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1. Introduction

Let {BHi
(s), s ≥ 0} be a fractional Brownian motion (FBM) with index 0 < Hi < 1, i ∈ N

∗, and
{BHj,Hk

(s, s′), s ≥ 0, s′ ≥ 0} a fractional Brownian sheet (FBS) with index 0 < Hj, Hk < 1, j ∈
N

∗, k ∈ N
∗. We refer to [1] for further information about the FBM and the FBS. Denote by λ1

and λ2 two real numbers such that λ1λ2 /= 0.
Define a fractional mixed fractional Gaussian process by a suitable combination of some

appropriate fractional Gaussian processes. In the sequel, we consider the following three ex-
amples.

Example 1.1. The fractional mixed fractional Brownian motion (FMFBM) is defined by

X
(
w1, w2, s

)
= λ1sH2BH1

(
w1

)
+ λ2sH1BH2

(
w2

)
, (1.1)

where BH1 and BH2 are independent FBM withH1 /=H2.
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Example 1.2. The fractional mixed fractional Brownian motion and fractional Brownian sheet
(FMFBMFBS) are defined by

X
(
w1, w2, w3, s

)
= λ1sH2+H3BH1

(
w1

)
+ λ2sH1BH2,H3

(
w2, w3

)
, (1.2)

where the FBM BH1 and the FBS BH2,H3 are independent.

Example 1.3. The fractional mixed fractional Brownian sheet (FMFBS) is defined by

X
(
w1, w2, w3, w4, s

)
= λ1sH3+H4BH1,H2

(
w1, w2

)
+ λ2sH1+H2BH3,H4

(
w3, w4

)
, (1.3)

where BH1,H2 and BH3,H4 are independent FBS with (H1,H2)/= (H3,H4).

The motivation supporting this paper is threefold.

(i) The first goal of the FMFBS deals with the potential applications. Since the FMFBM,
the FMFBMFBS, and the FMFBS can be analyzed based on the large bodies of knowl-
edge on FBM and FBS, it can be used in the same fields, that is, natural time series in
economics, fluctuations in solid, hydrology, and, more recently, by new problems in
mathematical finance, telecommunication networks, and the environment (see [2–4]).

(ii) A second application deals with the small ball probability problem of the sum of two
not necessarily joint centered Gaussian random vectors X and Y in a separable Ba-
nach space E with norm ‖·‖ (see [5]). The small ball behavior of the FMFBS under the
uniform norm can be investigated as a special case of the small ball probability prob-
lem of the sum of two centered Gaussian random vectors, having a log-type small ball
factor (see [6]).

(iii) Last but not least, this article extends El-Nouty’s results [6–9] and consequently an-
swers some new questions. Recall first two definitions of the Lévy classes, stated in
[10]. Let {Z(t), t ≥ 0} be a stochastic process defined on the basic probability space
(Ω,A).

Definition 1.4. The function f(t), t ≥ 0, belongs to the lower-lower class of the process Z, (f ∈
LLC(Z)), if, for almost all ω ∈ Ω, there exists t0 = t0(ω) such that Z(t) ≥ f(t) for every t > t0.

Definition 1.5. The function f(t), t ≥ 0, belongs to the lower-upper class of the process Z, (f ∈
LUC(Z)), if, for almost all ω ∈ Ω, there exists a sequence 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with
tn→ +∞, as n→ +∞, such that Z(tn) ≤ f(tn), n ∈ N

∗.

In the spirit of [6–9, 11], the main aim of this paper is to characterize the lower classes
of the uniform norm of the FMFBS for any 0 < H1,H2,H3,H4 < 1. More precisely, we want to
compare the influence of two FBSs and to measure the weight of a log-type small ball factor
versus another one.
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2. Main results

Our first result is given in the following theorem.

Theorem 2.1. LetX and Y be any two joint Gaussian random vectors in a separable Banach space with
norm ‖·‖. Assume that there exist CX ≥ 1 and CY ≥ 1 such that one has, for any ε > 0 small enough,

−CX ≤ ε1/α

(
log (1/ε)

)β logP
(‖X‖ ≤ ε) ≤ − 1

CX
,

−CY ≤ ε1/α̃

(
log (1/ε)

)β̃
logP

(‖Y‖ ≤ ε) ≤ − 1
CY

,

(2.1)

with 0 < α, α̃ < +∞, 0 ≤ β, β̃ < +∞ and (α, β)/= (α̃, β̃).
If (α < α̃) or (α = α̃ and β > β̃), then there exists KX ≥ CX depending on CX only such that one

has, for any ε > 0 small enough,

−KX ≤ ε1/α

(
log (1/ε)

)β logP
(‖X + Y‖ ≤ ε) ≤ − 1

KX
. (2.2)

Since the study of the lower classes of the FMFBM (resp., FMFBMFBS) under the uni-
form norm was investigated in [8] (resp., [9]), we focus our attention to the FMFBS. Set

Y (t) = sup
0≤s≤t

sup
0≤w1,w2,w3,w4≤s

∣∣X
(
w1, w2, w3, w4, s

)∣∣, t ≥ 0. (2.3)

Note first that, by the scaling property, we have, for any ε > 0,

P

(
Y (t) ≤ ε tH1+H2+H3+H4

)
= P

(

sup
0≤s≤1

sup
0≤w1,w2,w3,w4≤s

∣∣X
(
w1, w2, w3, w4, s

)∣∣ ≤ ε

)

= P
(
Y (1) ≤ ε) := φ(ε),

(2.4)

where φ is named the small ball function and γ := H1 +H2 +H3 +H4 the scaling factor.
Recall that the small ball behavior of the FBS under the uniform norm was studied in

[12, 13].
Set α = min (H1, H2, H3, H4), which is in ]0, 1[. We introduce the number β taking its

values in {0, 1+1/α}. As a direct consequence of Theorem 2.1, we have the following corollary.

Corollary 2.2. There is a constant K0, 0 < K0 ≤ 1, depending on H1, H2, H3, H4, λ1 and λ2 only,
such that one has, for any ε > 0 small enough,

exp
(
−
(
log (1/ε)

)β

K0 ε1/α

)
≤ φ(ε) ≤ exp

(
− K0

(
log (1/ε)

)β

ε1/α

)
. (2.5)

Recall that we suppose (H1,H2)/= (H3,H4). In the sequel, there is no loss of generality
to assume also that

H1 ≤ H2, H3 ≤ H4. (2.6)
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Thus when (H1 = H2, H3 < H4 and H1 ≤ H3), (H1 = H2, H3 = H4 and H1 < H3), or
(H1 < H2, H3 = H4 andH3 ≤ H1), we emphasize that β = 1 + 1/α, that is, we have a log-type
small ball factor.

Note first that the minimum α plays a key role. This is not really surprising. Indeed, this
phenomenon was already observed in [8, 9].

It appears that the sufficiency part of the lower classes of Y can be stated in a general
framework. Roughly speaking, we follow the same lines as those of [6, 7].

Let {Y0(t), t ≥ 0} be a real-valued statistic of the two independent FBSs, BH1,H2 and
BH3,H4 , such that Y0(t) is a nondecreasing function of t ≥ 0.

The following notation is needed. IfK is a Hausdorff compact space, we denote, byC(K),
the space of all continuous functions from K to R equipped with the classical sup-norm. Let
X = C([0, 1]2) × C([0, 1]2) be the product space equipped with the product topology. Denote,
by L (BH1,H2 , BH3,H4), the Gaussian measure associated to BH1,H2 and BH3,H4 and defined on B,
the Borel σ-field of X.

We assume that Y0 satisfies the following three conditions:

(i) The scaling condition. There exists γ0 > 0 such that

P
(
Y0(t) ≤ ε tγ0

)
= P

(
Y0(1) ≤ ε

)
:= φ(ε). (2.7)

(ii) The convexity condition. There exists a convex and B-measurable function g: (X,L ×
(BH1,H2 , BH3,H4))→R such that, for any t ≥ 0, Y0(t) = g(BH1,H2(s1t, s2t),
BH3,H4(s3t, s4t); 0 ≤ s1, s2, s3, s4 ≤ 1), and Y0(t) < +∞, with probability 1.

(iii) The log-type small ball condition. There exist α0 ∈ ]0, γ0], β0 ∈ R and a constant K, 0 <
K ≤ 1, depending on H1, H2, H3, H4, γ0, α0 and β0 only such that we have, for any
ε > 0 small enough,

exp
(
−
(
log (1/ε)

)β0

Kε1/α0

)
≤ φ(ε) ≤ exp

(
− K

(
log (1/ε)

)β0

ε1/α0

)
. (2.8)

Note that these conditions generalize those of [6, 7]. The small ball function still plays a
key role. The convexity of the function ψ defined by ψ(ε) = − logφ(ε), 0 < ε < 1, is ensured by
(ii) (see [14, 15]).

Our second result is given in the following theorem.

Theorem 2.3. Let f(t) be a positive nondecreasing function of t ≥ 0. Assume that there exists m > 0
such that (f(t)/tγ0−α0) (log tγ0/f(t))−β0α0 ≥ m.

If

f(t)
tγ0

is bounded and
∫+∞

0
f(t)−1/α0 t(γ0/α0)−1

(
log

tγ0

f(t)

)β0

φ

(
f(t)
tγ0

)
dt < +∞, (2.9)
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then one has

f ∈ LLC
(
Y0

)
. (2.10)

The sup-norm statistic Y clearly satisfies the three above conditions with γ0 = γ = H1 +
H2+H3+H4, α0 = α = min (H1,H2,H3,H4) = min (H1,H3), β0 = β ∈ {0, 1+1/α}, andK = K0.
Now, we characterize the necessity part of the lower classes of the FMFBMFBS. Ourmain result
is stated in the following theorem.

Theorem 2.4. Let f(t) be a positive nondecreasing function of t ≥ 0 such that f(t)/tγ is a nonincreas-
ing function of t > 0.

If

f ∈ LLC(Y ), (2.11)

then one has

lim
t→+∞

f(t)
tγ

= 0 ,
∫+∞

0
f(t)−1/γ φ

(
f(t)
tγ

)
dt < +∞. (2.12)

First, we can notice that Theorem 2.3 involves γ0, α0 and β0. If β0 = 0, Theorem 2.3 looks
like [7, Theorem 1] or else like [6, Theorem 1.1]. Theorem 2.4 has the same form as the necessity
part of [11, Theorem 1.2] or as the theorems obtained in [6–9]. In his previous works on the
study of the lower classes, the author showed that the methodology in [11] led to two integral
tests, these tests are actually identical when γ = α and β = 0. Here, α = min (H1,H3) < γ =
H1 +H2 +H3 +H4. This is why the integral tests of Theorems 2.3 and 2.4 have different forms.
Moreover, since α < γ , we must assume, as in [6–9], that f(t)/tγ is not only bounded, but also
a nonincreasing function of t > 0. This last assumption will play a key role in some proofs.
Finally, although they are two different integral tests, Theorems 2.3 and 2.4 are sharp. Indeed,
set, if β = 0,

f(t) =
λ tγ

(log log t)α
, t ≥ 3, λ > 0, (2.13)

or else (i.e., β = 1 + (1/α))

f(t) = tγ
(λ log log log t)1+α

(log log t)α
, t ≥ 16, λ > 0. (2.14)

If λ is small enough, then Theorem 2.3 yields f ∈ LLC(Y ), or else if λ is large enough,
then f ∈ LUC(Y ) by applying Theorem 2.4.

In Section 3, we prove Theorem 2.1. The proof of Theorem 2.4 is postponed to Sections 4
and 5. In the latter, we establish some key small ball estimates. Note also that these estimates
can be of independent interest. The proofs, which are modifications of those of [6, 7], will be
consequently omitted, in particular, the proof of Theorem 2.3.
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3. Proof of Theorem 2.1

Recall, first, a Gaussian correlation inequality stated in [5].

Theorem A. Let μ be a centered Gaussian measure on a separable Banach space E. Then for any 0 <
λ < 1, and any symmetric convex sets A and B in E,

μ(A ∩ B)μ(λ2A +
(
1 − λ2)B) ≥ μ(λA)μ

((
1 − λ2)1/2 B). (3.1)

In particular,

μ(A ∩ B) ≥ μ(λA)μ
((
1 − λ2)1/2 B). (3.2)

Rougly speaking, the proof follows the same lines as those in [15] and will be split into
two parts: the lower bound and the upper one.

Part I. The lower bound

Theorem A implies, for any 0 < δ < 1 and 0 < λ < 1,

P
(‖X + Y‖ ≤ ε) ≥ P

(‖X‖ ≤ (1 − δ) ε, ‖Y‖ ≤ δ ε
)

≥ P
(‖X‖ ≤ λ (1 − δ) ε)P

(‖Y‖ ≤ (
1 − λ2)1/2 δ ε).

(3.3)

Then we get, by using (2.1),

logP
(‖X + Y‖ ≤ ε) ≥ − CX

(
log

(
1/λ (1 − δ) ε))β

(
λ (1 − δ) ε)1/α

− CY

(
log

(
1/

(
1 − λ2)1/2 δ ε))β̃

((
1 − λ2)1/2 δ ε)1/α̃

. (3.4)

Hence, since (α < α̃) or (α = α̃ and β > β̃), there exists C′
X ≥ CX depending on CX only

such that we have, for any ε > 0 small enough,

ε1/α

(
log (1/ε)

)β logP
(‖X + Y‖ ≤ ε) ≥ − C′

X
(
λ (1 − δ))1/α

, (3.5)

and the lower bound follows by taking δ→ 0 and λ→1.

Part II. The upper bound

A new use of Theorem A implies, for any 0 < δ < 1 and 0 < λ < 1,

P

(
‖X‖ ≤ ε

(1 − δ)λ
)

≥ P

(
‖X + Y‖ ≤ ε

λ
, ‖Y‖ ≤ δ ε

(1 − δ)λ
)

≥ P
(‖X + Y‖ ≤ ε) P

(
‖Y‖ ≤ (

1 − λ2)1/2 δ ε

(1 − δ)λ
)
.

(3.6)

Then combining (2.1)with the fact that (α < α̃) or (α = α̃ and β > β̃), there exists C′′
X ≥ CX

depending on CX only such that we have, for any ε > 0 small enough,

ε1/α

(
log (1/ε)

)β logP
(‖X + Y‖ ≤ ε) ≤ −

(
λ (1 − δ))1/α

C′′
X

, (3.7)

and the upper bound follows by taking δ→0 and λ→1.
By choosing KX = max (C′

X, C
′′
X), we complete the proof of Theorem 2.1.
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Remark 3.1. When X and Y are independent, there is a simple proof without using the cor-
relation inequality in the spirit of [5]. A direct proof of Corollary 2.2 can also be done as in
[9].

4. Proof of Theorem 2.4, Part I

To simplify the reading of our paper, we introduce the following notation. Set at = f(t)/tγ and
bt = φ(at).

Suppose here that, with probability 1, f(t) ≤ Y (t) for all t large enough.Wewant to prove
that lim t→+∞ at = 0 and

∫∞
0 a

−1/γ
t bt (dt/t) < +∞.

In the sequel, there is no loss of generality to assume that f(t) is a continuous function
of t ≥ 0.

Lemma 4.1. One has

lim
t→+∞

at = 0. (4.1)

To prove Theorem 2.4, we will show that f ∈ LUC(Y ) when
∫∞
0 a

−1/γ
t bt (dt/t) = +∞ and

lim t→+∞ at = 0.
Following the same lines as those in [11], our aim is to construct a suitable subset J of

N such that we have the following property for an appropriate family of sets (Ei)i∈J in a basic
probability space: given ε > 0, there exist a number K and an integer p such that

∀n ∈ J, n ≥ p =⇒
∑

m∈J,m>n
P
(
En ∩ Em

) ≤ P
(
En

)
(

K + (1 + ε)
∑

m∈J,m>n
P
(
Em

)
)

. (4.2)

Lemma 4.2. When
∫∞
0 a

−1/γ
t bt (dt/t) = +∞ and lim t→+∞ at = 0, one can find a sequence {tn, n ≥ 1}

with the two following properties:

tn+1 ≥ tn
(
1 + a1/γtn

)
,

∞∑

n=1

btn = +∞. (4.3)

Remark 4.3. The condition “f(t)/tγ is a nonincreasing function of t > 0” is essential to prove
Lemma 4.2 (see [7, page 373]).

To continue the construction of the set J , we need the following definition and notation.

Definition 4.4. Consider the interval Ak= [2k, 2k+1[, k ∈ N. If a−1/γti
∈ Ak, i ∈ N

∗, then one notes
u(i) = k.

Next, set Ik = {i ∈ N
∗, u(i) = k ∈ N} which is finite by Lemma 4.1 and

Nk = exp
(
K0

(
γ log 2

)β
kβ 2γ(k−1)/α

)
, (4.4)

where K0 was defined in Corollary 2.2.



8 Journal of Applied Mathematics and Stochastic Analysis

Notation

(i) Um,k = {i ∈ N
∗, i ∈ Ik, i < m, card

(
Ik ∩ [i,m[

) ≤Nk}, m ∈ N
∗, k ∈ N;

(ii) k0 = inf {n ∈ N, 2γn/α ≥ 2γ/α/(K0(2γ/α−1)(γ log 2)β)+22γ/α/K2
0(2

γ/α−1)}, (k0 depends
on γ, α, β and K0 only);

(iii) Vm =
⋃

k∈N
Um,k,wherem is fixed, u(m) = k1, and k ≥ k1 + k0;

(iv)W =
⋃

m≥1 Vm.

Now, we can define the set J as follows:

J = N
∗ −W. (4.5)

Since it is assumed that f(t)/tγ is a nonincreasing function of t > 0 (being a particular
case of the condition “f(t)/tγ is bounded”),

i < m =⇒ k = u(i) ≤ u(m) = k1. (4.6)

Moreover, since k0 ≥ 1, we get k < k1 + k0. Hence Vm is always an empty set (by construction).
Thus we obtain J = N

∗.
We have, by Lemma 4.2,

∑

n∈J
btn = +∞. (4.7)

Lemma 4.5. n ∈ J, m ∈ J, n < m, such that card (Iu(m) ∩ [n,m]) > exp (K02u(m)−1), one has

tm
tn

≥ exp
(
exp

(
K0

4
2min (u(n),u(m))

))
. (4.8)

Proof. Set k = u(n), k1 = u(m) and G = Ik1 ∩ [n,m] = {i1, i2, . . . , iz}, where n ≤ i1 < i2 < · · · <
iz ≤ m. We have

tm
tn

=
tm
tiz

tiz
tiz−1

· · · ti1
tn
. (4.9)

Note that, when i ∈ Ik1 , we have ti+1 ≥ ti(1 + a
1/γ
ti

) ≥ ti(1 + 2−k1−1). Moreover, since
card (G) > exp (K02k1−1) by hypothesis, (4.9) implies

tm
tn

≥ exp
(
exp

(
K02k1−1

)
log

(
1 + 2−k1−1

)) ≥ exp
(
exp

(
K0

4
2k1

))
, (4.10)

when n hence k1 are large enough.
Thus, since k ≤ k1, (4.10) implies (4.8).
The proof of Lemma 4.5 is now complete.
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5. Proof of Theorem 2.4, Part II

Consider, now, the events En = {Y (tn) < f(tn)}. We have directly P(En) = btn , and, by (4.7),∑
n∈J btn = +∞. To prove (4.2), we remark that, given n ∈ J, J can be rewritten as follows:

J = J ′ ∪ (
⋃

k∈N
Jk) ∪ J ′′, where J ′ = {m ∈ J, tn ≤ tm ≤ 2tn}, Jk = {m ∈ J ∩ Ik, tm > 2tn, card (Ik ∩

[n,m]) ≤ exp (K02k−1)}, and J ′′ = J − (J ′ ∪ (
⋃

k∈N
Jk)).

Our first key small ball estimate is given in the following lemma.

Lemma 5.1. Consider 0 < t < u, and θ, ν > 0. Then one has

P
({
Y (t) ≤ θtγ} ∩ {

Y (u) ≤ ν}) ≤ exp
(
K5

)
P
(
Y (t) ≤ θtγ) exp

(
− K5(u − t)

ν1/γ

)
, (5.1)

where K5 depends onH1, H2, H3, H4, λ1, and λ2 only.

Proof. Set F1 = {Y (t) ≤ θtγ} and F2 = {Y (u) ≤ ν}. We have

P
(
F1 ∩ F2

)
= P

(

F1 ∩
{

sup
0≤s≤u

sup
0≤w1,w2,w3,w4≤s

∣∣X
(
w1, w2, w3, w4, s

)∣∣ ≤ ν
})

≤ P

(

F1 ∩
{

sup
t≤s≤u

sup
0≤w1,w2,w3,w4≤s

∣∣X
(
w1, w2, w3, w4, s

)∣∣ ≤ ν
})

≤ P

(

F1 ∩
{

sup
t≤s≤u

sup
0≤w1,w2≤s

∣∣λ1sH3+H4BH1,H2

(
w1, w2

)∣∣ ≤ ν
})

.

(5.2)

Denote, by [x], the integer part of a real x. Let δ > 0. We consider the sequence tk, k ∈
{0, . . . , n}, where t0 = t, tk+1 = tk + δ, and n = [(u − t)/δ]. Consider also the rectangles Rj =
[tj , tj+1] × [tj , tj+1], where j ∈ {0, . . . , n − 1}. Their area is (tj+1 − tj)2 = δ2. Let Gj be the event
defined by

Gj = F1 ∩
{

sup
t≤s≤tj

sup
0≤w1,w2≤s

∣∣λ1sH3+H4BH1,H2

(
w1, w2

)∣∣ ≤ ν
}

. (5.3)

We have F1 ∩ F2 ⊂ Gj .
Moreover, we have also

Gj+1 ⊂ Gj ∩
{
Zj ≤ 4ν

}
, (5.4)

where

Zj = λ1t
H3+H4
j+1

(
BH1,H2

(
tj+1, tj+1

) − BH1,H2

(
tj , tj+1

) − BH1,H2

(
tj+1, tj

)
+ BH1,H2

(
tj , tj

))
. (5.5)

Before rewritting Zj , we recall the integral representation of BHk,Hl
, k ∈ N

∗, l ∈ N
∗, given

by

BHk,Hl

(
sk, sl

)
=
∫sk

−∞

∫sl

−∞
gHk

(
sk, uk

)
gHl

(
sl, ul

)
W

(
d
(
uk, ul

))
, (5.6)
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where W(uk, ul), uk ∈ R, ul ∈ R, is a standard Brownian sheet, gH(s, u) = k−12H (max (s
−u, 0)H−1/2 −max (−u, 0)H−1/2), and k2H is a normalizing constant.

Hence Zj can be rewritten by (5.6) as follows: Zj = Zj,1 + Zj,2, where

Zj,1 = λ1k−12H1
k−12H2

tH3+H4
j+1

∫ tj+1

tj

∫ tj+1

tj

(
tj+1 − u1

)H1−1/2 (tj+1 − u2
)H2−1/2W

(
d
(
u1, u2

))
. (5.7)

Note also that Zj,1 and Zj,2 are independent.
Since P(|Zj,1 + x| ≤ 4ν) is maximum at x = 0 and Zj,1 and Gj are independent, we have

P
(
Gj+1

) ≤ P
(
Gj

)
P
(∣∣Zj,1

∣
∣ ≤ 4ν

)
. (5.8)

The integral representation of Zj,1 implies that E(Zj,1) = 0 and

VarZj,1 =
λ21 k

−2
2H1

k−22H2

4H1H2
δ2(H1+H2) t

2(H3+H4)
j+1 ≥

λ21 k
−2
2H1

k−22H2

4H1H2
δ2γ := L2 δ2γ . (5.9)

Denote, by Φ, the distribution function of the absolute value of a standard Gaussian
random variable. Then we obtain

P
(
Zj+1

) ≤ P
(
Zj

)
Φ
(

4ν
Lδγ

)
, (5.10)

and therefore, P(F1 ∩ F2) ≤ P(F1)Φ(4ν/Lδγ)n.
Choosing δ = ν1/γ , we get K5 = − logΦ(2/L). Lemma 5.1 is proved.

Lemma 5.2.
∑

m∈J ′P(En ∩ Em) ≤ K′ btn and
∑

m∈(∪k Jk)P(En ∩ Em) ≤K′′ btn , where K
′ and K′′ are

numbers.

Proof. Setting u = tm, t = tn, θ = atn and ν = f(tm), Lemma 5.1 implies

P
(
En ∩ Em

) ≤ exp
(
K5

)
btn exp

(
− K5

(
tm − tn

)

f
(
tm
)1/γ

)
. (5.11)

Consider, first, the case whenm ∈ J ′.
Lemma 4.2 implies that, for all i ≥ n, we have ti+1 − ti ≥ tia

1/γ
ti

= f(ti)
1/γ ≥ f(tn)

1/γ . Then
we can establish

tm − tn ≥ (m − n)f(tn
)1/γ

, f
(
tm
) ≤ f(tn

)
(
tm
tn

)γ

≤ 2γf
(
tn
)
. (5.12)

Combining (5.11) with (5.12), we get

P
(
En ∩ Em

) ≤ exp
(
K5

)
btn exp

(
− K5(m − n)

2

)
, (5.13)

which is the first part of Lemma 5.2.
Consider, now, the case m ∈ Jk.
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Combining (5.11) with the definition of Jk, we have

P
(
En ∩ Em

) ≤ exp
(
K5

)
btn exp

(
− K5

2
(
atm

)1/γ

)
. (5.14)

Since u(m) = k, we get

P
(
En ∩ Em

) ≤ exp
(
K5

)
btn exp

( −K5 2k−1
)
, (5.15)

and consequently, by noting that card Jk ≤ card (Ik ∩ [n,m]) ≤ exp (K02k−1) and by assuming
K0 < K5, we have

∑

m∈Jk
P
(
En ∩ Em

) ≤ exp
(
K5

)
btn exp

((
K0 −K5

)
2k−1

)
. (5.16)

Lemma 5.2 is, therefore, proved.

To deal with the set J ′′, we first state a standard large deviation result and a technical
lemma (see [6]).

Lemma A. LetX = {X(s1, s2), (s1, s2) ∈ [0, 1]2} be a separable real-valued centered Gaussian process
such that X(0, 0) = 0 with probability 1 and satisfying, for any [s1, s1 + h1] × [s2, s2 + h2] ⊂ [0, 1]2,

(
EX

([
s1, s1 + h1

] × [
s2, s2 + h2

])2)1/2 ≤ κ(h1, h2
) ≤ cκ hα11 hα22 , α1 > 0, α2 > 0, (5.17)

where

X
([
s1, t1

] × [
s2, t2

])
=
∫

[s1,t1]×[s2,t2]
X
(
d
(
u1, u2

))
. (5.18)

Then one has, for c−1κ δ > 1,

P

(

sup
(s1,s2)∈[0,1]2

∣∣X
(
s1, s2

)∣∣ ≥ δ

)

≤ 1
C

exp
( − C(c−1κ δ

)2)
, (5.19)

where C is a positive constant independent of cκ and δ.

Lemma B. One has, for ε1 > ε/2, where ε is small enough,

exp

(

−K3
|ε1 − ε|

(
log

(
1/ε

))β

ε1+1/α

)

≤ φ
(
ε1
)

φ(ε)
≤ exp

(

K3
|ε1 − ε|

(
log

(
1/ε

))β

ε1+1/α

)

, (5.20)

where K3 > 0.

Building on Lemmas A and B, we can establish our last key small ball estimate in the
following result.
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Lemma 5.3. Let λ be a real number such that 1/2 < λ < 1. Set

r = min
(1 −max

(
H1,H2,H3,H4

)

3
,
(1 − λ)α

3

)
. (5.21)

Then one has, for u ≥ 2t,

P
(
Y (t) ≤ θtγ , Y (u) ≤ νuγ)

≤ φ(θ)φ(ν) exp
(

2
(
t

u

)r

K3

((
log (1/θ)

)β

θ1+(1/α)
+

(
log (1/ν)

)β

ν1+(1/α)

))

+ 3
(

1
C12,2

exp
(
− C12,2

4λ21K
2
H1,2

(
u

t

)r)
+

1
C34,2

exp
(
− C34,2

4λ22K
2
H3,2

(
u

t

)r))

+ 3
(

1
C12,1

exp
(
− C12,1

4λ21K
2
H1,1

(
u

t

)r)
+

1
C34,1

exp
(
− C34,1

4λ22K
2
H3,1

(
u

t

)r))
,

(5.22)

where KH1,1, KH1,2>0 depend on H1 (H1≤H2) only, KH3,1, KH3,2>0 depend on H3 (H3≤H4) only,
K3 > 0 is defined as in Lemma B, and C12,1, C12,2, C34,1, C34,2 > 0 are defined as in Lemma A.

Proof. Set Q = P(Y (t) ≤ θtγ , Y (u) ≤ νuγ).
Set v =

√
ut. If t = o(u), then t = o(v) and v = o(u).

Based on (5.6), BH1,H2 and BH3,H4 can be split as follows:

BH1,H2 = BH1,H2,1 + BH1,H2,2, BH3,H4 = BH3,H4,1 + BH3,H4,2, (5.23)

where we have, for (i, j) ∈ {(1,2),(3,4)},

BHi,Hj ,1
(
wi,wj

)
=

∫

|xi|≤v

∫wj

−∞
gHi

(
wi, xi

)
gHj

(
wj, xj

)
W

(
d
(
xi, xj

))
. (5.24)

Note that BH1,H2,1 and BH1,H2,2 are independent as BH3,H4,1 and BH3,H4,2.
Equation (5.23) implies that the FMFBSX can be rewritten as follows:X = X1+X2, where

Xi

(
w1, w2, w3, w4, s

)
= λ1sH3+H4BH1,H2,i

(
w1, w2

)
+ λ2sH1+H2BH3,H4,i

(
w3, w4

)
. (5.25)

Set

Yi(t) = sup
0≤s≤t

sup
0≤w1,w2,w3,w4≤s

∣∣Xi

(
w1, w2, w3, w4, s

)∣∣, t ≥ 0, i ∈ {1, 2}. (5.26)

Then, given δ > 0, we have (see [11])

Q ≤ φ(θ + 2δ)φ(ν + 2δ) + 3P
(
Y2(t) > δtγ

)
+ 3P

(
Y1(u) > δuγ

)
. (5.27)

Equation (5.20) implies

φ(θ + 2δ) ≤ φ(θ) exp
(

2δK3

((
log (1/θ)

)β

θ1+(1/α)

))

, (5.28)
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and, consequently,

φ(θ + 2δ)φ(ν + 2δ) ≤ φ(θ)φ(ν) exp
(

2δK3

((
log (1/θ)

)β

θ1+(1/α)
+

(
log (1/ν)

)β

ν1+(1/α)

))

. (5.29)

If we choose δ = (t/u)r , then we get the first term of the RHS of Lemma 5.3.
Next, we want to obtain an upper bound of

P
(
Y2(t) > δtγ

)

= P

(
sup
0≤s≤1

sup
0≤w1,w2,w3,w4≤s

∣∣λ1sH3+H4LH1,H2,2
(
w1, w2

)
+ λ2sH1+H2LH3,H4,2

(
w3, w4

)∣∣ > δ
)
,

(5.30)

where we have, for (i, j) ∈ {(1,2),(3,4)},

LHi,Hj ,2
(
wi,wj

)
=

∫

|xi|≥v/t

∫wj

−∞
gHi

(
wi, xi

)
gHj

(
wj, xj

)
W

(
d
(
xi, xj

))
. (5.31)

We can show, by standard computations, that

P
(
Y2(t) > δtγ

) ≤ P

(
sup

0≤w1,w2≤1

∣∣LH1,H2,2
(
w1, w2

)∣∣ >
δ

2
∣∣λ1

∣∣

)

+ P

(

sup
0≤w3,w4≤1

∣∣LH3,H4,2
(
w3, w4

)∣∣ >
δ

2
∣
∣λ2

∣
∣

)

.

(5.32)

Denote, by σH , the covariance function of a FBM BH . Set σH,2, the covariance function of
the process {BH,2(w), 0 ≤ w ≤ 1}, defined by

BH,2(w) =
∫

|x|≥v/t
gH(w,x) W̃(dx), (5.33)

where W̃(x), x ∈ R, is a Wiener process.
Since

E
(
LH1,H2,2

(
w1, w2

)
LH1,H2,2

(
w′

1, w
′
2
))

= σH1,2
(
w1, w

′
1

) × σH2

(
w2, w

′
2
)
, (5.34)

we have, for any [w1, w1 + h1] × [w2, w2 + h2] ⊂ [0, 1]2,

E

(
LH1,H2,2

([
w1, w1 + h1

] × [
w2, w2 + h2

])2)

= E

(∫

[w1,w1+h1]×[w2,w2+h2]
LH1,H2,2

(
d
(
x1, x2

))

×
∫

[w1,w1+h1]×[w2,w2+h2]
LH1,H2,2

(
d
(
x′
1, x

′
2
))
)

≤
∫w1+h1

w1

∫w1+h1

w1

∣
∣σH1,2

(
x1, x

′
1

)∣∣dx1dx′
1

×
∫w2+h2

w2

∫w2+h2

w2

∣∣σH2

(
x2, x

′
2
)∣∣dx2 dx′

2 := I × II.

(5.35)
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Consider II first. We get, by the inequality of Cauchy-Schwarz,

II ≤
∫w2+h2

w2

∫w2+h2

w2

xH2
2 x′H2

2 dx2 dx
′
2 ≤ h22. (5.36)

Consider I now.
A straight computation implies that there exists KH1,2 > 0 depending onH1 such that

E
(
BH1,2

(
x1
))2 ≤ K2

H1,2 x
2
1

(
v/t

)2H1−2, (5.37)

and, consequently, by the inequality of Cauchy-Schwarz,

∣∣σH1,2
(
x1, x

′
1

)∣∣ ≤ K2
H1,2 x1x

′
1 (v/t)

2H1−2. (5.38)

So we get

I ≤ K2
H1,2 (v/t)

2H1−2 h21. (5.39)

Hence, combining (5.35) with (5.36) and (5.39), we have

E

(
LH1,H2,2

([
w1, w1 + h1

] × [
w2, w2 + h2

])2) ≤ K2
H1,2 (v/t)

2H1−2 h21 h
2
2. (5.40)

An application of Lemma A with α1 = α2 = 1, cκ = KH1,2(v/t)
H1−1, and c−1κ δ > 1 implies

that

P

(

sup
0≤w1,w2≤1

∣∣LH1,H2,2
(
w1, w2

)∣∣ >
δ

2
∣∣λ1

∣∣

)

≤ 1
C12,2

exp
(
− C12,2

K2
H1,2

(
v2/t2

)H1−1
δ2

4λ21

)
. (5.41)

Similarly, we can establish

P

(

sup
0≤w3,w4≤1

∣∣LH3,H4,2
(
w3, w4

)∣∣ >
δ

2
∣∣λ2

∣∣

)

≤ 1
C34,2

exp
(
− C34,2

K2
H3,2

(
v2/t2

)H3−1
δ2

4λ22

)
. (5.42)

Set δ = (t/u)r . Recall that v2 = ut and r ≤ (1 − max (H1,H2,H3,H4))/3. Combining
(5.32)with (5.41) and (5.42), we get

P
(
Y2(t) > δtγ

) ≤ 1
C12,2

exp
(
− C12,2

4λ21K
2
H1,2

(
u

t

)r)
+

1
C34,2

exp
(
− C34,2

4λ22K
2
H3,2

(
u

t

)r)
, (5.43)

that is the second term of the RHS of Lemma 5.3.
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Finally, we can establish a similar result for P(Y1(u) > δuγ), that is,

P
(
Y1(u) > δuγ

) ≤ 1
C12,1

exp
(
− C12,1

4λ21K
2
H1,1

(
u

t

)r)
+

1
C34,1

exp
(
− C34,1

4λ22K
2
H3,1

(
u

t

)r)
, (5.44)

which achieves the proof of Lemma 5.3.

Finally, we state the last technical lemma.

Lemma 5.4. There exists an integer p such that if n > sup s≤p (sup Is), then form ∈ J ′′, m > n, given
ε > 0, one has P(En ∩ Em) ≤ (1 + ε) btnbtm .

Proof. Let u(n) = k′ and u(m) = k1. We have, by Lemma 4.5,

tm
tn

≥ exp
(
exp

(
K0

4
2min (k′,k1)

))
. (5.45)

Let p ∈ N. Then k′ > p and k1 > p. Thus we have min (k′, k1) > p.
Set t = tn, u = tm, θ = atn and ν = atm . Note that log (1/θ) ≤ 1/θ ≤ 2(k

′+1)α, log (1/ν) ≤
1/ν ≤ 2(k1+1)α, and 1/btnbtm = exp (ψ(θ) + ψ(ν)).

By using Lemma 5.3 and letting p→ +∞, we end the proof of Lemma 5.4.

Lemmas 5.2 and 5.4 yield that (4.2) holds. Combining Borel-Cantelli’s second lemma
with (4.2) and (4.7), we show that, given ε > 0,

∑

n∈J
P
(
En

) ≥ 1 + 2K
ε

=⇒ 1
1 + 2ε

≤ P

(
⋃

n∈J
En

)

= P

(
⋃

n∈J

{
Y
(
tn
) ≤ f(tn

)}
)

, (5.46)

and, consequently, f ∈ LUC(Y ). The proof of Theorem 2.4 is now complete.
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