EXISTENCE OF SOLUTIONS OF
SOBOLEV-TYPE SEMILINEAR MIXED
INTEGRODIFFERENTIAL INCLUSIONS
IN BANACH SPACES

M. KANAKARAJ and K. BALACHANDRAN
Bharathiar University, Department of Mathematics
Coimbatore–641046, India
E–mail: balachandran_k@lycos.com

(Received January 2002; Revised March 2003)

The existence of mild solutions of Sobolev-type semilinear mixed integrodifferential inclusions in Banach spaces is proved using a fixed point theorem for multivalued maps on locally convex topological spaces.

Keywords: Integrodifferential Inclusion, Convex Multivalued Map, Fixed Point Theorem.

AMS (MOS) Subject Classification: 34A60, 34G20, 45J05.

1 Introduction

The problem of proving the existence of mild solutions for differential and integrodifferential equations in abstract spaces has been studied by several authors [2, 4, 11, 12, 13]. Balachandran and Uchiyama [3] established the existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces. Benchohra [6] studied the existence of mild solutions on infinite intervals for a class of differential inclusions in Banach spaces. For the existence results of differential inclusions on compact intervals, one can refer to the papers of Avgerinos and Papageorgiou [1], and Papageorgiou [14, 15]. Benchohra and Ntouyas [7] discussed the existence results for first order integrodifferential inclusions of the form

\[
\frac{dy}{dt} - Ay \in F(t, \int_0^t k(t, s, y)ds) \quad t \in I = [0, \infty),
\]

\[
y(0) = y_0.
\]

In this paper, we consider the Sobolev-type semilinear mixed integrodifferential inclusion of the type

\[
(Eu(t))' + Au \in G \left(t, u, \int_0^t k(t, s, u)ds, \int_0^a b(t, s, u)ds\right) \quad t \in I = [0, \infty), \quad (1.1)
\]
where \(G : I \times X \times X \times X \to 2^Y \) is a bounded, closed, convex, multivalued map \(k : \Delta \times X \to X \), \(b : \Delta \times X \to X \), where \(\Delta = \{(t, s) \in I \times I; t \geq s\} \), \(u_0 \in X \), \(a \) is a real constant, \(X, Y \) are real Banach spaces with norms \(|||.|\| \) and \(|.| \), respectively. Our method is to reduce the problem (1.1) to a fixed point problem of a suitable multivalued map in the Frechet space \(C(I, X) \) and we make use of a fixed point theorem due to Ma [10] for multivalued maps in locally convex topological spaces.

2 Preliminaries

In this section we introduce the notations, definitions and preliminary facts from multivalued analysis which are used in this paper. \(I_m \) is the compact interval \([0, m] (m \in \mathbb{N})\). \(C(I, X) \) is the linear metric Frechet space of continuous functions from \(I \) into \(X \) with the metric

\[
d(u, z) = \sum_{m=0}^{\infty} \frac{2^{-m}\|u - z\|_m}{1 + \|u - z\|_m}
\]

for each \(u, z \in C(I, X) \),

where \(\|u\|_m = \sup\{\|u(t)\| : t \in I_m\} \). \(B(X) \) denotes the Banach space of bounded linear operators from \(X \) into \(X \). A measurable function \(u : I \to X \) is Bochner integrable if and only if \(|u| \) is Lebesgue integrable. Let \(L^1(I, X) \) denote the Banach space of continuous functions \(u : I \to X \) which are Bochner integrable normed by

\[
\|u\|_{L^1} = \int_0^{\infty} \|u(t)\| dt,
\]

and \(U_r \) is a neighbourhood of \(0 \) in \(C(I, X) \) defined by

\[
U_r = \{ u \in C(I, X) : \|u\|_m \leq r \}
\]

for each \(m \in \mathbb{N} \). The convergence in \(C(I, X) \) is the uniform convergence on compact intervals, that is, \(u_j \to u \) in \(C(I, X) \) if and only if for each \(m \in \mathbb{N} \), \(\|u_j - u\|_m \to 0 \) in \(C(I_m, X) \) as \(j \to \infty \). \(BCC(X) \) denotes the set of all nonempty bounded, closed, and convex subsets of \(X \).

A multivalued map \(G : X \to 2^X \) is convex(closed) valued if \(G(x) \) is convex(closed) for all \(x \in X \). \(G \) is bounded on bounded sets if \(G(B) = \bigcup_{x \in B} G(x) \) is bounded in \(X \) for any bounded set \(B \) of \(X \) (that is, \(\sup_{x \in B} \{\|u\| : u \in G(x)\} < \infty \)). \(G \) is called upper semi continuous on \(X \) if for each \(x_0 \in X \) the set \(G(x_0) \) is a nonempty, closed subset of \(X \), and if for each open subset \(B \) of \(X \) containing \(G(x_0) \), there exists an open neighbourhood \(A \) of \(x_0 \) such that \(G(A) \subseteq B \). \(G \) is said to be completely continuous if \(G(B) \) is relatively compact for every bounded subset \(B \subseteq X \). If the multivalued map \(G \) is completely continuous with nonempty compact values, then \(G \) is upper semicontinuous if and only if \(G \) has a closed graph (that is, \(x_n \to x_0, u_n \to u_0, u_n \in Gx_n \) imply \(u_0 \in Gx_0 \)).

We assume the following conditions:

(i) The operator \(A : D(A) \subset X \to Y \) and \(E : D(E) \subset X \to Y \) satisfy the following conditions
Existence of Solutions of Sobolev-Type

\[[C_1] \quad A \text{ and } E \text{ are closed linear operators.} \]
\[[C_2] \quad D(E) \subset D(A) \text{ and } E \text{ is bijective.} \]
\[[C_3] \quad E^{-1} : Y \rightarrow D(E) \text{ is continuous.} \]
\[[C_4] \quad \text{The resolvent } R(\lambda, -AE^{-1}) \text{ is a compact operator for some } \lambda \in \rho(-AE^{-1}) \text{ and resolvent set of } -AE^{-1}. \]

Conditions \([C_1], [C_2] \), and the closed graph theorem imply the boundedness of the linear operator \(AE^{-1} : Y \rightarrow Y \).

(ii) \(G : I \times X \times X \times X \rightarrow BCC(Y) \) is measurable with respect to \(t \) for each \(u \in X \), upper semi continuous with respect to \(u \) for each \(t \in I \), and for each \(u \in C(I,X) \) the set
\[
S_{G,u} = \{ g \in L^1(I;R) : g(t) \in G(t,u, \int_0^t k(t,s,u)ds, \int_0^a b(t,s,u)ds) \}
\]
for a.e \(t \in I \) is nonempty.

(iii) There exist functions \(p(t), q(t) \in C(I;R) \) such that
\[
| \int_0^t k(t,s,u)ds | \leq p(t)\|u\| \text{ and } | \int_0^a b(t,s,u)ds | \leq q(t)\|u\| \text{ for a.e } t, s, \in I, u \in X.
\]

(iv) There exists a function \(\alpha(t) \in L^1(I;R^+) \) such that
\[
\|G(t,u,v,w)\| \leq \alpha(t)\Omega(\|u\| + \|v\| + \|w\|)
\]
for a.e \(t \in I, u \in X \), where \(\Omega : R_+ \rightarrow (0,\infty) \) is continuous increasing function satisfying \(\Omega(p(t)x + q(t)y) \leq p(t)\Omega(x) + q(t)\Omega(y) \) and
\[
M \int_0^m \alpha(s)(1 + p(s) + q(s))ds < \int_c^\infty \frac{du}{\Omega(u)}
\]
for each \(m \in N \), where \(c = \|E^{-1}\|M\|Eu_0\| \) and \(M = \max\{\||T(t)||; t \in I\}\).

(v) For each neighbourhood \(U_r \) of 0, \(u \in U_r \) and \(t \in I \), the set
\[
\{ E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t-s)g(s)ds, \ g \in S_{G,u} \}
\]
is relatively compact.

Definition 2.1: A continuous function \(u(t) \) of the integral inclusion
\[
u(t) \in E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t-s)G(s,u,\int_0^s k(s,\tau,u(\tau))d\tau, \int_0^a b(s,\tau,u(\tau))d\tau)ds
\]
is called a mild solution of (1.1) on \(I \).

Lemma 2.1: \([9]\). Let \(I \) be a compact real interval and let \(X \) be a Banach space. Let \(G \) be a multivalued map satisfying (i) and let \(\Gamma \) be a linear continuous mapping from \(L^1(I,X) \) to \(C(I,X) \). Then the operator
\[
\Gamma \circ S_G : C(I,X) \rightarrow X, \ (\Gamma \circ S_G)(y) = \Gamma(S_G,y)
\]
is a closed graph operator in \(C(I, X) \times C(I, X) \).

Lemma 2.2: [10]. Let \(X \) be a locally convex space. Let \(N : X \to X \) be a compact, convex valued, upper semicontinuous, multivalued map such that there exists a closed neighbourhood \(U_r \) of \(0 \) for which \(N(U_r) \) is a relatively compact set for each \(r \in N \). If the set \(\zeta = \{ y \in X : \lambda y \in N(y) \} \) for some \(\lambda > 1 \) is bounded, then \(N \) has a fixed point.

Remark: [9]. If \(\dim X < \infty \) and \(I \) is a compact real interval, then for each \(u \in C(I, X) \), \(S_G,u \) is nonempty.

Lemma 2.3: [16]. Let \(S(t) \) be a uniformly continuous semigroup and let \(A \) be its infinitesimal generator. If the resolvent set \(R(\lambda : A) \) of \(A \) is compact for every \(\lambda \in \rho(A) \), then \(S(t) \) is a compact semigroup.

From the above fact, \(-AE^{-1}\) generates a compact semigroup \(T(t) \) in \(Y \). Thus, \(\max_{t \in I} |T(t)| \) is finite and so denote \(M = \max_{t \in I} |T(t)| \).

3 Main Result

Theorem 3.1: If the assumptions (i)–(v) are satisfied, then the initial value problem (1.1) has at least one mild solution on \(I \).

Proof: A solution to (1.1) is a fixed point for the multivalued map \(N : C(I, X) \to 2^{C(I, X)} \) defined by

\[
N(u) = \{ h \in C(I, X) : h(t) = E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t-s)g(s)ds, \; g \in S_G,u \},
\]

where

\[
S_G,u = \{ g \in L^1(I, X) : g(t) \in G(t, u, \int_0^t k(t, s, u(s))ds, \int_0^a b(t, s, u(s))ds) \}
\]

for a.e. \(t \in I \).

First we shall prove \(N(u) \) is convex for each \(u \in C(I, X) \). Let \(h_1, h_2 \in N(u) \), then there exist \(g_1, g_2 \in S_G,u \) such that

\[
h_i(t) = E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t-s)g_i(s)ds, i = 1, 2, t \in I
\]

Let \(0 \leq k_1 \leq 1 \), then for each \(t \in I \) we have

\[
(k_1h_1 + (1 - k_1)h_2)t = E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t-s)(k_1g_1(s) + (1 - k_1)g_2(s))ds.
\]

Since \(S_G,u \) is convex, thus \(kh_1 + (1 - k)h_2 \in N(u) \). Hence, \(N(u) \) is convex for each \(u \in C(I, X) \).

Let \(U_r = \{ u \in C(I, X) : \| u \| \leq r \} \) be a neighbourhood of \(0 \) in \(C(I, X) \) and \(u \in U_r \). Then for each \(h \in N(u) \) there exists \(g \in S_G,u \) such that for \(t \in I \), we have

\[
\| h(t) \| \leq \| E^{-1} \| \| T(t) \| \| Eu_0 \| + \int_0^t \| E^{-1} \| \| T(t-s) \| \| g(s) \| ds
\]

\[
\leq \| E^{-1} \| M \| Eu_0 \| + \| E^{-1} \| M \int_0^t \alpha(s)\Omega(\| u \| + p(t)\| u \| + q(t)\| u \|)ds
\]
Consider the functions u, We must also prove that there exists g a completely continuous multivalued map. Next we shall prove that $h \in \mathcal{H}$ where $h \in \mathcal{H}$ with $h \in \mathcal{H}$ $t+1$. That is,

$$
\| h(t_1) - h(t_2) \| \leq \| E^{-1}\| (T(t_2) - T(t_1))Eu_0\|
+ \| E^{-1}\| \int_0^{t_2} (T(t_2) - s)g(s)ds \| T(t_1 - s))g(s)ds \|
+ \| E^{-1}\| \int_{t_1}^{t_2} T(t_1 - s)g(s)ds \|
\leq \| E^{-1}\| (T(t_2) - T(t_1))Eu_0\|
+ \| E^{-1}\| \int_0^{t_2} (T(t_2) - s)g(s)ds \|
+ \| M(t_2 - t_1)\| E^{-1}\| \int_0^{t_2} g(s)ds.
$$

Hence, $N(U_r)$ is bounded in $C(I, X)$ for each $r \in N$. Next we shall prove $N(U_r)$ is an equicontinuous set in $C(I, X)$ for each $r \in N$. Let $t_1, t_2 \in I_m$ with $t_1 < t_2$. Then for all $h \in N(u)$ with $u \in U_r$, we have

$$
h_n(t) = E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t - s)g_n(s)ds, \quad t \in I.
$$

We must also prove that there exists $g_0 \in S_{G,u}$ such that

$$
h_0(t) = E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t - s)g_0(s)ds, \quad t \in J. \quad (3.1)
$$

To prove the above, we use the fact that $h_n \to h_0$; and $h_n - E^{-1}T(t)Eu_0 \in \Gamma(S_{G,u})$, where

$$
(\Gamma_2)(t) = \int_0^t E^{-1}T(t - s)g(s)ds, \quad t \in I.
$$

Consider the functions $u_n, h_n - E^{-1}T(t)Eu_0$ and g_n defined on the interval $[k, k+1]$ for any $k \in N \cup \{0\}$. Then using Lemma 2.1, we can conclude (3.1) is true on the compact interval $[k, k+1]$. That is,

$$
[h_0(t)]_{[k,k+1]} = E^{-1}T(t)Eu_0 + \int_0^t E^{-1}T(t - s)g_0^k(s)ds
$$

for a suitable L^1-selection g_0^k of $G(t, u, \int_0^t k(t, s, u)ds, \int_0^T b(t, s, u)ds)$ on the interval $[k, k+1]$. Let $g_0(t) = g_0^k(t)$ for $t \in [k, k+1]$. Then g_0 is an L^1-selection and (3.1)
will satisfied. Clearly we have \(\|(h_n - E^{-1}T(t)Eu_0) - (h_0 - E^{-1}T(t)Eu_0)\|_\infty \to 0 \) as \(n \to \infty \). Consider for all \(k \in N \cup \{0\} \), the mapping

\[
S^k_G : C([k, k+1], X) \to L^1([k, k+1], X),
\]

\[
y \to S^k_{G,y} = \{g \in L^1([k, k+1], X) : g(t) \in G(t, u, \int_0^t k(t, s, u)ds, \int_0^a b(t, s, u)ds) \text{ for } a.e \ t \in [k, k+1]\}.
\]

Moreover, we have \(\|\rangle \|_{\infty} \to \infty \) for \(m \to \infty \).

From Lemma 2.1 it follows that \(\Gamma_k \) is a closed graph operator for all \(k \in N \cup \{0\} \). Moreover, we have

\[
\langle h_n(t) - E^{-1}T(t)Eu_0 \rangle_{[k, k+1]} \in \Gamma_k(S^k_{G,u_n}),
\]

and \(u_n \to u_* \). From Lemma 2.1, we have \(\langle h_0(t) - E^{-1}T(t)Eu_0 \rangle_{[k, k+1]} \in \Gamma_k(S^k_{G,u_*}) \),

\[
\langle h_0(t) - E^{-1}T(t)Eu_0 \rangle_{[k, k+1]} = \int_0^t E^{-1}T(t - s)g(s)ds.
\]

Hence, the function \(g_0 \) defined on \(I \) by \(g_0(t) = g^k_0(t) \) for \(t \in [k, k+1] \) is in \(S^k_{G,u_*} \). Therefore, \(N(U_r) \) is relatively compact for each \(r \in N \) where \(N \) is upper semicontinuous with convex closed values. Finally we prove the set \(\zeta = \{u \in C(I, X); \lambda u \in Nu\} \), for some \(\lambda > 1 \), is bounded.

Let \(\lambda u = Nu \) for some \(\lambda > 1 \). Then there exists \(g \in S^k_{G,u} \) such that

\[
u(t) = \lambda^{-1}E^{-1}T(t)Eu_0 + \lambda^{-1} \int_0^t E^{-1}T(t - s)g(s)ds, \ t \in I,
\]

\[
\|\nu(t)\| \leq \|E^{-1}\|M\|Eu_0\| + \|E^{-1}\|M \int_0^t \alpha(s)(1 + p(s) + q(s))\Omega(\|u\|)ds.
\]

Let \(\nu(t) = \|E^{-1}\|M\|Eu_0\| + \|E^{-1}\|M \int_0^t \alpha(s)(1 + p(s) + q(s))\Omega(\|u\|)ds. \) Then we have \(\nu(0) = \|E^{-1}\|M\|Eu_0\| = c \) and \(\|\nu(t)\| \leq \nu(t), t \in I_m \). Using the increasing character of \(\Omega \) we get

\[
\nu'(t) \leq \|E^{-1}\|M\alpha(t)(1 + p(t) + q(t))\Omega(\nu(t)), \ t \in I_m.
\]

The above proves that for each \(t \in I_m \),

\[
\int_{\nu(0)}^{\nu(t)} \frac{du}{\Omega(u)} \leq \|E^{-1}\|M \int_0^m \alpha(s)(1 + p(s) + q(s))ds < \int_0^\infty \frac{du}{\Omega(u)}.
\]

The above inequality implies that there exists a constant \(M_0 \) such that \(\nu(t) \leq M_0, t \in I_m \), and hence that \(\|u\|_{\infty} \leq M_0 \) where \(M_0 \) depends on \(m \) and on the functions \(\alpha, p, \Omega \). Hence, \(\zeta \) is bounded. Thus by Lemma 2.2, \(N \) has a fixed point that is a mild solution of (1.1).
4 Nonlocal Initial Conditions

Several authors have studied the nonlocal Cauchy problem in abstract spaces [2, 3, 4, 11, 12, 13]. The importance of nonlocal conditions is discussed in [4, 5]. In this section we consider a first order Sobolev-type, semilinear, mixed, integrodifferential inclusion (1.1) with the nonlocal initial condition

$$u(0) + f(u) = u_0 \quad (4.1)$$

In addition to the five assumptions in Section 2, we also assume the following.

(vi) $f : C(I, X) \to X$ is a continuous function, and there exists a constant $L > 0$ such that $\|f(u)\| \leq L$ for each $u \in X$.

(vii) $\|E^{-1}\| M \int_0^\alpha \alpha(s)(1 + p(s) + q(s))ds < \int_1^\infty \frac{du}{\in(x)}$ where $c_1 = \|E^{-1}\| M|Eu_0| + L\|E^{-1}\| M|Eu_0|$.

(viii) For each neighbourhood U_r of 0, $u \in U_r$ and $t \in I$, the set $\{E^{-1}T(t)Eu_0 - E^{-1}T(t)Ef(u) + \int_0^t \int_0^s T(t-s)G(s, u, \int_0^s k(s, \tau, u(\tau))d\tau, \int_0^s b(s, \tau, u(\tau))d\tau)ds, g \in S_G, u \}$ is relatively compact.

Definition 4.1: A continuous function $u(t)$ of the integral inclusion

$$u(t) \in E^{-1}T(t)Eu_0 - E^{-1}T(t)Ef(u) + \int_0^t E^{-1}T(t-s)G(s, u, \int_0^s k(s, \tau, u(\tau))d\tau, \int_0^s b(s, \tau, u(\tau))d\tau)ds$$

is called a mild solution of (1.1)-(4.1) on I.

Theorem 4.1: If the assumptions (i)–(iii), (vi)–(viii) are satisfied, then the nonlocal initial value problem (1.1)–(4.1) has at least one mild solution on I.

The proof of Theorem 4.1 is similar to Theorem 3.1 and hence, is omitted.

References

