Research Article

Existence Results for a $p(x)$-Kirchhoff-Type Equation without Ambrosetti-Rabinowitz Condition

Libo Wang1,2 and Minghe Pei2

1 Institute of Mathematics, Jilin University, Changchun 130012, China
2 Department of Mathematics, Beihua University, Jilin 132013, China

Correspondence should be addressed to Libo Wang; wlb_math@163.com

Received 25 November 2012; Accepted 28 April 2013

Academic Editor: Jaime Munoz Rivera

Copyright © 2013 L. Wang and M. Pei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the existence and multiplicity of solutions for the $p(x)$-Kirchhoff-type equations without Ambrosetti-Rabinowitz condition. Using the Mountain Pass Lemma, the Fountain Theorem, and its dual, the existence of solutions and infinitely many solutions were obtained, respectively.

1. Introduction

The Kirchhoff equation

$$
\rho \frac{\partial^2 u}{\partial t^2} - \left(\rho_0 + \frac{E}{2L} \int_0^L |\partial u| \, dx \right) \frac{\partial^2 u}{\partial x^2} = 0
$$

was introduced by Kirchhoff [1] in the study of oscillations of stretched strings and plates, where ρ, ρ_0, h, E, and L are constants. The stationary analogue of the Kirchhoff equation, that is, (1), is, as follows:

$$
- \left(a + b \int_\Omega |\nabla u|^2 \, dx \right) \Delta u = f(x,u).
$$

After the excellent work of Lions [2], problem (2) has received more attention; see [3–10] and references therein.

The $p(x)$-Laplace operator arises from various phenomena, for instance, the image restoration [11], the electro-rheological fluids [12], and the thermoconvective flows of non-Newtonian fluids [13,14]. The study of the $p(x)$-Laplace operator is based on the theory of the generalized Lebesgue space $L^{p(x)}(\Omega)$ and the Sobolev space $W^{m,p(x)}(\Omega)$, which we called variable exponent Lebesgue and Sobolev space. We refer the reader to [15–19] for an overview on the variable exponent Sobolev space, and to [20–29] for the study of the $p(x)$-Laplacian-type equations.

Recently, there has been an increasing interest in studying the Kirchhoff equation involving the $p(x)$-Laplace operator. Autuori et al. [30,31] have dealt with the nonstationary Kirchhoff-type equation involving the $p(x)$-Laplacian of the form

$$
u_{tt} - M \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \Delta_{p(x)} u
$$

$$
+ Q(t,x,u,u_t) + f(t,x,u) = 0,
$$

and

$$
u_{tt} - M \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \Delta_{p(x)} u
$$

$$
+ \mu |\nabla u|^{p(x)-2} u + Q(t,x,u,u_t) = f(t,x,u).
$$

In [32–35], applying variational method and Ambrosetti-Rabinowitz (AR) condition, Guowei Dai has studied the existence and multiplicity of solutions for the $p(x)$-Kirchhoff-type equations with Dirichlet or Neumann boundary condition. In [36], by using (S_γ) mapping theory and the Mountain Pass Lemma, Fan has discussed the nonlocal $p(x)$-Laplacian Dirichlet problem with the nonvariational form

$$
-A(u) \Delta_{p(x)} u = B(u) f(x,u), \quad \text{in } \Omega,
$$

$$
u = 0, \quad \text{on } \partial \Omega.
$$
and the $p(x)$-Kirchhoff-type equation with the variational form
\[-a \left(\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \Delta_{p(x)} u = b \left(\int_{\Omega} F(x, u) \, dx \right) f(x, u), \quad \text{in } \Omega, \quad u = 0, \quad \text{on } \partial \Omega, \]
under (AR) condition, where A, B are two functionals defined on $W^{1,p(x)}(\Omega)$, and $F(x, t) = \int_0^t f(x, s) \, ds$.

Motivated by the above works, the purpose of this paper is to study the $p(x)$-Kirchhoff-type equation
\[-\left(a + b \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right) \Delta_{p(x)} u = f(x, u), \quad \text{in } \Omega, \quad u = 0, \quad \text{on } \partial \Omega, \]
without (AR) condition, where Ω is a smooth bounded domain in \mathbb{R}^N, a, b are two positive constants, $\Delta_{p(x)} u = \text{div}(\nabla u |\nabla u|^{p(x)-2} \nabla u)$, $p \in C^0(\overline{\Omega})$ for some $\beta \in (0, 1)$, and
\[1 < p^- := \inf_{\Omega} p(x) \leq p^+ := \sup_{\Omega} p(x) < +\infty. \]

By taking the famous Mountain Pass Lemma, the Fountain Theorem, and its dual, we obtain the existence of solutions and infinitely many solutions for the $p(x)$-Kirchhoff-type equation (6) under no (AR) condition.

2. Preliminary

We recall in this section some definitions and properties of variable exponent Lebesgue-Sobolev space. The variable exponent Lebesgue space $L^{p(x)}(\Omega)$ is defined by
\[L^{p(x)}(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ is measurable, } \int_{\Omega} |u|^{p(x)} \, dx < \infty \right\}, \]
with the norm
\[|u|_{L^{p(x)}} = \|u\|_{p(x)} = \inf \left\{ \sigma > 0 : \int_{\Omega} \frac{|u|}{\sigma}^{p(x)} \, dx \leq 1 \right\}. \]
The variable exponent Sobolev space $W^{1,p(x)}(\Omega)$ is defined by
\[W^{1,p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}, \]
with the norm
\[\|u\|_{W^{1,p(x)}} = \|u\|_{1,p(x)} = \|u\|_{p(x)} + \|\nabla u\|_{p(x)}. \]

Denote by $W^{1,p(x)}_0(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$. $|\nabla u|_{p(x)}$ is an equivalent norm on $W^{1,p(x)}_0(\Omega)$. In this paper we use the notation $\|u\|_{p(x)}$ for $u \in W^{1,p(x)}_0(\Omega)$. Define
\[p^*(x) = \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N, \\ +\infty & \text{if } p(x) \geq N. \end{cases} \]
We refer the reader to [36–38] for the elementary properties of the space $W^{1,p(x)}(\Omega)$.

Proposition 1 (see [38]). Set $\rho(u) = \int_{\Omega} |u(x)|^{p(x)} \, dx$. For any $u \in L^{p(x)}(\Omega)$, then the following are given:
\[(1) |u|_{p(x)} = \lambda \Leftrightarrow p(u/\lambda) = 1 \text{ if } u \neq 0; \]
\[(2) |u|_{p(x)} < 1 \Leftrightarrow p(u) < 1 \text{ if } u \neq 0; \]
\[(3) \rho(u) \leq |u|_{p(x)} \Leftrightarrow |u|_{p(x)} \leq \rho(u) \text{ if } |u|_{p(x)} > 1; \]
\[(4) \rho(u) \leq |u|_{p(x)} \Leftrightarrow |u|_{p(x)} \leq \rho(u) \text{ if } |u|_{p(x)} < 1; \]
\[(5) \lim_{k \to +\infty} \rho(u_k) = 0 \Leftrightarrow \lim_{k \to +\infty} \rho(u_k) = 0; \]
\[(6) \lim_{k \to +\infty} |u_k|_{p(x)} = +\infty \Leftrightarrow \lim_{k \to +\infty} \rho(u_k) = +\infty. \]

3. Positive Energy Solution

In this section we discuss the existence of weak solutions of (6). For simplicity we write $X = W^{1,p(x)}_0(\Omega)$.

First, we state the assumptions on f as follows.
\[(f_0) \text{ Let } f : \Omega \times \mathbb{R} \to \mathbb{R} \text{ be a continuous function, and there exist positive constants } c_1, c_2 \text{ such that} \]
\[|f(x, t)| \leq c_1 + c_2 |t|^{\alpha(x)-1}, \]
where $\alpha \in C(\overline{\Omega})$ and $1 < \alpha(x) < p^*(x)$ for all $x \in \overline{\Omega}$.
\[(f_0') \text{ Let } f : \Omega \times \mathbb{R} \to \mathbb{R} \text{ be a continuous function, and there exist positive constants } c_1, c_2 \text{ such that} \]
\[|f(x, t)| \leq c_1 + c_2 |t|^{\alpha(x)-1}, \]
where $\alpha \in C(\overline{\Omega})$ and $p^* \leq \alpha(x) < p^*(x)$ for all $x \in \overline{\Omega}$; $tf(x, t) \geq 0$ for all $t > 0$.
\[(f_1) \text{ Let } \lim_{t \to +\infty} F(x, t)/|t|^{2p^*} = +\infty, \text{ uniformly for } x \in \overline{\Omega}, \text{ where } F(x, t) = \int_0^t f(x, s) \, ds. \]
\[(f_2) \text{ There exists } \theta \geq 1 \text{ such that } \theta G(x, st) \geq G(x, st) \text{ for } (x, t) \in \Omega \times \mathbb{R} \text{ and } s \in [0, 1], \text{ where} \]
\[G(x, t) = tf(x, t) - 2p^*F(x, t). \]
\[(f_3) \text{ Let } \lim_{t \to 0} F(x, t)/|t|^{p^*} = 0, \text{ uniformly on } x \in \Omega. \]
\[(f_3') \text{ There exists } \delta > 0, \text{ such that } F(x, t) \leq 0 \text{ for } x \in \overline{\Omega}, |t| < \delta. \]
(17) Let \(f(x, t) = -f(x, -t) \) for \(x\in\Omega \) and \(t\in \mathbb{R} \).

(f5) Let \(\lim_{t\to 0}(F(x, t)/|t|^p) = 0 \), uniformly on \(x \in \overline{\Omega} \), where \(q \in C(\overline{\Omega}) \) satisfies \(1 < q(x) < p(x) \) for \(x \in \overline{\Omega} \).

Remark 2. Condition (f5) was first introduced by Jeanjean [39] for the case \(p(x) = 2 \). Let \(f(x, t) = 2p^1\frac{t}{|t|^p} \ln|t| \), then

\[
F(x, t) = |t|^p \ln|t| - \frac{1}{2p^1} |t|^2p^1, \quad G(x, t) = |t|^2p^1.
\]

(16) It is easy to see that the function \(f \) does not satisfy (AR) condition, but it satisfies \((f_1)-(f_5)\) and \((f_5')\).

Proposition 4 (see [37]). Assume that \((f_5)\) hold and let \(u_0 \in W_0^{1,p}(\Omega) \) be a local minimizer (resp., a strictly local minimizer) of \(I \) in the \(C^1(\overline{\Omega}) \) topology. Then \(u_0 \) is a local minimizer (resp., a strictly local minimizer) of \(I \) in the \(W_0^{1,p}(\Omega) \) topology.

Definition 5. We say that \(u \in X \) is a weak solution of (6), if

\[
(a + b \int \frac{1}{p(x)}|\nabla u|^{p(x)} \ dx) \int \frac{1}{p(x)} |\nabla u|^{p(x)} \ dx, \quad \Phi(u) = \int F(x, u) \ dx.
\]

(18) \(I(u) = J(u) - \Phi(u) \), where

Then \(I \in C^1(X, \mathbb{R}) \).

Proposition 3 (see [38]). Assume that \((f_5)\) hold, then the functional \(J : X \to \mathbb{R} \) is sequentially weakly lower semicontinuous, \(\Phi : X \to \mathbb{R} \) is sequentially weakly continuous, and \(I \) is sequentially weakly lower semicontinuous.

Proposition 4 (see [37]). Assume that \((f_5)\) hold, and let \(u_0 \in W_0^{1,p}(\Omega) \) be a local minimizer (resp., a strictly local minimizer) of \(I \) in the \(C^1(\overline{\Omega}) \) topology. Then \(u_0 \) is a local minimizer (resp., a strictly local minimizer) of \(I \) in the \(W_0^{1,p}(\Omega) \) topology.

Definition 6. Let \(X \) be a Banach space and \(I \in C^1(X, \mathbb{R}) \). Given \(c \in \mathbb{R} \), we say that \(I \) satisfies the Cerami \(c \) condition (we denote by \((C)_c\) the condition), if

(i) any bounded sequence \(\{u_n\} \subset X \) such that \(I(u_n) \to c \) and \(I'(u_n) \to 0 \) has a convergent subsequence;

(ii) there exist constants \(\delta, R, \beta > 0 \) such that

\[
\|u\| I'(u) \geq \beta, \quad \forall u \in I^{-1} [c - \delta, c + \delta], \quad \|u\| \geq R.
\]

If \(I \in C^1(X, \mathbb{R}) \) satisfies \((C)_c\) condition for every \(c \in \mathbb{R} \), then we say that \(I \) satisfies \((C)\) condition.

Remark 7. Although \((PS)\) condition is stronger than \((C)\) condition, the Deformation Theorem is still valid under \((C)\) condition; we see that the Mountain Pass Lemma, the Fountain Theorem, and its dual are true under \((C)\) condition.

Lemma 8. Assume that conditions \((f_5)-(f_5')\) hold. Then \(I \) satisfies \((C)\) condition.

Proof. From [36, Proposition 3.1], \(I \) satisfies \((i)\) of \((C)\) condition.

Now we check that \(I \) satisfies \((ii)\) of \((C)\) condition. Arguing by contradiction, we may assume that, for some \(c \in \mathbb{R} \),

\[
I(u_n) \to c, \quad \|u_n\| \to \infty, \quad \|u_n\| I'(u_n) \to 0. \tag{20}
\]

Then we have

\[
\lim_{n \to \infty} \left\{ a \int \frac{1}{p(x)} |\nabla u|^{p(x)} \ dx + b \right\} = c.
\]

(21) \(I(u_n) \to c \), \(\|u_n\| \to \infty \), \(\|u_n\| I'(u_n) \to 0 \).

Let \(v_n = u_n/\|u_n\| \), then up to a subsequence we may assume that

\[
\begin{align*}
v_n & \to v \quad \text{in } X, \\
v_n & \to v \quad \text{in } L^{a(x)}(\Omega), \\
v_n(x) & \to v(x) \quad \text{a.e. } x \in \Omega.
\end{align*}
\]

(22) \(v_n \to v \) in \(X \), \(v_n \to v \) in \(L^{a(x)}(\Omega) \), \(v_n(x) \to v(x) \) a.e. \(x \in \Omega \).

If \(v = 0 \), inspired by [13, 14], then we define

\[
I(u_n) = \max_{t \in [0,1]} I(tu_n). \tag{23}
\]

(23) \(I(u_n) = \max_{t \in [0,1]} I(tu_n) \).

For any \(m > 1/2p^+ \), let \(w_n = (2mp^+)^{1/p^} v_n \). Since \(w_n \to 0 \) in \(L^{a(x)}(\Omega) \) and

\[
|F(x, t)| \leq c_9 + c_9 |t|^{a(x)}, \tag{24}
\]

(24) \(|F(x, t)| \leq c_9 + c_9 |t|^{a(x)} \),

by the continuity of \(F(x, \cdot) \), \(F(\cdot, w_n) \to 0 \) in \(L^1(\Omega) \), thus,

\[
\lim_{n \to 0} \int |F(\cdot, w_n)| \ dx = 0. \tag{25}
\]
Then for n large enough, $(2mp^+)\frac{1}{p^+} \|u_n\| \in (0, 1)$ and

$$I(t_n u_n) \geq I(u_n)$$

$$= a \int_\Omega \frac{1}{p(x)} |\nabla u_n|^p(x) dx$$

$$+ b \left(\int_\Omega \frac{1}{p(x)} |\nabla u_n|^p(x) dx \right)^2 - \int_\Omega F(x, u_n) dx$$

$$= a \int_\Omega \frac{1}{p(x)} \left((2mp^+)\frac{1}{p^+} |\nabla u_n|^p(x) \right) dx$$

$$+ b \left(\int_\Omega \frac{1}{p(x)} \left((2mp^+)\frac{1}{p^+} |\nabla u_n|^p(x) \right) dx \right)^2$$

$$- \int_\Omega F(x, u_n) dx$$

$$\geq \frac{2ma}{p^+} \int_\Omega |\nabla u_n|^p(x) dx$$

$$+ \frac{2mb}{(p^+)^2} \left(\int_\Omega |\nabla u_n|^p(x) dx \right)^2 - \int_\Omega F(x, u_n) dx$$

$$\geq \frac{2ma}{p^+} + \frac{2mb}{(p^+)^2} - \int_\Omega F(x, u_n) dx.$$

(26)

That is, $I(t_n u_n) \to \infty$. From $I(0) = 0$ and $I(u_n) \to c$, we know that $t_n \in (0, 1)$ and

$$a \int_\Omega |\nabla_t u_n|^p(x) dx$$

$$+ b \left(\int_\Omega \frac{1}{p(x)} |\nabla_t u_n|^p(x) dx \right) \int_\Omega |\nabla u_n|^p(x) dx$$

$$- \int_\Omega f(x, t_n u_n) u_n dx$$

$$= \langle I'(t_n u_n), t_n u_n \rangle = t_n \frac{d}{dt} I(t_n u_n) = 0.$$

(27)

Therefore, from (f_2), we have

$$a \int_\Omega \left(\frac{1}{p(x)} - \frac{1}{2p^+} \right)|\nabla u_n|^p(x) dx$$

$$+ b \left(\int_\Omega \frac{1}{p(x)} |\nabla u_n|^p(x) dx \right) + \int_\Omega \left(\frac{1}{p(x)} - \frac{1}{p^+} \right)|\nabla u_n|^p(x) dx$$

$$+ \int_\Omega G(x, u_n) dx$$

$$\geq a \int_\Omega \left(\frac{1}{p(x)} - \frac{1}{2p^+} \right)|\nabla u_n|^p(x) dx$$

$$+ \frac{b}{2} \int_\Omega \frac{1}{p(x)} |\nabla u_n|^p(x) dx$$

$$\times \int_\Omega \left(\frac{1}{p(x)} - \frac{1}{p^+} \right)|\nabla u_n|^p(x) dx$$

$$+ \frac{1}{2p^+} \int_\Omega G(x, u_n) dx$$

(28)

This contradicts (21).

If $v \neq 0$, from (20), when $\|u_n\| \geq 1$,

$$\frac{a}{p^+} \|u_n\|^{p^+} + \frac{b}{2(p^+)^2} \|u_n\|^{2p^+} - (c + o(1)) \geq \int_\Omega F(x, u_n) dx.$$

(29)

Then from (f_1) we have

$$\frac{a}{p^+} \frac{1}{\|u_n\|^{p^+}} + \frac{b}{2(p^+)^2} \|u_n\|^{2p^+} - (c + o(1)) \geq \int_\Omega F(x, u_n) dx$$

$$\geq \int_\Omega \frac{F(x, u_n)}{\|u_n\|^{2p^+}} dx$$

$$= \left(\int_{u_n \neq 0} + \int_{u_n = 0} \right) \frac{F(x, u_n)}{|u_n|^{2p^+}} dx$$

$$= \int_{u_n \neq 0} \frac{F(x, u_n)}{|u_n|^{2p^+}} dx.$$

(30)

For $x \in \Theta := \{ x \in \Omega : v(x) \neq 0 \}, |u_n(x)| \to +\infty$. By (f_1) we have

$$\frac{F(x, u_n)}{|u_n|^{p^+}} |v_n|^{p^+} \to +\infty.$$

(31)
Note that the Lebesgue measure of Θ is positive; using the Fatou Lemma, we have
\[\int_{r_n > 0} \frac{F(x,u_n)}{|u_n|^{\alpha(p)}} |\nabla u_n|^{\beta} \, dx \to +\infty. \] (32)
This contradicts (30).

The technique used in this lemma was first introduced by [39, 40]. \qed

Theorem 9. Assume that conditions (f0)—(f2) and (f3) (or (f3')) hold. Then (6) has a nontrivial solution with positive energy.

Proof. From Lemma 8, I satisfies (C) condition. Let us show that the functional I has a Mountain-Pass-type geometry.

Note that $I(0) = 0$. By (f2), there exists $\delta > 0$, and for any $u \in X$ with $|u|_{L^p(\Omega)} < \delta$, $I(u) = a \left(\int_{\Omega} \frac{1}{p(x)} |V u|^{p(x)} \, dx \right)$
\[+ \frac{b}{2} \left(\int_{\Omega} \frac{1}{p(x)} |V u|^{p(x)} \, dx \right)^2 - \int_{\Omega} F(x,u) \, dx \geq \frac{a}{p} |u|^{p^*} + \frac{b}{(p^*)^2} |u|^{2p^*} - \int_{\Omega} F(x,u) \, dx > 0. \] (33)

This shows that 0 is a strictly local minimizer of I in the $C(\overline{\Omega})$ topology, and hence 0 is a strictly local minimizer of I in the $C^1(\overline{\Omega})$ topology by [37, Theorem 1.1]. 0 is a strictly local minimizer of I in the $W^{1,p(x)}(\Omega)$ topology. Thus there exists $r > 0$ such that $I(u) > 0$ for every $u \in X \setminus \{0\}$ with $|u| \leq r$.

We claim that \(\inf_{\|u\| = r} I(u) > 0\). To prove this claim, arguing by contradiction, assume that there exists a sequence $\{u_n\} \subset X$ with $\|u_n\| = r$ such that $I(u_n) \to 0$ as $n \to \infty$. We may assume that $u_n \rightharpoonup u_0$ in X. Since I is sequentially weakly semi-continuous, we have that $I(u_0) = 0$, and hence $u_0 = 0$. Since Φ is sequentially weakly continuous, then we have that $\Phi(u_n) \to \Phi(0) = 0$, and hence $I(u_n) = I(u_0) + \Phi(u_n) \to 0$. It follows from this that $u_n \to 0$ in X which contradicts with $\|u_n\| = r$.

Let $y \in X$ with $y > 0$ in Ω and $\|y\| = 1$. By (f0) and (f2), for $s \geq 1$ we have
\[I(sy) = a \left(\int_{\Omega} \frac{1}{p(x)} |V y|^{p(x)} \, dx \right) \]
\[+ b \left(\int_{\Omega} \frac{1}{p(x)} |V y|^{p(x)} \, dx \right)^2 - \int_{\Omega} F(x,y) \, dx \leq \frac{a}{p} s^{p^*} + \frac{b}{(p^*)^2} s^{2p^*} - c_1 s^{p^*} \int_{\Omega} |y|^{2p^*} \, dx + c_2 \to -\infty \text{ as } s \to +\infty. \] (34)

We set $e = sy$. Then for s large, we obtain
\[\|e\| > r, \quad I(e) < 0. \] (35)

Hence by the famous Mountain Pass Lemma, problem (6) has a nontrivial weak solution with positive energy. \qed

4. Infinitely Many Solutions

Since X is a reflexive and separable Banach space, then there exists $\{e_j\} \subset X$ and $\{e_j^*\} \subset X^*$ such that
\[X = \text{span} \{e_j : j = 1, 2, \ldots\}, \]
\[X^* = \text{span} \{e_j^* : j = 1, 2, \ldots\}, \] (36)
\[\langle e_i, e_j^* \rangle = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases} \]

For convenience, we write $X_j = \text{span}[e_j], Y_k = \Phi^k_{j=1} X_j, Z_k = \Phi^{\infty}_{j=k} X_j$.

Lemma 10 (see [21]). If $\alpha \in C(\overline{\Omega}), 1 < \alpha(x) < p^*$ for any $x \in \overline{\Omega}$, denote
\[\beta_k = \sup \{ |u|_{\alpha(x)} : |u| = 1, u \in Z_k \}. \] (37)

Then \(\lim_{k \to +\infty} \beta_k = 0\).

Proposition 11 (Fountain Theorem). Assume that $I \in C^1(X, \mathbb{R})$ is an even functional. If, for any $k \in \mathbb{N}$, there exists $\rho_k > \rho_k > 0$ such that
\[(A_1) \quad a_k = \max_{u \in Y_k, \|u\| = \rho_k} I(u) \leq 0, \]
\[(A_2) \quad b_k = \inf_{u \in Z_k, \|u\| = \rho_k} I(u) \to +\infty \text{ as } k \to \infty, \]
\[(A_3) \quad I \text{ satisfies (C)}_c \text{ condition for every } c > 0, \text{ then } I \text{ has an unbounded sequence of critical values.} \]

Proposition 12 (Dual Fountain Theorem). Assume that $I \in C^1(X, \mathbb{R})$ is an even functional. If, for any $k > k_0$, there exists $\rho_k > \rho_k > 0$ such that
\[(B_1) \quad a_k = \inf_{u \in Z_k, \|u\| = \rho_k} I(u) \geq 0, \]
\[(B_2) \quad b_k = \max_{u \in Y_k, \|u\| = \rho_k} I(u) < 0, \]
\[(B_3) \quad d_k = \inf_{u \in Z_k, \|u\| < \rho_k} I(u) \to 0 \text{ as } k \to \infty, \]
\[(B_4) \quad I \text{ satisfies (C)}_c^* \text{ condition for every } c \in [d_k, \rho_k], \text{ then } I \text{ has a sequence of negative critical values converging to } 0. \]

Theorem 13. Assume that the conditions (f0'), (f1)–(f3) hold. Then (6) has infinitely many solutions $\{u_k\}$ such that $I(u_k) \to \infty$ as $k \to \infty$.

Proof. By conditions (f0'), (f1), and (f3), for any $\varepsilon > 0$, there exists C_ε such that
\[F(x,u) \geq C_\varepsilon |u|^{2p^*} - \varepsilon |u|^p, \quad \forall (x,u) \in \Omega \times \mathbb{R}. \] (38)
For $u \in Y_k$, when $\|u\| > 1$,

\[
I(u) = a \int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \\
+ \frac{b}{2} \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right)^2 - \int_\Omega F(x,u) \, dx \\
\leq \frac{a}{p} \|u\|^{p^*} + \frac{b}{2(p^*)^2} \|u\|^{2p^*} \\
- C_k |u|^{2p^*}_{2p^*} + \varepsilon |u|^{p^*}_{p^*} \to -\infty \quad \text{as } \|u\| \to +\infty.
\]

(39)

Then for some $\rho_k > 0$ large enough,

\[
a_k := \max_{u \in Y_k, \|u\| = \rho_k} I(u) \leq 0.
\]

(40)

On the other hand, by (f_0') and (f_3), there exists $C_\varepsilon > 0$ such that

\[
|F(x,u)| \leq \varepsilon |u|^{p^*} + C_\varepsilon |u|^{a(x)}, \quad \forall (x,u) \in \Omega \times \mathbb{R}.
\]

(41)

Let $\beta_k := \sup_{u \in Z_k, \|u\| = \rho_k} |u|_{a^*}$. From Lemma 10, $\beta_k \to 0$ as $k \to \infty$. For $u \in Z_k$, when $|u| \leq 1$ and ε small enough,

\[
I(u) = a \int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \\
+ \frac{b}{2} \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right)^2 - \int_\Omega F(x,u) \, dx \\
\geq \frac{a}{p^*} \|u\|^{p^*} - \frac{b}{2(p^*)^2} \|u\|^{2p^*} - C_\varepsilon |u|^{a^*} - \varepsilon |u|^{p^*}_{p^*}.
\]

(42)

If we choose $r_k := (a/4c^p \beta_k^{a^*})^{1/(a-\rho)} \to \infty$ as $k \to \infty$, then, for $u \in Z_k$ with $\|u\| = r_k$,

\[
I(u) \geq \frac{a}{4p^*(4c^p \beta_k^{a^*})^{1/(a-\rho)}} := \tilde{b}_k,
\]

(43)

which implies that $b_k := \inf_{u \in Z_k, \|u\| = r_k} I(u) \geq \tilde{b}_k \to +\infty$ as $k \to +\infty$.

\[\square\]

Theorem 14. Assume that conditions (f_0'), (f_1), (f_2), (f_3), and (f_4') hold. Then (6) has infinitely many solutions $\{u_k\}$ such that $I(u_k) \to 0$ as $k \to \infty$.

\[\square\]

Proof. By conditions (f_0'), (f_1), and (f_3), for any $\varepsilon > 0$, there exists C_ε such that

\[
F(x,u) \geq C_\varepsilon |u|^{p^*} - \varepsilon |u|^{q^*}, \quad \forall (x,u) \in \Omega \times \mathbb{R}.
\]

(44)

For $u \in Y_k$, when $\|u\|$ is large enough,

\[
I(u) = a \int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \\
+ \frac{b}{2} \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right)^2 - \int_\Omega F(x,u) \, dx \\
\leq \frac{a}{p} \|u\|^{p^*} + \frac{b}{(p^*)^2} \|u\|^{2p^*} - C_\varepsilon |u|^{2p^*}_{2p^*} + \varepsilon |u|^{p^*}_{p^*} \to -\infty \quad \text{as } \|u\| \to +\infty.
\]

(45)

Then for some $r_k > 0$ large enough,

\[
b_k := \max_{u \in Y_k, \|u\| = r_k} I(u) < 0.
\]

(46)

On the other hand, by (f_2), there exists $C_\varepsilon > 0$ such that

\[
|F(x,u)| \leq \varepsilon |u|^{q^*} + C_\varepsilon |u|^{a(x)}, \quad \forall (x,u) \in \Omega \times \mathbb{R}.
\]

(47)

Let $\beta_k := \sup_{u \in Z_k, \|u\| = r_k} |u|_{q^*}$, then $\beta_k \to 0$ as $k \to \infty$. For $u \in Z_k$, when $|u|$ and ε small enough,

\[
I(u) = a \int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \\
+ \frac{b}{2} \left(\int_\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \right)^2 - \int_\Omega F(x,u) \, dx \\
\geq \frac{a}{p^*} \|u\|^{p^*} - cC_\varepsilon |u|^{q^*} - ce |u|^{q^*}_{q^*}.
\]

(48)

If we choose $\rho_k := (4c^p \beta_k^{q^*}/a)^{1/(p^*-q^*)} \to 0$ as $k \to \infty$, then, for $u \in Z_k$ with $\|u\| = \rho_k$,

\[
I(u) \geq c\beta_k^{q^*} \left(4c^p \beta_k^{q^*}/a \right)^{-q^*/(p^*-q^*)} := \tilde{a}_k,
\]

(49)

which implies that $a_k := \inf_{u \in Z_k, \|u\| = \rho_k} I(u) \geq \tilde{a}_k \to 0$ as $k \to +\infty$.

Furthermore, if $u \in Z_k$ with $\|u\| \leq \rho_k$, then

\[
I(u) \geq -c\beta_k^{q^*} \rho_k^{q^*} \to 0 \quad \text{as } k \to \infty,
\]

(50)

which implies that $d_k := \inf_{u \in Z_k, \|u\| \leq \rho_k} I(u) \to 0$ as $k \to \infty$.

\[\square\]
Acknowledgment

This paper is supported by the National Natural Science Foundation of China (11126339, 11201008).

References

Submit your manuscripts at http://www.hindawi.com