-s)) ds - LAu(t)) \]
for each \(t\) in \([0, T]\).

First, we differentiate \(Lu(t) = v(t)\) to obtain
\[Lu'(t) = L\{Au(t) + F_1(t, u(t), p(t)) + \int_0^t F_2(s, u(s), p(t-s)) ds\} = v'(t). \]

Hence
\[H_1(t, v(t), p(t)) = LF_1(t, u(t), p(t)) \]
\[= v'(t) - \int_0^t LF_2(s, u(s), p(t-s)) ds - LAu(t). \]

Using \((H7, 2)\) we get
\[p(t) = \Psi(t, v'(t) - \int_0^t LF_2(s, u(s), p(t-s)) ds - LAu(t)). \]

Conversely, this last equality implies that
\[
H_1(t, v(t), p(t)) = v'(t) - L\left(\int_0^t F_2(s, u(s), p(t-s)) ds - Au(t) \right)
- v'(t) - L\{v'(t) - F_1(t, u(t), p(t))\}
= v'(t) - Lu'(t) + H_1(t, Lu(t), p(t)).
\]

Thus
\[
\frac{d}{dt}(v(t)) = H_1(t, v(t), p(t)) - H_1(t, Lu(t), p(t)).
\]

Integrating and using the fact that \(v(0) = Lu(0) = Lx\), we obtain
\[
v(t) - Lu(t) = \int_0^t (H_1(s, v(s), p(s)) - H_1(s, Lu(s), p(s))) ds.
\]

But, \((H7, 1)\) leads to
\[
\|v(t) - Lu(t)\|_Y = \int_0^t C(R, s) \|v(s) - Lu(s)\|_Y ds,
\]

where
\[
R = \max(\sup_{0 \leq t \leq T} (\|Lu(t)\|_Y + \|p(t)\|_Y), \sup_{0 \leq t \leq T} (\|v(t)\|_Y + \|p(t)\|_Y)).
\]

Hence, by using Gronwall’s inequality, it follows that
\[
v(t) - Lu(t) = 0, \ 0 \leq t \leq T.
\]

Now, we combine propositions 1 and 2 to deduce the following local existence and uniqueness theorem for the inverse problem \((1)-(3)\).

Theorem 1. Under the assumptions \((H1)-(H7)\), there exist \(T_0\) in \([0, T]\) and \((u_0, p_0)\) in \(C([0, T_0]; D(A) \times Y)\) which is the unique solution of the inverse problem \((1)-(3)\) in \([0, T_0]\).

Remark. Theorem 1 is still valued if we add to the right side of equality \((1)\) a function \(f: [0, T] \rightarrow X\) such that \(f\) and \(Af\) are continuous.

3. GLOBAL SOLUTION

We begin this section by showing that any solution \((u_0, p_0)\) in \(C([0, T_0]; D(A) \times Y)\) of the inverse problem \((1)-(3)\) in \([0, T_0]\) can be uniquely extended to a solution in \([0, T_0 + T_1]\) for some \(T_1 > 0\), whenever \(0 < T_0 < T\).

If \(T\) is in \([0, \min(T_0, T - T_0)]\), we consider the following inverse problem:
An Abstract Inverse Problem

123

where

\[u'(t) = Au(t) + K_1(t, u(t), p(t)) + \int_0^t K_2(s, u(s), p(t-s))ds + f(t), \quad 0 \leq t \leq T \]

\[u(0) = \pi_1 = u_0(T_0) \]

\[Lu(t) = w(t), \; 0 \leq t \leq T \]

\[K_1(t, u(t), p(t)) = F_1(t + T_0, u(t), p(t)), \; 0 \leq t \leq T, \]

\[K_2(s, u(s), p(t-s)) = F_2(s, u_0(s), p(t-s)) + F_2(s + T_0, u(s), p_0(t-s)), \; 0 \leq t \leq T, \]

\[f(t) = \int_t^T F_2(s, u_0(s), p_0(t-s))ds, \; 0 \leq t \leq T, \text{ and} \]

\[w(t) = v(t + T_0), 0 \leq t \leq T. \]

Proposition 3. If \((u_0, p_0)\) in \(C([0,T_0];D(A) \times Y)\) denotes any solution of the inverse problem (1)-(3) in \([0,T_0]\), then there exist \(T_1 \in [0, \min(T_0, T - T_0)]\) and \((u, p)\) in \(C([0,T_0 + T_1];D(A) \times Y)\) such that \((u, p) = (u_0, p_0)\) in \([0,T_0]\), and \((u, p)\) satisfies (1)-(3) in \([0,T_0 + T_1]\).

Proof. It is not difficult to see that \(K_1, K_2, w\) have the same properties as \(F_1, F_2, v, p\), and that \(f\) and \(Af\) are continuous. It follows from Theorem 1 that there exist \(T_1 \in [0, T]\) and \((u_1, p_1) \in C([0,T_1];D(A) \times Y)\), which is the unique solution of the inverse problem (4)-(6) given by

\[u_1(t) = e^{At}x + \int_0^t e^{A(t-s)}K_1(s, u(s), p(s))ds + \int_0^t e^{A(t-s)}f(s)ds \]

\[+ \int_0^t e^{A(t-s)} \int_0^s K_2(\sigma, u(\sigma), p(s-\sigma))d\sigma d\sigma, \; 0 \leq t \leq T_1, \]

\[p_1(t) = \Psi(t + T_0, w'(t) - LAu_1(t) - \int_0^t LK_2(s, u_1(s), p_1(t-s))ds - Lf(t)), \; 0 \leq t \leq T_1. \]

We have

\[p_1(0) = \Psi(T_0, w'(0) - LAu_1(0) - Lf(0)) \]

\[= \Psi(T_0, v'(0) - LAu(T_0) - \int_0^T LK_2(s, u_0(s), p_0(T_0 - s))ds \]

\[= p(T_0). \]
One can easily check that
\[
(u(t), p(t)) = \begin{cases}
(u_0(t), p_0(t)), & 0 \leq t \leq T_0, \\
(u_1(t), p_1(t)), & T_0 < t \leq T_1,
\end{cases}
\]
belongs to \(C([0, T_0 + T_1]; D(A) \times Y)\). It remains to show that \((u, p)\) is a solution of the inverse problem (1)–(3) in \([0, T_0 + T_1]\). Since \(u_1\) satisfies (4), we can deduce that
\[
u'(t + T_1) = u_1'(t)
\]
\[
= Au_1(t) + F_1(t + T_0, u_1(t), p_1(t)) + \int_0^t F_2(s, u_0(s), p_1(t - s))ds
\]
\[
+ \int_0^{T_0} F_2(s + T_0, u_1(s), p_0(t - s))ds + \int_0^t F_2(s, u_0(s), p_0(t + T_0 - s))ds
\]
\[
= Au(t + T_0) + F_1(t + T_0, u(t + T_0), p(t + T_0)) + \int_0^t F_2(s, u(s), p(t + T_0 - s))ds
\]
\[
+ \int_0^{t + T_0} F_2(s, u(s), p(t + T_0 - s))ds + \int_0^t F_2(s, u(s), p(t + T_0 - s))ds
\]
\[
= Au(t + T_0) + F_1(t + T_0, u(t + T_0), p(t + T_0))
\]
\[
+ \int_0^{t + T_0} F_2(s, u(s), p(t + T_0 - s))ds, \quad 0 \leq t \leq T_1.
\]

On the other hand
\[
Lu(t + T_0) = L u_1(t) = w(t) = v(t + T_0), \quad 0 \leq t \leq T_1.
\]

Therefore we may conclude that \((u, p)\) is a solution of the inverse problem (1)–(3) in \([0, T_0 + T_1]\).

Proposition 4. Let \((u, p) \in C([0, T_{\max}; D(A) \times Y)\) be the maximal solution of the inverse problem (1)–(3), where \(0 < T_{\max} \leq T\). If

\[
(7) \quad \max_{0 < t < T_{\max}} \left(\sup_{0 \leq s \leq t} \left(\| u(s) \|_{D(A)} + \| p(s) \|_{Y} \right) \right) < +\infty,
\]

then \(T_{\max} = T\).

Proof. Clearly, from Proposition 2 \((u, p)\) can be continuously extended to a solution in
An Abstract Inverse Problem

[0, T_{\text{max}}]. If T_{\text{max}} < T, then, following the previous proposition, the solution in [0, T_{\text{max}}] can be extended to a solution in [0, T_{\text{max}} + \epsilon], for some \epsilon > 0. This contradicts the maximality of T_{\text{max}}.

Now, we will give a sufficient conditions to realize (7). For this purpose, we recall the following comparison theorem.

Theorem 2 [2]. Let I be a real interval, and let \(G: I \times I \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) be continuous such that \(G(t,s,r) \) is monotone nondecreasing in \(r \) for each \((t,s)\) in \(I \times I \). Let \(b \) in \(C(I) \), and let \(f \) in \(C(I) \) denote the maximal solution of the integral equation

\[
f(t) = b(t) + \int_{t_0}^{t} G(t,s,f(s))ds, \quad t \geq t_0.
\]

If \(g \in C(I) \) is such that

\[
g(t) \leq b(t) + \int_{t_0}^{t} G(t,s,g(s))ds, \quad t \geq t_0,
\]

then \(g(t) \leq f(t), t \geq t_0 \).

Here, by a maximal solution we mean that any other solution \(h \in C(I) \) must satisfy \(h(t) \leq f(t), t \geq t_0 \).

Before stating a global existence and uniqueness result for our inverse problem, we need to modify some assumptions on \(F_1 \), and \(F_2 \).

Instead of \((H5,2)\) and \((H6,2)\) we suppose that there exist \(G_i(t,r):[0, T] \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) continuous and monotone nondecreasing in \(r \) for each \(t \) in \([0, T]\), \(i = 1, 2 \), such that

\[
(H5,2') \quad \| F_1(t,u,p) \|_{D(A)} \leq G_1(t,\| u \|_{D(A)} + \| p \|_{Y}),
\]

\[
(H6,2') \quad \| \int_{0}^{t} F_2(s,u(s),p(t-s))ds \|_{D(A)} \leq \int_{0}^{t} G_2(s,\| u(s) \|_{D(A)} + \| p(s) \|_{Y})ds.
\]

Set

\[
G(t,s,r) = M(1 + k(t)\| L \|)(G_1(s,r) + (t-s)G_2(s,r)) + k(t)\| L \| G_2(s,r), 0 \leq s \leq t \leq T; i = 0, 1.
\]

Clearly, \(G(t,s,r) \) is monotone nondecreasing in \(r \), \(0 \leq s \leq t \leq T \).

Theorem 3. Assume that \((H1) - (H7)\) are satisfied, where \((H5,2)\) and \((H6,2)\) are changed by \((H5,2')\) and \((H6,2')\). If the nonlinear Volterra integral equation:
(8) \[r(t) = a(t) + \int_0^t G(t, s, r(s))ds, \quad 0 \leq t \leq T, \]

has a continuous maximal solution in \([0, T]\), then the inverse problem (1) – (3) has a unique solution in \([0, T]\).

Proof. Let \(r \) denote the continuous maximal solution of the integral equation (8). Proceeding in the manner of the proof of Proposition 1, we obtain

\[
\| u(t) \|_{D(A)} + \| p(t) \|_Y \leq a(t) + \int_0^t G(t, s, \| u(s) \|_{D(A)} + \| p(s) \|_Y)ds, \quad 0 \leq t \leq T.
\]

Thus, the condition (7) is satisfied.

The uniqueness of the global solution is just a consequence of the fact that the unique local solution allows a unique extension.

4. STABILITY RESULT

First of all, we give the exact assumptions under which the stability result will hold.

We assume that \((H1) – (H5, 1), (H6, 1), (H7)\) are satisfied, and there exist \(G_i(t, r): [0, T] \times \mathbb{R}^+ \to \mathbb{R}^+ \) continuous and monotone nondecreasing in \(r \) for each \(t \) in \([0, T]\), \(i = 1, 2 \), such that

\[(H8, 1) \quad \| F_1(t, u_1, p_1) - F_1(t, u_2, p_2) \|_{D(A)} \leq G_1(t, \| u_1 - u_2 \|_{D(A)} + \| p_1 - p_2 \|_Y), \quad \text{for each} \quad (u_i, p_i) \in D(A) \times Y, i = 1, 2, \quad \text{and} \quad 0 \leq t \leq T.\]

\[(H8, 2) \quad \| \int_0^t (F_2(s, u_1(s), p_1(t-s)) - F_2(s, u_2(s), p_2(t-s)))ds \|_{D(A)} \leq \int_0^t G_2(s, \| u_1(s) - u_2(s) \|_{D(A)} + \| p_1(s) - p_2(s) \|_Y)ds\]

for each \((u_i, p_i) \) in \(C([0, T]; D(A) \times Y), i = 1, 2, \) and \(0 \leq t \leq T.\)

\((v(t), H_1(t, v(t), p)) - \Phi(t, K(p))\) has the following property:

there exist continuous \(g: [0, T] \times \mathbb{R}^+ \to \mathbb{R}^+ \), such that

\[\| \Phi_1(t, w_1) - \Phi_2(t, w_2) \|_Y \leq g(t)(\| v_1(t) - v_2(t) \|_Y + \| w_1 - w_2 \|_Y),\]

for each \(v_i \) in \(C([0, T]; Y), w_i \in Y, i = 1, 2, \) and \(0 \leq t \leq T.\)
Here, \(\Phi_i(t, \cdot) \) denotes the inverse of the mapping \(K_i: \Phi \rightarrow H_i(t, v(t), \Phi) \), \(i = 1, 2 \). We set

\[
G(t, s, r) = M(1 + g(t) ||L||)(G_1(s, r) + (t - s)G_2(s, r)) + g(t) ||L||G_2(s, r),
\]

\[0 \leq s \leq t \leq T, \quad i = 0, 1.\]

Theorem 4. Suppose that the assumptions listed below are satisfied for \(z = z_i, \quad v = v_i, \quad i = 1, 2 \). Let \((u_i, p_i) \) in \(C([0, T]; D(A) \times Y) \) denote any solution of the inverse problem (1)-(3) corresponding to \(x = z_i, \quad v = v_i, \quad i = 1, 2 \), and let

\[
r_0(t) = M(1 + g(t) ||L||) ||z_1 - z_2||_{D(A)} + n(t)(||v_1(t) - v_2(t)|| Y + (||v'_1(t) - v'_2(t)|| Y)).
\]

If the maximal continuous solution, given its existence, of the Volterra integral equation

\[
m(t) = r_0(t) + \int_0^t G(t, s, m(s))ds, \quad 0 \leq t \leq T,
\]

satisfies the condition that there exists a constant \(C > 0 \), not depending on \(m \), such that

\[
m(t) \leq Cr_0(t), \quad 0 \leq t \leq T,
\]

then

\[
\|u_1(t) - u_2(t)\|_{D(A)} + ||p_1(t) - p_2(t)|| Y \leq Cr_0(t), \quad 0 \leq t \leq T.
\]

Proof. Let \(m \) denote the maximal solution of the integral equation (9), and let

\[
r(t) = \|u_1(t) - u_2(t)\|_{D(A)} + ||p_1(t) - p_2(t)|| Y, \quad 0 \leq t \leq T.
\]

It is easy to see that

\[
r(t) \leq r_0(t) + \int_0^t G(t, s, m(s))ds, \quad 0 \leq t \leq T.
\]

Using the comparison Theorem 2, we deduce that \(r(t) \leq m(t) \). Hence, (11) follows from (10).

Remark. We have \(G(t, s, r) \leq G(T, s, r) \). Then if \(G(T, s, r) \) takes the form \(G(T, s, r) = G(s)r \), the conclusion of Theorem 4.1 follows from Gronwall's inequality.
REFERENCES

