For a d-dimensional array of random elements $\{V_n, n \in \mathbb{Z}_d^d\}$ in a real separable stable type p ($1 \leq p < 2$) Banach space, a mean convergence theorem is established. Moreover, the conditions for the convergence in mean of order p are shown to completely characterize stable-type p Banach spaces.

Copyright © 2006 Le Van Thanh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \mathbb{Z}_d^d, where d is a positive integer, denote the positive integer d-dimensional lattice points. The notation $m \prec n$, where $m = (m_1, m_2, \ldots, m_d)$ and $n = (n_1, n_2, \ldots, n_d) \in \mathbb{Z}_+^d$, means that $m_i \leq n_i$, $1 \leq i \leq d$, $|n|$ is used for $\prod_{i=1}^d n_i$.

Gut [5] proved that if $\{X, X_n, n \in \mathbb{Z}_d^d\}$ is a d-dimensional array of i.i.d. random variables with $E|X|^p < \infty$ ($0 < p < 2$) and $EX = 0$ if $1 \leq p < 2$, then

$$\frac{\sum_{j \prec n} X_j}{|n|^{1/p}} \rightarrow 0 \quad \text{in } L^p \quad \text{as} \quad \min_{1 \leq i \leq d} n_i \rightarrow \infty,$$

(1.1)

where $(n_1, n_2, \ldots, n_d) = n \in \mathbb{Z}_+^d$.

Recently, Thanh [11] proved (1.1) under condition of uniform integrability of $\{|X_n|^p, n \in \mathbb{Z}_+^d\}$.

Mean convergence theorems for sums of random elements Banach-valued are studied by many authors. The reader may refer to Wei and Taylor [12], Adler et al. [2], Rosalsky and Sreehari [9], or more recently, Rosalsky et al. [10], Cabrera and Volodin [3]. However, we are unaware of any literature of investigation on the mean convergence for multidimensional arrays of random elements in Banach spaces.

Consider a d-dimensional array $\{V_n, n \in \mathbb{Z}_+^d\}$ of independent random elements defined on a probability space (Ω, \mathcal{F}, P) and taking values in a real separable Banach space.
2 Mean convergence theorem

\(\mathcal{X} \) with norm \(\| \cdot \| \). In the current work, we establish the convergence in mean of order \(p (1 \leq p < 2) \) of the sums \(\sum_{j \leq n} V_j/|n|^{1/p} \), \(n \in \mathbb{Z}_d^+ \), under the condition that \(\{ \| V_n \|^p, n \in \mathbb{Z}_d^+ \} \) is uniformly integrable. The main results of this paper are Theorems 2.1 and 2.2. Theorem 2.1 is a stable-type \(p \) Banach space version of the main result of Thanh [11]. While the proof of Theorem 2.1 and the proof of the main result in Thanh [11] are similar, we will show in Theorem 2.2 that the implication in Theorem 2.1 indeed completely characterizes stable-type \(p \) Banach spaces.

Let \(0 < p \leq 2 \) and let \(\{ \theta_n, n \geq 1 \} \) be independent and identically distributed stable random variables each with characteristic function \(\phi(t) = \exp\{-|t|^p \} \). The real separable Banach space \(\mathcal{X} \) is said to be of stable-type \(p \) if \(\sum_{n=1}^{\infty} \theta_n v_n \) converges a.s. whenever \(v_n \in \mathcal{X}, n \geq 1 \) with \(\sum_{n=1}^{\infty} \| v_n \|^p < \infty \). Equivalent characterizations of a Banach space being of stable-type \(p \), properties of stable-type \(p \) Banach spaces, as well as various relationships between the conditions Rademacher-type \(p \), and stable-type \(p \) may be found by Woyczyński in [13], by Marcus and Woyczyński in [7], and by Pisier in [8], see also the discussion by Adler et al. in [1]. We now mention explicitly some characterizations of this concept. The first theorem was obtained by Mandrekar and Zinn [6] and by Marcus and Woyczyński [7].

Theorem 1.1. Let \(1 \leq p < 2 \) and let \(\mathcal{X} \) be a real separable Banach space. Then the following statements are equivalent.

(i) \(\mathcal{X} \) is of stable-type \(p \).

(ii) For every symmetric random elements \(V \), the condition \(n^p P(\| V \| > n) \to 0 \) as \(n \to \infty \) implies that

\[
\frac{\sum_{j=1}^{n} V_j}{n^{1/p}} \to 0 \quad \text{in probability},
\]

where \(\{ V_j, j \geq 1 \} \) are independent copies of \(V \).

Theorem 1.2 (see [13, Theorem V.9.3]). Let \(1 \leq p < 2 \) and let \(\mathcal{X} \) be a real separable Banach space. Then the following statements are equivalent.

(i) \(\mathcal{X} \) is of stable-type \(p \).

(ii) For each bounded sequence \(\{ x_n, n \geq 1 \} \) of elements of \(\mathcal{X} \),

\[
\frac{\sum_{j=1}^{n} x_k \epsilon_k}{n^{1/p}} \to 0 \quad \text{a.s.,}
\]

where \(\{ \epsilon_n, n \geq 1 \} \) is a Rademacher sequence.

The symbol \(C \) denotes throughout a generic constant \((0 < C < \infty) \) which is not necessarily the same one in each appearance.

2 Main results

We can now present the main results. Theorem 2.1 is a stable-type \(p \) Banach space version of the main result of Thanh [11].
Theorem 2.1. Let \(\{V_n, n \in \mathbb{Z}_+^d\} \) be a \(d \)-dimensional array of independent mean-zero random elements in a real separable stable-type \(p \) \((1 \leq p < 2)\) Banach space \(\mathcal{X} \). If
\[
\{\|V_n\|^p, n \in \mathbb{Z}_+^d\} \text{ is uniformly integrable,} \tag{2.1}
\]
then
\[
\frac{\sum_{j \prec n} V_j}{|n|^{1/p}} \rightarrow 0 \text{ in } L^p \text{ as } |n| \rightarrow \infty. \tag{2.2}
\]

Proof. For arbitrary \(\epsilon > 0 \), there exists \(M > 0 \) such that
\[
E(\|V_n\|^p I(\|V_n\| > M)) < \epsilon, \quad \forall n \in \mathbb{Z}_+^d. \tag{2.3}
\]
Set
\[
V_n' = V_n I(\|V_n\| \leq M), \quad n \in \mathbb{Z}_+^d, \quad V_n'' = V_n I(\|V_n\| > M), \quad n \in \mathbb{Z}_+^d. \tag{2.4}
\]
Since \(\mathcal{X} \) is of stable-type \(p \) and \(p < 2 \), it is of Rademacher-type \(q \) for some \(p < q < 2 \). Thus
\[
E \left(\sum_{j \prec n} |V_j|^p \right) \leq 2^{p-1} \left(E \left(\sum_{j \prec n} (V_j' - EV_j')^p \right) + C \sum_{j \prec n} \|V_j'' - EV_j''\|^p \right) \leq 2^{p-1} \left(E \left(\sum_{j \prec n} (V_j' - EV_j')^q \right)^{p/q} + C \sum_{j \prec n} \|V_j'' - EV_j''\|^p \right) \leq 2^{p-1} \left(E \left(\sum_{j \prec n} (V_j' - EV_j')^q \right)^{p/q} \right)^{p/q} + C \sum_{j \prec n} \|V_j'' - EV_j''\|^p \leq C \left(\sum_{j \prec n} E \|V_j' - EV_j'\|^q \right)^{p/q} + C \sum_{j \prec n} \|V_j''\|^p \leq C (|n|M^q)^{p/q} + C |n| \epsilon = o(|n|), \quad \text{as } |n| \rightarrow \infty. \tag{2.5}
\]

While the proof of Theorem 2.1 and the proof of the main result in Thanh [11] are similar, we now show in Theorem 2.2 that the implication ((2.1) \(\Rightarrow \) (2.2)) in Theorem 2.1 indeed completely characterizes stable-type \(p \) Banach spaces.
4 Mean convergence theorem

Theorem 2.2. Let $1 \leq p < 2$ and let \mathcal{X} be a real separable Banach space. Then the following statements are equivalent.

(i) \mathcal{X} is of stable-type p.

(ii) For every d-dimensional array $\{V_n, n \in \mathbb{Z}_d^d\}$ of independent mean-zero random elements in \mathcal{X}, the condition (2.1) implies (2.2).

(iii) For every d-dimensional array $\{V, V_n, n \in \mathbb{Z}_d^d\}$ of independent mean-zero random elements in \mathcal{X}, the conditions

$$E\|V\|^p < \infty, \quad \sup_{n \in \mathbb{Z}_d^d} P\{\|V_n\| > t\} \leq CP\{\|V\| > t\}, \quad \forall t > 0,$$

imply (2.2).

Proof. The implication ((i) \Rightarrow (ii)) is precisely Theorem 2.1, whereas the implication ((ii) \Rightarrow (iii)) is immediate. It remains to verify the implication ((iii) \Rightarrow (i)). For reasons of clarity, we collect some of the steps in the following lemmas. The first lemma is a slight modification of de Acosta [4, Theorem 3.1] which holds for sequences of independent identically distributed random elements. The proof of the following modification can be obtained from de Acosta [4, Theorem 3.1] line by line, and so will be omitted. □

Lemma 2.3. Let \mathcal{X} be a real separable Banach space, $1 \leq p < 2$. Let $\{V, W_k, k \geq 1\}$ be sequence of independent random elements such that $E\|V\|^p < \infty$ and $\sup_{k \geq 1} P\{\|W_k\| > t\} \leq CP\{\|V\| > t\}$ for all $t > 0$. Then

$$\lim_{n \to \infty} \frac{\sum_{k=1}^n W_k}{n^{1/p}} = 0 \quad \text{in probability}$$

(2.7)

if and only if

$$\lim_{n \to \infty} \frac{\sum_{k=1}^n W_k}{n^{1/p}} = 0 \quad \text{a.s.}$$

(2.8)

Lemma 2.4. Let $1 \leq p < 2$ and let \mathcal{X} be a real separable Banach space. Suppose that for every sequence $\{V, W_k, k \geq 1\}$ of independent mean-zero random elements in \mathcal{X}, the conditions

$$E\|V\|^p < \infty, \quad \sup_{k \geq 1} P\{\|W_k\| > t\} \leq CP\{\|V\| > t\}, \quad \forall t > 0,$$

imply that

$$\lim_{n \to \infty} \frac{\sum_{k=1}^n W_k}{n^{1/p}} = 0 \quad \text{in probability.}$$

(2.10)

Then \mathcal{X} is of stable-type p.

Proof of Lemma 2.4. Let $\{\varepsilon_k, k \geq 1\}$ be a Rademacher sequence and let $\{x_k, k \geq 1\}$ be a sequence of elements in \mathcal{X} such that

$$\sup_{k \geq 1} \|x_k\| < \infty.$$
Then by the hypothesis of the lemma,
\[
\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k x_k}{n^{1/p}} = 0 \quad \text{in probability.} \tag{2.12}
\]
By Lemma 2.3,
\[
\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k x_k}{n^{1/p}} = 0 \quad \text{a.s.} \tag{2.13}
\]
Hence, by Theorem 1.2, \(X\) is of stable-type \(p\). The proof of Lemma 2.4 is completed. \(\square\)

We now prove the implication ((iii) \(\Rightarrow\) (i)). If \(d = 1\), then the conclusion follows directly from Lemma 2.4. So, we can assume that \(d \geq 2\). Let \(\{V, W_k, k \geq 1\}\) be a sequence of independent mean-zero random elements in \(X\) such that \(E\|V\|^p < \infty\) and \(\sup_{k \geq 1} P\{\|W_k\| > t\} \leq CP\{\|V\| > t\}\) for all \(t > 0\). For \(n = (n_1, \ldots, n_d) \in \mathbb{Z}^d_+\), set
\[
V_{(n_1, \ldots, n_d)} = W_{n_1}, \quad \text{if } n_2 = \cdots = n_d = 1,
\]
\[
V_{(n_1, \ldots, n_d)} = 0, \quad \text{if } \max\{n_2, \ldots, n_d\} \geq 2. \tag{2.14}
\]
Then \(\{V_n, n \in \mathbb{Z}^d\}\) is an array of independent mean-zero random elements, and
\[
\sup_{n \in \mathbb{Z}^d} P\{\|V_n\| > t\} \leq CP\{\|V\| > t\}, \quad \forall t > 0. \tag{2.15}
\]
By (iii),
\[
\frac{1}{|n|^{1/p}} \sum_{j < n} V_j \longrightarrow 0 \quad \text{in } L^p \text{ as } |n| \longrightarrow \infty. \tag{2.16}
\]
This implies by taking \(n_2 = \cdots = n_d = 1\) and letting \(n_1 \to \infty\) that
\[
\frac{1}{n_1^{1/p}} \sum_{k=1}^{n_1} W_k \longrightarrow 0 \quad \text{in } L^p, \text{ so in probability as } n_1 \longrightarrow \infty. \tag{2.17}
\]
By Lemma 2.4, \(X\) is of stable-type \(p\).

Remark 2.5. In Theorem 2.1, if \(0 < p < 1\), then the independence hypothesis and the hypothesis that the \(\{V_n, n \in \mathbb{Z}^d\}\) have mean-zero are not needed for the theorem to hold.

Indeed, for arbitrary \(\epsilon > 0\), define \(V'_n\) and \(V''_n, n \in \mathbb{Z}^d\) as in the proof of Theorem 2.1. If \(0 < p < 1\), then
\[
E \left(\sum_{j < n} V_j \right)^p \leq E \left(\sum_{j < n} V'_j \right)^p + \sum_{j < n} E \left(V''_j \right)^p \leq \left(|n| M \right)^p + |n| \epsilon = o(|n|), \quad \text{as } |n| \longrightarrow \infty. \tag{2.18}
\]
Acknowledgments

The author is grateful to the referees for carefully reading the manuscript and for offering some very perceptive comments which helped him to improve the paper. The author is grateful to Professor Andrew Rosalsky (University of Florida, USA) for some helpful discussions and for [4, 5, 9, 12]. This paper was supported in part by the National Basic Research Program in Natural Science, Vietnam.

References

Le Van Thanh: Department of Mathematics, Vinh University, Nghe An 42118, Vietnam
E-mail address: lvthanhvinh@yahoo.com