Research Article

Solvability of a Fourth-Order Boundary Value Problem with Integral Boundary Conditions

Hui Li, Libo Wang, and Minghe Pei
Department of Mathematics, Beihua University, Jilin City 132013, China
Correspondence should be addressed to Minghe Pei; peiminghe@163.com

Received 21 December 2012; Accepted 13 February 2013

Academic Editor: Meng Fan

Copyright © 2013 Hui Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the existence of solutions and positive solutions for a nonlinear fourth-order differential equation with integral boundary conditions of the form
\[x^{(4)}(t) = f(t, x(t), x'(t), x''(t), x'''(t)), \quad t \in [0, 1], \]
\[x(0) = x'(1) = 0, \]
\[x''(0) = \int_0^1 h(s, x(s), x'(s), x''(s)) \, ds, \]
\[x'''(1) = 0, \]
where \(f \) and \(h \) are continuous functions.

We notice that if \(h \equiv 0 \) in problems (1), (2) and (3), (4), then the models are known as the one endpoint simply supported and the other one sliding clamped beam. The study of this class of problems was considered by some authors via various methods; we refer the reader to the papers [2, 5, 8, 11, 22].

The aim of this paper is to establish the existence results of solutions and positive solutions for problems (1), (2), and (3), (4), respectively. By positive solution, we mean a solution \(x(t) \) such that \(x(t) > 0 \) for \(t \in (0, 1] \). Our main tool is the fixed point theorem due to D. O’Regan [31].

2. Preliminary

In this section, we present some lemmas which are needed for our main results.
Let $C[0,1]$ denote the Banach space of real-valued continuous functions on $[0,1]$ with the norm $||x||_0 := \max_{t\in[0,1]} |x(t)|$. $C^n[0,1]$ is the Banach space of n times continuously differentiable functions defined on $[0,1]$, with the norm $||x||_{C^n} := \max_i ||x^{(i)}||_0$, $i = 0, 1, \ldots, n$.

Throughout this paper, we always assume that $f : [0,1] \times \mathbb{R}^4 \rightarrow \mathbb{R} = (-\infty, +\infty)$ (or $[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$) and $h : [0,1] \times \mathbb{R}^3 \rightarrow \mathbb{R}$ (or $[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$) are continuous.

We consider a priori bound of solutions of the following one-parameter family of boundary value problem:

$$
\begin{align*}
\frac{d^4}{dt^4} x(t) &= \lambda f(t, x(t), x'(t), x''(t), x'''(t)), \quad t \in [0,1], \\
x(0) &= x'(1) = 0, \\
\frac{d x}{dt}(0) &= \frac{d x}{dt}(1) = 0,
\end{align*}
$$

and $H : C^4[0,1] \rightarrow C[0,1]$ induced by h as

$$
(Hx)(t) = h(t, x(t), x'(t), x''(t), x'''(t)), \quad t \in [0,1].
$$

Also, define an operator $T : C^3[0,1] \rightarrow C[0,1] \times \mathbb{R}^4$ as

$$
(Tx)(t) = \left((Fx)(t), 0, 0, \int_0^1 (Hx)(s) \, ds \right).
$$

Simple computations yield the following lemma.

Lemma 2. BVP (5), (6) is equivalent to the abstract equation

$$
x = \lambda L^{-1} Tx
$$

in $C^3[0,1]$; that is, $x \in C^4[0,1]$ is a solution of BVP (5), (6) if and only if $x \in C^3[0,1]$ is a solution of the integral equation

$$
x(t) = \lambda \left[\int_0^1 G(t,s)(Fx)(s) \, ds + \int_0^1 \varphi(t,x(s)) \, ds \right],
$$

where $\varphi(t,x(s)) = g(t)(Hx)(s)$.

Let us denote the operators P_1, P_2 as

$$
\begin{align*}
(P_1 x)(t) &= \int_0^1 G(t,s)(Fx)(s) \, ds, \\
(P_2 x)(t) &= \int_0^1 \varphi(t,x(s)) \, ds.
\end{align*}
$$

Then, $L^{-1} T$ can be written as

$$
L^{-1} T = P_1 + P_2.
$$

Now, we can easily give some properties of the Green function $G(t,s)$ and $g(t)$ by direct computation.

Lemma 3. Let $G(t,s)$ be as in Lemma 1 and $g(t) = (1/2)t^2 - t$. Then,

$$
\begin{align*}
(1) \quad &0 \leq G(t,s) \leq \max_{0 \leq t, s \leq 1} G(t,s) = 1/3, \quad t, s \in [0,1]; \\
&0 \leq \left(\frac{\partial}{\partial t} \right) G(t,s) \\
&= \left\{ \begin{array}{ll}
\frac{1}{2} s^2 - \frac{1}{2} t^2, & 0 \leq t \leq s \leq 1; \\
\frac{1}{2} t^2 - \frac{1}{2} s^2, & 0 \leq s \leq t \leq 1;
\end{array} \right.
\end{align*}
$$

$$
\begin{align*}
(2) \quad &g(t) \leq 0, \quad g'(t) \leq 0, \quad g''(t) = 1, \quad g'''(t) = 0, \quad t \in [0,1]; \\
(3) \quad &||g||_0 = 1/2, \quad ||g'||_0 = 1, \quad ||g''||_0 = 1, \quad ||g'''||_0 = 0, \quad ||g||_{C^3} = 1.
\end{align*}
$$
Lemma 4. Suppose that

(i) for each fixed \((t, x_2, x_3) \in [0, 1] \times \mathbb{R}^2 \), \(f(t, x_0, x_1, x_2, x_3) \) is nondecreasing in \(x_0 \) and \(x_1 \);

(ii) there exists a constant \(M > 0 \) such that for \(|x| > M \), \(t \in [0, 1] \),

\[
xf(t, -x, -x, 0) > 0; \tag{20}
\]

(iii) there exist \(\beta \in (0, 1) \) and nondecreasing continuous function \(\sigma : [0, +\infty) \to [0, +\infty) \) such that \(\sigma(u) \leq \beta u \) for \(u > 0 \), and

\[
|h(t, x_0, x_1, x_2) - h(t, y_0, y_1, y_2)| \\
\leq \sigma(\max \{|x_i - y_i|, i = 0, 1, 2\}) \tag{21}
\]

for all \((t, x_0, x_1, x_2), (t, y_0, y_1, y_2) \in [0, 1] \times \mathbb{R}^3 \).

Then, any solution \(x = x(t) \) of BVP (5), (6) satisfies

\[
|x^{(i)}(t)| \leq M + r, \quad i = 0, 1, 2, t \in [0, 1], \tag{22}
\]

where \(r = (1 - \beta)^{-1}||h(0, 0, 0)||_0 \).

Proof. Let us first show that

\[
x''(t) \leq M + r, \quad \forall t \in [0, 1]. \tag{23}
\]

Note that if \(\lambda = 0 \) in (5) and (6), then BVP (5), (6) has only the trivial solution, and thus (23) holds. Hence, we may assume that \(\lambda \in [0, 1] \). Suppose now that (23) is not true. Then, there exists \(t_0 \in [0, 1] \) such that \(|x''(t_0)| > M + r \). Let

\[
K := |x''(t_1)| = \max_{t \in [0, 1]} |x''(t)|. \tag{24}
\]

Then, \(K > M + r \), and from \(x(0) = x'(1) = 0 \), we have

\[
x^{(i)}(t) \leq K, \quad i = 0, 1, 2, \forall t \in [0, 1]. \tag{25}
\]

It is easy to see that \(t_1 \in [0, 1] \). In fact, if \(t_1 = 0 \), then \(|x''(0)| = K \). From (6) and (iii), it follows that for some \(\zeta \in [0, 1] \),

\[
\lambda = \int_0^1 h(s, x(s), x'(s), x''(s)) \, ds \\
\leq |h(\zeta, x(\zeta), x'(\zeta), x''(\zeta))| \\
\leq |h(\zeta, x(\zeta), x'(\zeta), x''(\zeta)) - h(\zeta, 0, 0, 0)| \\
+ |h(\zeta, 0, 0, 0)| \\
\leq \beta K + (1 - \beta) r \\
< \beta K + (1 - \beta) K = K,
\]

which is a contradiction, and thus \(t_1 \in (0, 1] \). Furthermore, by definition of \(t_1 \) and (6), we have \(x'''(t_1) = 0 \). Hence, from assumptions (i) and (ii) and (25), we have

\[
x''(t_1) x^{(4)}(t_1) = \lambda x''(t_1) f(t_1, x(t_1), x'(t_1), x''(t_1), 0) \\
\geq \lambda x''(t_1) f(t_1, -x''(t_1), -x''(t_1), 0),
\]

\[
x''(t_1), 0 > 0. \tag{27}
\]

We may assume that \(x''(t_1) > 0 \); then, \(x^{(4)}(t_1) > 0 \). Thus, by the continuity of \(x^{(4)}(t) \) on \([0, 1] \), there exists \(\delta > 0 \) such that \(x^{(4)}(t) > 0 \) for \(t \in (t_1 - \delta, t_1) \subset [0, 1] \). Since \(x^{(4)}(t_1) = 0 \), it follows that \(x^{(4)}(t) < 0 \) for \(t \in (t_1 - \delta, t_1] \); namely, \(x^{(4)}(t) \) is decreasing on \((t_1 - \delta, t_1] \), which contradicts the fact that \(x'(t) \) attains its positive maximum value at \(t = t_1 \). In summary, inequality (23) is true, which implies from \(x(0) = x'(1) = 0 \) that

\[
|x^{(i)}(t)| \leq M + r, \quad i = 0, 1, t \in [0, 1]. \tag{28}
\]

This completes the proof of the lemma.

\[\square \]

Remark 5. In Lemma 4, if condition (i) is replaced by

(i') there exists a constant \(M > 0 \) such that whenever \(|x_2| > M \) and all \((t, x_0, x_1) \in [0, 1] \times \mathbb{R}^2 \),

\[
x_2 f(t, x_0, x_1, x_2, 0) > 0; \tag{29}\]

then, the conclusion of Lemma 4 remains true.

The following fixed point result due to D. O’Regan plays a crucial role.

Lemma 6 (see [31]). Let \(U \) be an open set in a closed, convex set \(C \) of a Banach space \(E \). Assume that \(0 \in U \), \(P(U) \) is bounded, and \(P : \overline{U} \to C \) is given by \(P = P_1 + P_2 \), where \(P_1 : \overline{U} \to E \) is continuous and completely continuous and \(P_2 : \overline{U} \to E \) is a nonlinear contraction. Then, either

(A1) \(P \) has a fixed point in \(U \), or

(A2) there is a point \(u \in \partial U \) and \(\lambda \in (0, 1) \) with \(u = \lambda P(u) \).

3. Main Results

Firstly in this section, we state and prove our existence results of solutions for BVP (1), (2).

Theorem 7. Suppose that

(i) for each fixed \((t, x_2, x_3) \in [0, 1] \times \mathbb{R}^2 \), \(f(t, x_0, x_1, x_2, x_3) \) is nondecreasing in \(x_0 \) and \(x_1 \);

(ii) there exists a constant \(M > 0 \) such that for \(|x| > M \), \(t \in [0, 1] \),

\[
xf(t, -x, -x, x, 0) > 0; \tag{30}\]
(iii) there exist $\beta \in (0, 1)$ and nondecreasing continuous function $\sigma : [0, +\infty) \to [0, +\infty)$ such that $\sigma(u) \leq \beta u$ for $u > 0$, and

$$
|h(t, x_0, x_1, x_2) - h(t, y_0, y_1, y_2)| \leq \sigma \left(\max \left\{ |x_j - y_j|, \; i = 0, 1, 2 \right\} \right)
$$

(31)

for all $(t, x_0, x_1, x_2), (t, y_0, y_1, y_2) \in [0, 1] \times \mathbb{R}^3$.

(iv) $f(t, x_0, x_1, x_2, x_3)$ satisfies the Nagumo condition; that is, there exists a positive-valued continuous function $\Phi(s)$ on $[0, +\infty)$ with $\int_0^{\infty} (sds/\Phi(s)) = +\infty$ such that

$$|f(t, x_0, x_1, x_2, x_3)| \leq \Phi(|x_3|)
$$

(32)

for all $(t, x_0, x_1, x_2, x_3) \in [0, 1] \times [-M - r, M + r]^3 \times \mathbb{R}$, where

$$r = (1 - \beta)^{-1} \|h(0, 0, 0)\|_0.
$$

(33)

Then, BVP (1), (2) has at least one solution.

Proof. Let x be a possible solution of BVP (5), (6). We now show that

$$|x'''(t)| \leq N, \; t \in [0, 1],
$$

(34)

where $N := \max\{N_0, 2(M + r)\}$ and $\frac{\int_{M+r}^{N} sds}{\Phi(s)} = 2(M + r) + 1$.

Suppose that (34) is not true. Then, there exists $t_1 \in [0, 1)$ such that $|x'''(t_1)| > N$. Since $x'''(1) = 0$, then there exists $\xi, \eta (t_1 < \xi < \eta < 1)$ such that

$$
|x'''(\xi)| = N, \quad |x'''(\eta)| = M + r,

\quad M + r < |x'''(t)| < N, \; \forall t \in (\xi, \eta).
$$

(35)

Therefore, $x'''(t)$ is positive or negative on (ξ, η) by the continuity of the $x'''(t)$. Hence, from assumption (iv), the definition of N, and Lemma 4, we can get the following contradiction:

$$
2(M + r) + 1 = \int_{M+r}^{N} \frac{sds}{\Phi(s)} \leq \int_{M+r}^{N} \frac{sds}{\Phi(s)}
$$

$$
\leq \int_{\xi}^{\eta} \frac{x'''(t)x^{(4)}(t)dt}{\Phi(|x'''(t)|)}
$$

$$
\leq \int_{\xi}^{\eta} |x'''(t)|dt = |x''(\eta) - x''(\xi)|
$$

$$
\leq 2(M + r).
$$

(36)

Therefore, inequality (34) holds.

Let $\Omega := \{ x \in C^3[0, 1] : \|x\|_{C^3} \leq N + 1 =: R \}$. It follows easily from the properties of the Green function and the continuity of f that the operator $P_1 : \Omega \to C^3[0, 1]$ is completely continuous.

We now show that $P_2 : \Omega \to C^3[0, 1]$ is a nonlinear contraction. In fact, from assumption (iii), we have

$$
\| (Hx)(t) - (Hy)(t) \| \leq \sigma \left(\|x - y\|_{C^3} \right),
$$

(37)

$t \in [0, 1], \forall x, y \in C^3[0, 1]$.

Consequently, from Lemma 3, we have

$$
\| \varphi(t, x(s)) - \varphi(t, y(s)) \| \leq \|g(t)(Hx)(s) - g(t)(Hy)(s)\|
$$

$$
\leq \|g\|_0 \sigma \left(\|x - y\|_{C^3} \right)
$$

$$
\leq \frac{1}{2} \beta \|x - y\|_{C^3}, \quad t, s \in [0, 1], \forall x, y \in C^3[0, 1].
$$

(38)

Similarly, for all $x, y \in C^3[0, 1],$

$$
\left| \frac{\partial \varphi(t, x(s))}{\partial t} - \frac{\partial \varphi(t, y(s))}{\partial t} \right| \leq \|g\|_0 \sigma \left(\|x - y\|_{C^3} \right)
$$

$$
\leq \beta \|x - y\|_{C^3}, \quad t, s \in [0, 1],
$$

$$
\left| \frac{\partial^2 \varphi(t, x(s))}{\partial t^2} - \frac{\partial^2 \varphi(t, y(s))}{\partial t^2} \right| \leq \|g''\|_0 \sigma \left(\|x - y\|_{C^3} \right)
$$

$$
\leq \beta \|x - y\|_{C^3}, \quad t, s \in [0, 1],
$$

$$
\left| \frac{\partial^3 \varphi(t, x(s))}{\partial t^3} - \frac{\partial^3 \varphi(t, y(s))}{\partial t^3} \right| = 0, \quad t, s \in [0, 1].
$$

(39)

Hence,

$$
\| P_2 x - P_2 y \|_{C^3} \leq \max \left\{ \left\| (P_2 x)^{(0)} - (P_2 y)^{(0)} \right\|, \; i = 0, 1, 2, 3 \right\}
$$

$$
\leq \beta \|x - y\|_{C^3}, \quad \forall x, y \in C^3[0, 1].
$$

(40)

Since all possible solutions of BVP (5), (6) satisfy $\|x\|_{C^3} \leq N < R$, it follows that there is no $x \in \partial \Omega$ and $\lambda \in (0, 1)$ such that $x = \lambda L^{-1} Tx$. We conclude that (A_2) of Lemma 6 does not hold. Consequently, $L^{-1} T = P_1 + P_2$ has a fixed point, which is a solution of BVP (1), (2). This completes the proof of the theorem.

Remark 8. In Theorem 7, if condition (i) is replaced by

(i') there exists a positive constant $M > 0$ such that whenever $|x_2| > M$ and all $(t, x_0, x_1) \in [0, 1] \times \mathbb{R}^2,$

$$x_2 f(t, x_0, x_1, x_2, 0) > 0,
$$

(41)

then the conclusion of Theorem 7 remains true.

Remark 9. In Theorem 7, if $f \geq 0 \geq h$ and $f(t, 0, 0, 0, 0) \neq 0$, then all the solutions of BVP (1), (2) are monotone and positive. This is clear because by Lemma 3 we have $x = P_1 x + P_2 x \geq 0, x' = (P_2 x)' + (P_2 x)' \geq 0$ and $x'' = (P_2 x)'' + (P_2 x)'' \leq 0$.

Next, we consider the existence of solutions and positive solutions for BVP (3), (4).
Theorem 10. Suppose that

(i) there exists \(\Psi : [0, +\infty) \to [0, +\infty) \) being continuous and nondecreasing such that
\[
|f(t, x)| \leq \Psi(|x|), \quad \forall (t, x) \in [0, 1] \times \mathbb{R}; \tag{42}
\]

(ii) there exists \(\beta \in (0, 2) \) such that
\[
|h(t, x) - h(t, y)| \leq \beta |x - y|, \quad \forall (t, x, y) \in [0, 1] \times \mathbb{R}^2; \tag{43}
\]

(iii) there exists \(\gamma > 0 \) such that
\[
\Psi(\gamma) + \left(\frac{3}{2}\right)h_0 < 3 \left(1 - \frac{1}{2\beta}\right), \tag{44}
\]

where \(h_0 = \max_{0 \leq t \leq 1} |h(t, 0)| \).

Then, BVP (3), (4) has at least one solution.

Proof. It is easy to see that \(x \in C^4[0, 1] \) is a solution of BVP (3), (4) if and only if \(x \in C[0, 1] \) is a solution of the integral equation (14) with \(\lambda = 1 \). Moreover, \(P_1 \) is completely continuous, and \(P_2 \) is a nonlinear contraction.

It follows from (15), (i), and Lemma 3 that
\[
||P_1x|| < 3 \left(1 - \frac{1}{2\beta}\right), \tag{45}
\]

Also, (16), (ii), and Lemma 3 yield
\[
||P_2x|| < 3 \left(1 - \frac{1}{2\beta}\right), \tag{46}
\]

From (14), (45), and (46), we have that all possible solutions of \(x = \lambda(P_1 + P_2)x \) satisfy
\[
|x(t)| \leq \frac{1}{3} \Psi(||x||_0) + \frac{1}{2} (\beta||x||_0 + h_0), \quad t \in [0, 1]. \tag{47}
\]

Let \(\Omega := \{x \in C[0, 1] : ||x||_0 < \gamma\} \). Then, \(\Omega \) is open in \(C[0, 1] \), 0 \(\in \Omega \), and \((P_1 + P_2)\Omega \) is bounded. Suppose that \(x \in \partial\Omega \) and \(\lambda \in (0, 1) \) satisfy \(x = \lambda(P_1 + P_2)x \). Then, \(||x||_0 = \gamma \), and (i) and (47) lead to
\[
y \leq \frac{1}{3} \Psi(y) + \frac{1}{2} (\beta y + h_0); \tag{48}
\]

that is,
\[
\frac{\Psi(y) + (3/2)h_0}{\gamma} \geq 3 \left(1 - \frac{1}{2\beta}\right), \tag{49}
\]

which contradicts (iii). Hence, (A_2) of Lemma 6 does not hold, and consequently \(L^{-1}T = P_1 + P_2 \) has a fixed point which is a solution of BVP (3), (4). This completes the proof of the theorem.

Remark 11. In Theorem 10, if \(f \geq 0 \geq h \) and \(f(t, 0) \neq 0 \), then all the solutions of BVP (3), (4) are monotone and positive.

Now, we consider BVP (3), (4) with linear boundary conditions as
\[
h(t, x(t)) = l(t)x(t), \quad t \in [0, 1], \tag{50}
\]

where \(l(\cdot) \in C[0, 1] \). Define
\[
K(t, s) = g(t)l(s), \quad (t, s) \in [0, 1] \times [0, 1]. \tag{51}
\]

Then,
\[
(P_2x)(t) = \int_0^1 K(t, s)x(s) ds. \tag{52}
\]

Theorem 12. Suppose that

(i) \(K_0 := (1/2) \int_0^1 |l(s)| ds < 1; \)

(ii) there exists \(\Psi : [0, +\infty) \to [0, +\infty) \) being continuous and nondecreasing such that
\[
|f(t, x)| \leq \Psi(|x|), \quad \forall (t, x) \in [0, 1] \times \mathbb{R}, \tag{53}
\]

\[
\limsup_{\rho \to +\infty} \frac{\Psi(\rho)}{\rho} < 3 \left(1 - K_0\right). \tag{54}
\]

Then, the nonlinear fourth-order differential equation (3) with boundary conditions
\[
\begin{align*}
x(0) &= x'(1) = 0, \\
x''(0) &= \int_0^1 l(s)x(s) ds, \\
x'''(1) &= 0
\end{align*} \tag{55}
\]

has at least one solution.

Proof. Notice that the existence of solutions of BVP (3), (55) is equivalent to the existence of fixed points of operator equation
\[
x = P_1x + P_2x. \tag{56}
\]

As a linear operator on \(C[0, 1] \), from (52) and (i), we get \(\|P_2\| = K_0 < 1 \), which implies that \(I - P_2 \) is invertible and its inverse is given by
\[
(I - P_2)^{-1} = \sum_{n=0}^{\infty} P_2^n \quad \text{with} \quad \| (I - P_2)^{-1} \| \leq \frac{1}{1 - K_0}. \tag{57}
\]

Hence, we see from (55) that \(x \) is a solution of BVP (3), (55) if and only if \(x \) is a fixed point of the completely continuous operator \(S = (I - P_2)^{-1}P_1. \)
Let us show that there exists $\rho^* > 0$ such that any solution x of the operator equation $x = \lambda S x$ ($\lambda \in (0, 1)$) satisfies $\|x\|_0 < \rho^*$. In fact, any solution x of $x = \lambda S x$ ($\lambda \in (0, 1)$) satisfies

$$x(t) = \lambda (I - P_2)^{-1} \int_0^1 G(t, s) f(s, x(s)) \, ds,$$

and hence, by (ii) and Lemma 3, we have

$$\|x\|_0 \leq \frac{1}{3(1 - K_0)} \Psi(\|x\|_0).$$

The condition $\limsup_{\rho \to +\infty} \left(\frac{\Psi(\rho)}{\rho} \right) < 3(1 - K_0)$ implies that there exists $\rho^* > 0$ such that $\Psi(\rho)/\rho < 3(1 - K_0)$ for all $\rho \geq \rho^*$; that is,

$$\rho > \frac{1}{3(1 - K_0)} \Psi(\rho), \quad \forall \rho \geq \rho^*.$$ \hspace{1cm} (59)

Comparing (58) and (59), we see that $\|x\|_0 < \rho^*$. Thus, any solution x of $x = \lambda S x$ ($\lambda \in (0, 1)$) satisfies

$$x(0) = x' (1) = 0,$$

$$x'' (0) = \frac{3}{2} \int_0^1 \ln \frac{1}{1 + (x(s))^2} \, ds,$$

$$x''' (1) = 0,$$

where $q(t) \in C([0, 1], [0, (1/8)])$. Let

$$f (t, x) = q(t) x^2 + 1 \quad \text{on} \quad [0, 1] \times \mathbb{R},$$

$$h(t, x) = \frac{3}{2} \ln \frac{1}{1 + x^2} \quad \text{on} \quad [0, 1] \times \mathbb{R},$$

$$\Psi(x) = \frac{1}{8} x^2 + 1 \quad \text{on} \quad [0, +\infty),$$

$$\beta = \frac{3}{2}, \quad \gamma = 3.$$ \hspace{1cm} (67)

It is easy to check that all the assumptions in Theorem 10 and Remark 11 are satisfied. Hence, BVP (65), (66) has at least one monotone positive solution.

Example 15. Consider the fourth-order boundary value problem

$$x^{(4)} (t) = q(t) \sqrt{x(t)^2 + 1} , \quad t \in [0, 1],$$

$$x(0) = x' (1) = 0,$$

$$x'' (0) = \int_0^1 (s^2 - 4s) x(s) \, ds,$$

$$x''' (1) = 0,$$

where $q(t) \in C([0, 1], [0, +\infty))$. Let

$$f(t, x) = q(t) \sqrt{x^2} + 1 \quad \text{on} \quad [0, 1] \times \mathbb{R},$$

$$h(t, x) = \left(\frac{\max_{t \in [0, 1]} q(t)}{\sqrt{1 + x^2}} \right) + 1 \quad \text{on} \quad [0, +\infty),$$

$$l(t) = t^2 - 4t \quad \text{on} \quad [0, 1].$$

It is easy to check that all the assumptions in Theorem 12 and Remark 13 are satisfied. Hence, BVP (68), (69) has at least one monotone positive solution.

Acknowledgment

This work was supported by NSFC (11126339).
References

Submit your manuscripts at http://www.hindawi.com