Research Article
An Iterative Algorithm for a Hierarchical Problem

Yonghong Yao,1 Yeol Je Cho,2 and Pei-Xia Yang1

1 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China
2 Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Republic of Korea

Correspondence should be addressed to Yeol Je Cho, yjcho@gsnu.ac.kr

Received 29 September 2011; Accepted 11 November 2011

Academic Editor: Giuseppe Marino

Copyright © 2012 Yonghong Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A general hierarchical problem has been considered, and an explicit algorithm has been presented for solving this hierarchical problem. Also, it is shown that the suggested algorithm converges strongly to a solution of the hierarchical problem.

1. Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, respectively. Let C be a nonempty closed convex subset of H. The hierarchical problem is of finding $\tilde{x} \in \text{Fix}(T)$ such that

$$\langle S\tilde{x} - \tilde{x}, x - \tilde{x} \rangle \leq 0, \quad \forall x \in \text{Fix}(T), \quad (1.1)$$

where S, T are two nonexpansive mappings and $\text{Fix}(T)$ is the set of fixed points of T. Recently, this problem has been studied by many authors (see, e.g., [1–15]). The main reason is that this problem is closely associated with some monotone variational inequalities and convex programming problems (see [16–19]).

Now, we briefly recall some historic results which relate to the problem (1.1).

For solving the problem (1.1), in 2006, Moudafi and Mainge [1] first introduced an implicit iterative algorithm:

$$x_{t,s} = sQ(x_{t,s}) + (1 - s)[tS(x_{t,s}) + (1 - t)T(x_{t,s})] \quad (1.2)$$
and proved that the net \(\{x_t,s\} \) defined by (1.2) strongly converges to \(x_t \) as \(s \rightarrow 0 \), where \(x_t \) satisfies \(x_t = \text{proj}_{\text{Fix}(P)} Q(x_t) \), where \(P : C \rightarrow C \) is a mapping defined by

\[
P_t(x) = tS(x) + (1 - t)T(x), \quad \forall x \in C, \ t \in (0,1),
\]

or, equivalently, \(x_t \) is the unique solution of the quasivariational inequality

\[
0 \in (I - Q)x_t + N_{\text{Fix}(P)}(x_t),
\]

where the normal cone to \(\text{Fix}(P) \), \(N_{\text{Fix}(P)} \), is defined as follows:

\[
N_{\text{Fix}(P)} : x \mapsto \begin{cases}
\{ u \in H : \langle y - x, u \rangle \leq 0 \}, & \text{if } x \in \text{Fix}(P), \\
\emptyset, & \text{otherwise.}
\end{cases}
\]

Moreover, as \(t \rightarrow 0 \), the net \(\{x_t\} \) in turn weakly converges to the unique solution \(x_\infty \) of the fixed point equation \(x_\infty = \text{proj}_{\Omega} Q(x_\infty) \) or, equivalently, \(x_\infty \) is the unique solution of the variational inequality

\[
0 \in (I - Q)x_\infty + N_\Omega(x_\infty).
\]

Recently, Moudafi [2] constructed an explicit iterative algorithm:

\[
x_{n+1} = (1 - \delta_n)x_n + \delta_n(\sigma_nSx_n + (1 - \sigma_n)Tx_n), \quad \forall n \geq 0,
\]

where \(\{\delta_n\} \) and \(\{\sigma_n\} \) are two real numbers in \((0,1) \). By using this iterative algorithm, Moudafi [2] only proved a weak convergence theorem for solving the problem (1.1).

In order to obtain a strong convergence result, Mainge and Moudafi [3] further introduced the following iterative algorithm:

\[
x_{n+1} = (1 - \delta_n)Qx_n + \delta_n[\sigma_nSx_n + (1 - \sigma_n)Tx_n], \quad \forall n \geq 0,
\]

where \(\{\delta_n\} \) and \(\{\sigma_n\} \) are two real numbers in \((0,1) \), and proved that, under appropriate conditions, the iterative sequence \(\{x_n\} \) generated by (1.8) has strong convergence.

Subsequently, some authors have studied some algorithms on hierarchical fixed problems (see, e.g., [4–15]).

Motivated and inspired by the results in the literature, in this paper, we consider a general hierarchical problem of finding \(\bar{x} \in \text{Fix}(T) \) such that, for any \(n \geq 1 \),

\[
\langle W_n\bar{x} - \bar{x}, x - \bar{x} \rangle \leq 0, \quad \forall x \in \text{Fix}(T),
\]

where \(W_n \) is the \(W \)-mapping defined by (2.3) below and \(T \) is a nonexpansive mapping, and introduce an explicit iterative algorithm which converges strongly to a solution \(\bar{x} \) of the hierarchical problem (1.9).
2. Preliminaries

Let C a nonempty closed convex subset of a real Hilbert space H. Recall that a mapping $Q : C \to C$ is said to be contractive if there exists a constant $\gamma \in (0, 1)$ such that

$$
\|Qx - Qy\| \leq \gamma \|x - y\|, \quad \forall x, y \in C.
$$

A mapping $T : C \to C$ is called nonexpansive if

$$
\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in C.
$$

Forward, we use $\text{Fix}(T)$ to denote the fixed points set of T.

Let $\{T_i\}_{i=1}^\infty : C \to C$ be an infinite family of nonexpansive mappings and $\{\xi_i\}_{i=1}^\infty$ a real number sequence such that $0 \leq \xi_i \leq 1$ for each $i \geq 1$.

For each $n \geq 1$, define a mapping $W_n : C \to C$ as follows:

$$
\begin{align*}
U_{n, n+1} &= I, \\
U_{n, n} &= \xi_n T_n U_{n, n+1} + (1 - \xi_n)I, \\
U_{n, n-1} &= \xi_{n-1} T_{n-1} U_{n, n} + (1 - \xi_{n-1})I, \\
&\vdots \\
U_{n, k} &= \xi_k T_k U_{n, k+1} + (1 - \xi_k)I, \\
U_{n, k-1} &= \xi_{k-1} T_{k-1} U_{n, k} + (1 - \xi_{k-1})I, \\
&\vdots \\
U_{n, 2} &= \xi_2 T_2 U_{n, 3} + (1 - \xi_2)I, \\
W_n &= U_{n, 1} = \xi_1 T_1 U_{n, 2} + (1 - \xi_1)I.
\end{align*}
$$

Such W_n is called the W-mapping generated by $\{T_i\}_{i=1}^\infty$ and $\{\xi_i\}_{i=1}^\infty$.

Lemma 2.1 (see [20]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}_{i=1}^\infty$ be an infinite family of nonexpansive mappings of C into itself with $\bigcap_{n=1}^\infty \text{Fix}(T_n) \neq \emptyset$. Let ξ_1, ξ_2, \ldots be real numbers such that $0 < \xi_i \leq b < 1$ for each $i \geq 1$. Then one has the following results:

1. For any $x \in C$ and $k \geq 1$, the limit $\lim_{n \to \infty} U_{n, k} x$ exists;
2. $\text{Fix}(W) = \bigcap_{n=1}^\infty \text{Fix}(T_n)$.

Using Lemma 3.1 in [21], we can define a mapping W of C into itself by $Wx = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n, 1} x$ for all $x \in C$. Thus we have the following.

Lemma 2.2 (see [21]). If $\{x_n\}$ is a bounded sequence in C, then one has

$$
\lim_{n \to \infty} \|W x_n - W_n x_n\| = 0.
$$
Lemma 2.3 (see [22]). Let C be a nonempty closed convex of a real Hilbert space H and $T : C \to C$ be a nonexpansive mapping. Then T is demiclosed on C, that is, if $x_n \rightharpoonup x \in C$ and $x_n - Tx_n \rightharpoonup 0$, then $x = Tx$.

Lemma 2.4 (see [23]). Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \leq (1 - \gamma_n)a_n + \delta_n\gamma_n + \eta_n, \quad \forall n \geq 1,$$

where $\{\gamma_n\}$ is a sequence in $(0, 1)$ and $\{\delta_n\}, \{\eta_n\}$ are two sequences such that

(i) $\sum_{n=1}^{\infty} \gamma_n = \infty$;
(ii) $\limsup_{n \to \infty} \delta_n \leq 0$ or $\sum_{n=1}^{\infty} |\delta_n\gamma_n| < \infty$;
(iii) $\sum_{n=1}^{\infty} |\eta_n| < \infty$.

Then $\lim_{n \to \infty} a_n = 0$.

3. Main Results

In this section, we introduce our algorithm and give its convergence analysis.

Algorithm 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}_{n=1}^{\infty}$ be infinite family of nonexpansive mappings of C into itself. Let $Q : C \to C$ be a contraction with coefficient $\gamma \in [0, 1)$. For any $x_0 \in C$, let $\{x_n\}$ the sequence generated iteratively by

$$x_{n+1} = \alpha_n W_n x_n + (1 - \alpha_n) T(\beta_n Q x_n + (1 - \beta_n) x_n), \quad \forall n \geq 0,$$

where $\{\alpha_n\}, \{\beta_n\}$ are two real numbers in $(0, 1)$ and W_n is the W-mapping defined by (2.3).

Now, we give the convergence analysis of the algorithm.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}_{n=1}^{\infty}$ be an infinite family of nonexpansive mappings of C into itself. Let $Q : C \to C$ be a contraction with coefficient $\gamma \in [0, 1)$. Assume that the set Ω of solutions of the hierarchical problem (1.9) is nonempty. Let $\{\alpha_n\}, \{\beta_n\}$ be two real numbers in $(0, 1)$ and $\{x_n\}$ the sequence generated by (3.1). Assume that the sequence $\{x_n\}$ is bounded and

(i) $\lim_{n \to \infty} \alpha_n = 0$ and $\lim_{n \to \infty} (\beta_n / \alpha_n) = 0$;
(ii) $\sum_{n=0}^{\infty} \beta_n = \infty$;
(iii) $\lim_{n \to \infty} (1 / \beta_n) |(1 / \alpha_n) - (1 / \alpha_{n-1})| = 0$ and $\lim_{n \to \infty} (\prod_{i=1}^{n-1} \xi_i / \alpha_n \beta_n) = \lim_{n \to \infty} (1 / \alpha_n) |1 - (\beta_n / \beta_{n-1})| = 0$.

Then $\lim_{n \to \infty} (\|x_n + x_n\| / \alpha_n) = 0$ and every weak cluster point of the sequence $\{x_n\}$ solves the following variational inequality

$$\bar{x} \in \Omega,$$

$$\langle (I - Q) \bar{x}, x - \bar{x} \rangle \geq 0, \quad \forall x \in \Omega.$$
Proof. Set \(y_n = \beta_n Qx_n + (1 - \beta_n)x_n \) for each \(n \geq 0 \). Then we have

\[
y_n - y_{n-1} = \beta_n Qx_n + (1 - \beta_n)x_n - \beta_n Qx_{n-1} - (1 - \beta_n)x_{n-1} \\
= \beta_n(Qx_n - Qx_{n-1}) + (\beta_n - \beta_{n-1})Qx_{n-1} + (1 - \beta_n)(x_n - x_{n-1}) \\
+ (\beta_{n-1} - \beta_n)x_{n-1}.
\]

(3.3)

It follows that

\[
\|y_n - y_{n-1}\| \leq \gamma\beta_n\|x_n - x_{n-1}\| + (1 - \beta_n)\|x_n - x_{n-1}\| + |\beta_n - \beta_{n-1}|(\|Qx_{n-1}\| + \|x_{n-1}\|) \\
= [1 - (1 - \gamma)\beta_n]\|x_n - x_{n-1}\| + |\beta_n - \beta_{n-1}|(\|Qx_{n-1}\| + \|x_{n-1}\|).
\]

(3.4)

From (3.1), we have

\[
x_n - x_{n-1} = \alpha_n W_n x_n + (1 - \alpha_n)Ty_{n-1} - \alpha_n W_{n-1} x_{n-1} - (1 - \alpha_n)Ty_{n-1} \\
= \alpha_n(W_n x_n - W_{n-1} x_{n-1}) + (\alpha_n - \alpha_{n-1})W_n x_{n-1} + \alpha_{n-1}(W_{n-1} x_{n-1} - W_n x_{n-1}) \\
+ (1 - \alpha_n)(Ty_{n-1} - Ty_{n-1}) + (\alpha_{n-1} - \alpha_n)Ty_{n-1}.
\]

(3.5)

Then we obtain

\[
\|x_n - x_{n-1}\| \leq \alpha_n\|W_n x_n - W_{n-1} x_{n-1}\| + (1 - \alpha_n)\|Ty_{n-1} - Ty_{n-1}\| \\
+ |\alpha_n - \alpha_{n-1}|(\|W_n x_{n-1}\| + \|Ty_{n-1}\|) + \alpha_{n-1}\|W_n x_{n-1} - W_{n-1} x_{n-1}\| \\
\leq \alpha_n\|x_n - x_{n-1}\| + (1 - \alpha_n)\|y_n - y_{n-1}\| + |\alpha_n - \alpha_{n-1}|(\|W_n x_{n-1}\| + \|Ty_{n-1}\|) \\
+ \alpha_{n-1}\|W_n x_{n-1} - W_{n-1} x_{n-1}\|.
\]

(3.6)

From (2.3), since \(T_i \) and \(U_{i,j} \) are nonexpansive, we have

\[
\|W_n x_{n-1} - W_{n-1} x_{n-1}\| = \|\xi_1 T_1 U_{n,2} x_{n-1} - \xi_1 T_1 U_{n-1,2} x_{n-1}\| \\
\leq \|\xi_1 U_{n,2} x_{n-1} - U_{n-1,2} x_{n-1}\| \\
= \|\xi_2 T_2 U_{n,3} x_{n-1} - \xi_2 T_2 U_{n-1,3} x_{n-1}\| \\
\leq \|\xi_3 T_3 U_{n,4} x_{n-1} - \xi_3 T_3 U_{n-1,4} x_{n-1}\| \\
\leq \cdots \\
\leq \|\xi_{n-1} T_{n-1} U_{n,n} x_{n-1} - \xi_{n-1} T_{n-1} U_{n-1,n} x_{n-1}\| \\
\leq M_1 \prod_{i=1}^{n-1} \xi_i.
\]

(3.7)
where M_1 is a constant such that $\sup_{n \geq 1} \{\|U_{n,n}x_{n-1} - U_{n-1,n}x_{n-1}\|\} \leq M_1$. Substituting (3.4) and (3.7) into (3.6), we get

$$
\|x_{n+1} - x_n\| \leq \alpha_n\|x_n - x_{n-1}\| + (1 - \alpha_n) [1 - (1 - \gamma)\beta_n] \|x_n - x_{n-1}\| \\
+ |\beta_n - \beta_{n-1}| (\|Qx_{n-1}\| + \|x_{n-1}\|) \\
+ |\alpha_n - \alpha_{n-1}| (\|W_nx_{n-1}\| + \|Ty_{n-1}\|) + \alpha_{n-1}M_1 \prod_{i=1}^{n-1} \xi_i \\
= [1 - (1 - \gamma)\beta_n(1 - \alpha_n)] \|x_n - x_{n-1}\| \\
+ |\beta_n - \beta_{n-1}| (\|Qx_{n-1}\| + \|x_{n-1}\|) \\
+ |\alpha_n - \alpha_{n-1}| (\|W_nx_{n-1}\| + \|Ty_{n-1}\|) + \alpha_{n-1}M_1 \prod_{i=1}^{n-1} \xi_i.
$$

(3.8)

Therefore, it follows that

$$
\frac{\|x_{n+1} - x_n\|}{\alpha_n} \leq [1 - (1 - \gamma)\beta_n(1 - \alpha_n)] \frac{\|x_n - x_{n-1}\|}{\alpha_n} \\
+ \frac{|\beta_n - \beta_{n-1}|}{\alpha_n} (\|Qx_{n-1}\| + \|x_{n-1}\|) \\
+ \frac{|\alpha_n - \alpha_{n-1}|}{\alpha_n} (\|W_nx_{n-1}\| + \|Ty_{n-1}\|) + \alpha_{n-1}M_1 \frac{\prod_{i=1}^{n-1} \xi_i}{\alpha_n} \\
= [1 - (1 - \gamma)\beta_n(1 - \alpha_n)] \frac{\|x_n - x_{n-1}\|}{\alpha_{n-1}} \\
+ [1 - (1 - \gamma)\beta_n(1 - \alpha_n)] \left(\frac{\|x_n - x_{n-1}\|}{\alpha_n} - \frac{\|x_n - x_{n-1}\|}{\alpha_{n-1}} \right) \\
+ \frac{|\beta_n - \beta_{n-1}|}{\alpha_n} (\|Qx_{n-1}\| + \|x_{n-1}\|) \\
+ \frac{|\alpha_n - \alpha_{n-1}|}{\alpha_n} (\|W_nx_{n-1}\| + \|Ty_{n-1}\|) + \alpha_{n-1}M_1 \frac{\prod_{i=1}^{n-1} \xi_i}{\alpha_n} \\
\leq [1 - (1 - \gamma)\beta_n(1 - \alpha_n)] \frac{\|x_n - x_{n-1}\|}{\alpha_{n-1}} \\
+ \left(\frac{1}{\alpha_n} - \frac{1}{\alpha_{n-1}} + \frac{|\alpha_n - \alpha_{n-1}|}{\alpha_n} + \frac{|\beta_n - \beta_{n-1}|}{\alpha_n} + \frac{\prod_{i=1}^{n-1} \xi_i}{\alpha_n} \right) M
$$
\[
\begin{aligned}
&= \left[1 - (1 - \gamma) \beta_n (1 - \alpha_n) \right] \frac{\|x_n - x_{n-1}\|}{\alpha_{n-1}} + (1 - \gamma) \beta_n (1 - \alpha_n) \\
\times &\left\{ \frac{M}{(1 - \gamma)(1 - \alpha_n)} \left(\frac{1}{\beta_n} \left| \frac{1}{\alpha_n} - \frac{1}{\alpha_{n-1}} \right| + \frac{1}{\beta_n} \frac{|\alpha_n - \alpha_{n-1}|}{\alpha_n} \\
&\quad + \frac{1}{\beta_n} \frac{|\beta_n - \beta_{n-1}|}{\alpha_n} + \frac{\prod_{i=1}^{n-1} \xi_i}{\alpha_n \beta_n} \right) \right\},
\end{aligned}
\]
(3.9)

where \(M\) is a constant such that

\[
\sup_{n \geq 1} \left\{ M, \|x_n - x_{n-1}\|, (\|W_n x_{n-1}\| + \|T y_{n-1}\|), (\|Q x_{n-1}\| + \|x_{n-1}\|) \right\} \leq M.
\]
(3.10)

From (iii), we note that \(\lim_{n \to \infty} (1/\alpha_{n-1}) |\alpha_n - \alpha_{n-1}|/\beta_n \alpha_n = 0\), which implies that

\[
\lim_{n \to \infty} \frac{1}{\beta_n} \frac{|\alpha_n - \alpha_{n-1}|}{\alpha_n} = 0.
\]
(3.11)

Thus it follows from (iii) and (3.11) that

\[
\lim_{n \to \infty} \left(\frac{1}{\beta_n} \left| \frac{1}{\alpha_n} - \frac{1}{\alpha_{n-1}} \right| + \frac{1}{\beta_n} \frac{|\alpha_n - \alpha_{n-1}|}{\alpha_n} + \frac{1}{\beta_n} \frac{|\beta_n - \beta_{n-1}|}{\alpha_n} + \frac{\prod_{i=1}^{n-1} \xi_i}{\alpha_n \beta_n} \right) = 0.
\]
(3.12)

Hence, applying Lemma 2.4 to (3.9), we immediately conclude that

\[
\lim_{n \to \infty} \frac{\|x_{n+1} - x_n\|}{\alpha_n} = 0.
\]
(3.13)

This implies that

\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.
\]
(3.14)

Thus, from (3.1) and (3.14), we have

\[
\lim_{n \to \infty} \|x_n - Ty_n\| = 0.
\]
(3.15)

At the same time, we note that

\[
y_n - x_n = \beta_n (Q x_n - x_n) \longrightarrow 0.
\]
(3.16)

Hence we get

\[
\lim_{n \to \infty} \|y_n - Ty_n\| = 0.
\]
(3.17)
Since the sequence \(\{x_n\} \) is bounded, \(\{y_n\} \) is also bounded. Thus there exists a subsequence of \(\{y_n\} \), which is still denoted by \(\{y_n\} \) which converges weakly to a point \(\bar{x} \in H \). Therefore, \(\bar{x} \in \text{Fix}(T) \) by (3.17) and Lemma 2.3. By (3.1), we observe that
\[
x_{n+1} - x_n = \alpha_n (W_n x_n - x_n) + (1 - \alpha_n) (T y_n - y_n) + (1 - \alpha_n) \beta_n (Q x_n - x_n),
\]
that is,
\[
\frac{x_n - x_{n+1}}{\alpha_n} = (I - W_n) x_n + \frac{1 - \alpha_n}{\alpha_n} (I - T) y_n + \frac{\beta_n (1 - \alpha_n)}{\alpha_n} (I - Q) x_n.
\]
Set \(z_n = (x_n - x_{n+1})/\alpha_n \) for each \(n \geq 1 \), that is,
\[
z_n = (I - W_n) x_n + \frac{1 - \alpha_n}{\alpha_n} (I - T) y_n + \frac{\beta_n (1 - \alpha_n)}{\alpha_n} (I - Q) x_n.
\]
Using monotonicity of \(I - T \) and \(I - W_n \), we derive that, for all \(u \in \text{Fix}(T) \),
\[
\langle z_n, x_n - u \rangle \\
= \langle (I - W_n) x_n, x_n - u \rangle + \frac{1 - \alpha_n}{\alpha_n} \langle (I - T) y_n, y_n - u \rangle \\
+ \frac{1 - \alpha_n}{\alpha_n} \langle (I - T) y_n, x_n - y_n \rangle + \frac{\beta_n (1 - \alpha_n)}{\alpha_n} \langle (I - Q) x_n, x_n - y_n \rangle \\
\geq \langle (I - W_n) u, x_n - u \rangle + \frac{\beta_n (1 - \alpha_n)}{\alpha_n} \langle (I - Q) x_n, x_n - u \rangle + \frac{1 - \alpha_n}{\alpha_n} \langle (I - T) y_n, x_n - Q x_n \rangle \\
= \langle (I - W) u, x_n - u \rangle + \langle (W - W_n) u, x_n - u \rangle + \frac{\beta_n (1 - \alpha_n)}{\alpha_n} \langle (I - Q) x_n, x_n - u \rangle \\
+ \frac{1 - \alpha_n}{\alpha_n} \langle (I - T) y_n, x_n - Q x_n \rangle.
\]
But, since \(z_n \to 0 \), \(\beta_n/\alpha_n \to 0 \) and \(\lim_{n \to \infty} \|W_n u - W u\| = 0 \) (by Lemma 2.2), it follows from the above inequality that
\[
\limsup_{n \to \infty} \langle (I - W) u, x_n - u \rangle \leq 0, \quad \forall u \in \text{Fix}(T).
\]
This suffices to guarantee that \(\omega_w(x_n) \subset \Omega \). As a matter of fact, if we take any \(x^* \in \omega_w(x_n) \), then there exists a subsequence \(\{x_{n_j}\} \) of \(\{x_n\} \) such that \(x_{n_j} \to x^* \). Therefore, we have
\[
\langle (I - W) u, x^* - u \rangle = \lim_{j \to \infty} \left(\langle (I - W) u, x_{n_j} - u \rangle \right) \leq 0, \quad \forall u \in \text{Fix}(T).
\]
Theorem 3.3. Let $x^* \in \text{Fix}(T)$. Hence x^* solves the following problem:

$$\begin{align*}
x^* & \in \text{Fix}(T), \\
\langle (I - W)u, x^* - u \rangle & \leq 0, \quad \forall u \in \text{Fix}(T).
\end{align*}$$

(3.24)

It is obvious that this is equivalent to the problem (1.9) since $W_n \to W$ uniformly in any bounded set (by Lemma 2.2). Thus $x^* \in \Omega$.

Let \bar{x} be the unique solution of the variational inequality (3.2). Now, take a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that

$$\limsup_{n \to \infty} \langle (I - Q)\bar{x}, x_n - \bar{x} \rangle = \lim_{i \to \infty} \langle (I - Q)\bar{x}, x_{n_i} - \bar{x} \rangle. $$

(3.25)

Without loss of generality, we may further assume that $x_{n_i} \to \bar{x}$. Then $\bar{x} \in \Omega$. Therefore, we have

$$\limsup_{n \to \infty} \langle (I - Q)\bar{x}, x_n - \bar{x} \rangle = \langle (I - Q)\bar{x}, \bar{x} - \bar{x} \rangle \geq 0. $$

(3.26)

This completes the proof. \hfill \Box

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_n\}_{n=1}^\infty$ be infinite family of nonexpansive mappings of C into itself. Let $Q : C \to C$ be a contraction with coefficient $\gamma \in [0,1)$. Assume that the set Ω of solutions of the hierarchical problem (1.9) is nonempty. Let $\{\alpha_n\}, \{\beta_n\}$ be two real numbers in $(0,1)$ and $\{x_n\}$ the sequence generated by (3.1). Assume that the sequence $\{x_n\}$ is bounded and

(i) $\lim_{n \to \infty} \alpha_n = 0$, $\lim_{n \to \infty} \beta_n/\alpha_n = 0$ and $\lim_{n \to \infty} \alpha_n^2/\beta_n = 0$;

(ii) $\sum_{n=0}^\infty \beta_n = \infty$;

(iii) $\lim_{n \to \infty} (1/\beta_n)[1/\alpha_n - (1/\alpha_{n-1})] = 0$ and $\lim_{n \to \infty} \prod_{i=1}^{n-1} (\beta_i/\alpha_i) \alpha_n \beta_n = \lim_{n \to \infty} (1/\alpha_n)[1 - (\beta_{n-1}/\beta_n)] = 0$;

(iv) there exists a constant $k > 0$ such that $\|x - Tx\| \geq k\text{Dist}(x, \text{Fix}(T))$, where

$$\text{Dist}(x, \text{Fix}(T)) = \inf_{y \in \text{Fix}(T)} \|x - y\|. $$

(3.27)

Then the sequence $\{x_n\}$ defined by (3.1) converges strongly to a point $\bar{x} \in \text{Fix}(T)$, which solves the variational inequality problem (3.2).

Proof. From (3.1), we have

$$x_{n+1} - \bar{x} = \alpha_n(W_n x_n - W_n \bar{x}) + \alpha_n(W_n \bar{x} - \bar{x}) + (1 - \alpha_n)(T y_n - \bar{x}).$$

(3.28)
Thus we have

\[\| x_{n+1} - \bar{x} \|^2 \leq \| \alpha_n (W_n x_n - W_n \bar{x}) + (1 - \alpha_n) (T y_n - \bar{x}) \|^2 + 2 \alpha_n \langle W_n \bar{x} - \bar{x}, x_{n+1} - \bar{x} \rangle \]
\[\leq (1 - \alpha_n) \| T y_n - \bar{x} \|^2 + 2 \alpha_n \langle W_n \bar{x} - \bar{x}, x_{n+1} - \bar{x} \rangle \]
\[\leq (1 - \alpha_n) \| y_n - \bar{x} \|^2 + 2 \alpha_n \langle W_n \bar{x} - \bar{x}, x_{n+1} - \bar{x} \rangle \] (3.29)

At the same time, we observe that

\[\| y_n - \bar{x} \|^2 = \| (1 - \beta_n) (x_n - \bar{x}) + \beta_n (Q x_n - Q \bar{x}) + \beta_n (Q \bar{x} - \bar{x}) \|^2 \]
\[\leq \| (1 - \beta_n) (x_n - \bar{x}) + \beta_n (Q x_n - Q \bar{x}) \|^2 + 2 \beta_n \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle \]
\[\leq (1 - \beta_n) \| x_n - \bar{x} \|^2 + \beta_n \| Q x_n - Q \bar{x} \|^2 + 2 \beta_n \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle \] (3.30)
\[\leq (1 - \beta_n) \| x_n - \bar{x} \|^2 + \beta_n \gamma^2 \| x_n - \bar{x} \|^2 + 2 \beta_n \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle \]
\[= \left[1 - (1 - \gamma^2) \beta_n \right] \| x_n - \bar{x} \|^2 + 2 \beta_n \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle. \]

Substituting (3.30) into (3.29), we get

\[\| x_{n+1} - \bar{x} \|^2 \leq \alpha_n \| x_n - \bar{x} \|^2 + (1 - \alpha_n) \left[1 - (1 - \gamma^2) \beta_n \right] \| x_n - \bar{x} \|^2 \]
\[+ 2 \beta_n (1 - \alpha_n) \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle + 2 \alpha_n \langle W_n \bar{x} - \bar{x}, x_{n+1} - \bar{x} \rangle \]
\[= \left[1 - (1 - \gamma^2) \beta_n (1 - \alpha_n) \right] \| x_n - \bar{x} \|^2 + 2 \beta_n (1 - \alpha_n) \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle \]
\[+ 2 \alpha_n \langle W_n \bar{x} - \bar{x}, x_{n+1} - \bar{x} \rangle \]
\[= \left[1 - (1 - \gamma^2) \beta_n (1 - \alpha_n) \right] \| x_n - \bar{x} \|^2 + (1 - \gamma^2) \beta_n (1 - \alpha_n) \]
\[\times \left\{ \frac{2}{1 - \gamma^2} \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle + \frac{2}{(1 - \gamma^2)(1 - \alpha_n)} \times \frac{\alpha_n}{\beta_n} \langle W_n \bar{x} - \bar{x}, x_{n+1} - \bar{x} \rangle \right\}. \] (3.31)

By Theorem 3.2, we note that every weak cluster point of the sequence \(\{ x_n \} \) is in \(\Omega \). Since \(y_n - x_n \to 0 \), then every weak cluster point of \(\{ y_n \} \) is also in \(\Omega \). Consequently, since \(\bar{x} = \text{proj}_\Omega (Q \bar{x}) \), we easily have

\[\limsup_{n \to \infty} \langle Q \bar{x} - \bar{x}, y_n - \bar{x} \rangle \leq 0. \] (3.32)
Thus it follows that

\[\langle W_n\tilde{x} - \tilde{x}, x_{n+1} - \tilde{x} \rangle = \langle W_n\tilde{x} - \tilde{x}, \text{proj}_{\text{Fix}(T)} x_{n+1} - \tilde{x} \rangle + \langle W_n\tilde{x} - \tilde{x}, x_{n+1} - \text{proj}_{\text{Fix}(T)} x_{n+1} \rangle. \]

(3.33)

Since \(\tilde{x} \) is a solution of the problem (1.9) and \(\text{proj}_{\text{Fix}(T)} x_{n+1} \in \text{Fix}(T) \), we have

\[\langle W_n\tilde{x} - \tilde{x}, \text{proj}_{\text{Fix}(T)} x_{n+1} - \tilde{x} \rangle \leq 0. \]

(3.34)

Thus it follows that

\[\langle W_n\tilde{x} - \tilde{x}, x_{n+1} - \tilde{x} \rangle \leq \langle W_n\tilde{x} - \tilde{x}, x_{n+1} - \text{proj}_{\text{Fix}(T)} x_{n+1} \rangle \]

\[\leq \|W_n\tilde{x} - \tilde{x}\| \|x_{n+1} - \text{proj}_{\text{Fix}(T)} x_{n+1}\| \]

\[= \|W_n\tilde{x} - \tilde{x}\| \times \text{Dist}(x_{n+1}, \text{Fix}(T)) \]

\[\leq \frac{1}{k} \|W_n\tilde{x} - \tilde{x}\| \|x_{n+1} - Tx_{n+1}\|. \]

(3.35)

We note that

\[\|x_{n+1} - Tx_{n+1}\| \leq \|x_{n+1} - Tx_n\| + \|Tx_n - Tx_{n+1}\| \]

\[\leq \alpha_n \|W_n x_n - Tx_n\| + (1 - \alpha_n) \|Ty_n - Tx_n\| + \|x_{n+1} - x_n\| \]

\[\leq \alpha_n \|W_n x_n - Tx_n\| + \|y_n - x_n\| + \|x_{n+1} - x_n\| \]

\[\leq \alpha_n \|W_n x_n - Tx_n\| + \beta_n \|Qx_n - x_n\| + \|x_{n+1} - x_n\|. \]

(3.36)

Hence we have

\[\frac{\alpha_n}{\beta_n} \langle W_n\tilde{x} - \tilde{x}, x_{n+1} - \tilde{x} \rangle \]

\[\leq \frac{\alpha_n^2}{\beta_n} \left(\frac{1}{k} \|W_n\tilde{x} - \tilde{x}\| \|W_n x_n - Tx_n\| \right) + \alpha_n \left(\frac{1}{k} \|W_n\tilde{x} - \tilde{x}\| \|Qx_n - x_n\| \right) \]

\[+ \frac{\alpha_n^2}{\beta_n} \|x_{n+1} - x_n\| \left(\frac{1}{k} \|W_n\tilde{x} - \tilde{x}\| \right). \]

(3.37)

From Theorem 3.2, we have \(\lim_{n \to \infty} \|x_{n+1} - x_n\| / \alpha_n = 0 \). At the same time, we note that \(\{(1/k)\|W_n\tilde{x} - \tilde{x}\|\|W_n x_n - Tx_n\|\}, \{(1/k)\|W_n\tilde{x} - \tilde{x}\|\|Qx_n - x_n\|\} \), and \(\{(1/k)\|W_n\tilde{x} - \tilde{x}\|\} \) are all bounded. Hence it follows from (i) and the above inequality that

\[\limsup_{n \to \infty} \frac{\alpha_n}{\beta_n} \langle W_n\tilde{x} - \tilde{x}, x_{n+1} - \tilde{x} \rangle \leq 0. \]

(3.38)
Finally, by (3.31)–(3.38) and Lemma 2.4, we conclude that the sequence $\{x_n\}$ converges strongly to a point $\bar{x} \in \text{Fix}(T)$. This completes the proof.

Remark 3.4. In the present paper, we consider the hierarchical problem (1.9) which includes the hierarchical problem (1.1) as a special case.

From the above discussion, we can easily deduce the following result.

Algorithm 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and S a nonexpansive mapping of C into itself. Let $Q : C \to C$ be a contraction with coefficient $\gamma \in [0, 1)$. For any $x_0 \in C$, let $\{x_n\}$ the sequence generated iteratively by

$$x_{n+1} = \alpha_n Sx_n + (1 - \alpha_n)T(\beta_n Qx_n + (1 - \beta_n)x_n), \quad \forall n \geq 0,$$

where $\{\alpha_n\}, \{\beta_n\}$ are two real numbers in $(0, 1)$.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $S : C \to C$ be a nonexpansive mapping. Let $Q : C \to C$ be a contraction with coefficient $\gamma \in [0, 1)$. Assume that the set Ω of solutions of the hierarchical problem (1.1) is nonempty. Let $\{\alpha_n\}, \{\beta_n\}$ be two real numbers in $(0, 1)$ and $\{x_n\}$ the sequence generated by (3.1). Assume that the sequence $\{x_n\}$ is bounded and

(i) $\lim_{n \to \infty} \alpha_n = 0$, $\lim_{n \to \infty} \beta_n / \alpha_n = 0$ and $\lim_{n \to \infty} \alpha_n^2 / \beta_n = 0$;

(ii) $\sum_{n=0}^{\infty} \beta_n = \infty$;

(iii) $\lim_{n \to \infty} (1 / \beta_n)(1 / \alpha_n) - (1 / \alpha_{n-1}) = 0$ and $\lim_{n \to \infty} (1 / \alpha_n)\left[1 - (\beta_{n-1} / \beta_n)\right] = 0$;

(iv) there exists a constant $k > 0$ such that $\|x - Tx\| \geq k \text{Dist}(x, \text{Fix}(T))$, where

$$\text{Dist}(x, \text{Fix}(T)) = \inf_{y \in \text{Fix}(T)} \|x - y\|.$$

Then the sequence $\{x_n\}$ defined by (3.39) converges strongly to a point $\bar{x} \in \text{Fix}(T)$, which solves the hierarchical problem (1.1).

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant no. 2011-0021821).

References

