We study uniform finite-difference method for solving first-order singularly perturbed boundary value problem (BVP) depending on a parameter. Uniform error estimates in the discrete maximum norm are obtained for the numerical solution. Numerical results support the theoretical analysis.

1. Introduction

In this paper, we are going to devise a finite-difference method for the following parameter-dependant singularly perturbed boundary value problem (BVP):

\[Lu := \varepsilon u'(x) + a(x)u(x) = f(x, \lambda), \quad x \in \Omega = (0, l], \]
\[u(0) = A, \quad u(l) = B, \]

where \(A, B \) are given constants and \(a(x), f(x, \lambda) \) are sufficiently smooth functions such that

\[a(x) \geq \alpha > 0 \quad \text{in } \bar{\Omega} = [0, l], \]
\[0 < m_1 \leq \left| \frac{\partial f}{\partial \lambda} \right| \leq M_1 < \infty \quad \text{in } \bar{\Omega} \times \mathbb{R}. \]

\(\varepsilon > 0 \) is a small parameter and \(\{u(x), \lambda\} \) is a solution.

For \(\varepsilon \ll 1 \), the function \(u(x) \) has a boundary layer of thickness \(O(\varepsilon) \) near \(x = 0 \).

Under the above conditions, there exists a unique solution to problem (1.1), (1.2) (see [7, 12]). An overview of some existence and uniqueness results and applications of parameterized equations may be obtained, for example, in [6, 7, 8, 9, 12, 13, 15, 16]. In [7, 9, 12], have also been considered some approximating aspects of this kind of problems. But designed in the above-mentioned papers, algorithms are only concerned with the regular cases (i.e., when the boundary layers are absent).

The numerical analysis of singular perturbation cases has always been far from trivial because of the boundary layer behavior of the solution. Such problems undergo rapid
changes within very thin layers near the boundary or inside the problem domain [4, 10, 11]. It is well known that standard numerical methods on uniform meshes for solving such problems are unstable and fail to give accurate results when the perturbation parameter ε is small. Therefore, it is important to develop suitable numerical methods to these problems, whose accuracy does not depend on the parameter value ε, that is, methods that are convergent ε-uniformly. For the various approaches on the numerical solution of differential equations with steep, continuous solutions, we may refer to the monographs [4, 5, 14].

Here we analyze a fitted difference scheme on a uniform mesh for the numerical solution of the problem (1.1), (1.2). In Section 2, we state some important properties of the exact solution. In Section 3, we present the difference scheme and obtain uniform error estimates for the truncation term and appropriate solution on a uniform mesh. Uniform convergence is proved in the discrete maximum norm. In Section 4, we formulate the iterative algorithm for solving the discrete problem and give the illustrative numerical results. The approach to construct discrete problem and error analysis for approximate solution is similar to those ones from [1, 2, 3].

Henceforth, C and c denote the generic positive constants independent of ε and of the mesh parameter. A subscripted such constant is also independent of ε and mesh parameter, but whose value is fixed.

2. The continuous problem

In this section, we give uniform bounds of the solution of the BVP (1.1), (1.2), which will be used to analyze properties of the appropriate difference problem.

Lemma 2.1. For the solution $\{u(x), \lambda\}$ of the problem (1.1), (1.2),

\begin{align*}
|\lambda| &\leq c_0, \quad (2.1) \\
\|u\|_\infty &\leq c_1, \quad (2.2)
\end{align*}

where

\begin{align*}
c_0 &= \frac{\|a\|_\infty}{m_1(1 - \exp(-\|a\|_\infty l))} (|A| + |B|) + m_1^{-1}\|F\|_\infty, \\
c_1 &= |A| + \alpha^{-1}\|F\|_\infty + c_0\alpha^{-1}M_1, \\
\left(F(x) = f(x,0), \|a\|_\infty \equiv \|a\|_{\infty,\bar{\Omega}} := \max_{\bar{\Omega}} |a(x)|\right).
\end{align*}

Proof. We rewrite (1.1) as

\[\varepsilon u'(x) + a(x)u(x) = f(x,0) + \frac{\partial \tilde{f}}{\partial \lambda},\]

where

\[\frac{\partial \tilde{f}}{\partial \lambda} = \frac{\partial f}{\partial \lambda}(x,\lambda^*), \quad \lambda^* = y\lambda, \ 0 < y < 1.\]
Integrating (2.4), we get

\[
\begin{align*}
(u(x) &= A \exp \left(-\frac{1}{\varepsilon} \int_0^x a(t) \, dt \right) \\
&\quad + \frac{1}{\varepsilon} \int_0^x F(\tau) \exp \left(-\frac{1}{\varepsilon} \int_\tau^x a(t) \, dt \right) \, d\tau \\
&\quad + \frac{1}{\varepsilon} \lambda \int_0^x \frac{\partial f}{\partial \lambda}(\tau, \lambda^*) \exp \left(-\frac{1}{\varepsilon} \int_\tau^x a(t) \, dt \right) \, d\tau,
\end{align*}
\]

from which, by setting the boundary condition \(u(l) = B\), we have

\[
\lambda = \frac{B - A \exp \left(-\frac{(1/\varepsilon) \int_0^l a(t) \, dt}{} \right) - (1/\varepsilon) \int_0^l F(\tau) \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau}{(1/\varepsilon) \int_0^l \left(\frac{\partial f}{\partial \lambda}(\tau, \lambda^*) \right) \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau}.\]

(2.6)

Applying the mean-value theorem for integrals, we deduce that

\[
\frac{|(1/\varepsilon) \int_0^l F(\tau) \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau|}{|(1/\varepsilon) \int_0^l \left(\frac{\partial f}{\partial \lambda}(\tau, \lambda^*) \right) \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau|}\]

\[
\leq \frac{|(1/\varepsilon) \int_0^l F(\tau) \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau|}{(1/\varepsilon) \int_0^l \left(\frac{\partial f}{\partial \lambda}(x^*, \lambda^*) \right) \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau}
\]

(2.7)

It then follows from (2.7) that

\[
|\lambda| \leq \frac{|B - A \exp \left(-\frac{(1/\varepsilon) \int_0^l a(t) \, dt}{} \right) |}{m_1 (1/\varepsilon) \int_0^l \exp \left(-\frac{(1/\varepsilon) \int_\tau^l a(t) \, dt}{} \right) \, d\tau} + m_1^{-1} \|F\|_\infty,
\]

(2.8)

which, for \(\varepsilon \leq 1\), immediately leads to (2.1).

Next, from (2.6), we see that

\[
|u(x)| \leq |A| \exp \left(-\frac{\alpha x}{\varepsilon} \right) + \alpha^{-1} \left[1 - \exp \left(-\frac{\alpha x}{\varepsilon} \right) \right] \|F\|_\infty + |\lambda| M_1
\]

(2.9)

and using the estimate (2.1), we obtain (2.2).

\[
□
\]

3. Discrete problem and convergence

3.1. Derivation of the difference scheme. In what follows, we denote by \(\omega_h\) the uniform mesh on \(\Omega\):

\[
\omega_h = \{x_i = ih, i = 1, \ldots, N; Nh = l\}, \quad \bar{\omega}_h = \omega_h \cup \{x = 0\}.
\]

(3.1)
To simplify the notation, we set $g_i = g(x_i)$ for any function $g(x)$, while g_i^h denotes an approximation of $g(x)$ at x_i.

For any mesh function $\{w_i\}$ defined on $\bar{\omega}_h$, we use the discrete maximum norm

$$\|w\|_\infty \equiv \|w\|_{\infty, \bar{\omega}_h} := \max_{0 \leq i \leq N} |w_i|.$$ (3.2)

The approach of generating difference method is through the integral identity

$$\chi_i h^{-1} \int_{x_{i-1}}^{x_i} Lu\phi_i(x)dx = \chi_i h^{-1} \int_{x_{i-1}}^{x_i} f(x, \lambda)\phi_i(x)dx, \quad 1 \leq i \leq N, \quad (3.3)$$

with the exponential basis functions

$$\phi_i(x) = \exp\left(-\frac{a_i(x - x)}{\epsilon}\right), \quad x_{i-1} \leq x \leq x_i, \quad (3.4)$$

where

$$\chi_i = \left(h^{-1} \int_{x_{i-1}}^{x_i} \phi_i(x)dx\right)^{-1} = \frac{a_i \rho}{1 - \exp(-a_i \rho)}, \quad \rho = \frac{h}{\epsilon}.$$ (3.5)

We note that function $\phi_i(x)$ is the solution of the problem

$$-\epsilon \phi_i(x) + a_i \phi_i(x) = 0, \quad x_{i-1} \leq x < x_i, \quad \phi_i(x_i) = 1.$$ (3.6)

The relation (3.3) is rewritten as

$$\chi_i h^{-1} \epsilon \int_{x_{i-1}}^{x_i} u'(x)\phi_i(x)dx + a_i \chi_i h^{-1} \int_{x_{i-1}}^{x_i} u(x)\phi_i(x)dx + R_i = f(x_i, \lambda)$$ (3.7)

with the remainder term

$$R_i = \chi_i h^{-1} \int_{x_{i-1}}^{x_i} \left[a(x) - a(x_i)\right]\phi_i(x)dx$$

$$+ \chi_i h^{-1} \int_{x_{i-1}}^{x_i} \left[f(x_i, \lambda) - f(x, \lambda)\right]\phi_i(x)dx.$$ (3.8)

To be consistent with [1, 2, 3], we then obtain

$$\epsilon \theta_i u_{x,i} + a_i u_i + R_i = f(x_i, \lambda), \quad 1 \leq i \leq N, \quad (3.9)$$
\[
\theta_i = 1 + \chi_i h^{-1} a_i \varepsilon^{-1} \int_{x_{i-1}}^{x_i} (x - x_i) \varphi_i(x) dx,
\]

\[
u_{\delta,i} = \frac{u_i - u_{i-1}}{h},
\]

and a simple calculation gives us

\[
\theta_i = \frac{a_i \rho}{1 - \exp(-a_i \rho)} \exp(-a_i \rho).
\]

As a consequence of (3.9), we propose the following difference scheme for approximating (1.1), (1.2):

\[
L^h u_i^h := \varepsilon \theta_i u_{\delta,i}^h + a_i u_i^h = f(x_i, \lambda^h), \quad 1 \leq i \leq N,
\]

\[
u_0^h = A, \quad u_N^h = B,
\]

where \(\theta_i \) is defined by (3.11).

3.2. Uniform error estimates. To investigate the convergence of the method, note that the error functions \(z_i^h = u_i^h - u_i, \ 0 \leq i \leq N, \ \mu^h = \lambda^h - \lambda \) are the solution of the discrete problem

\[
\varepsilon \theta_i z_{\delta,i}^h + a_i z_i^h = f(x_i, \mu^h + \lambda) - f(x_i, \lambda) + R_i, \quad 1 \leq i \leq N,
\]

\[
z_0^h = 0, \quad z_N^h = 0,
\]

where \(\theta_i \) and \(R_i \) are given by (3.11) and (3.8), respectively.

Lemma 3.1. For the error function \(R_i \),

\[
\| R \|_{\infty, \omega_h} \leq C h,
\]

provided \(a \in C^1(\bar{\Omega}) \) and \(|\partial f / \partial x| \leq C \) for \(x \in \bar{\Omega} \) and \(\lambda \) satisfying (2.1).

The proof easily follows from the explicit expression of \(R_i \) defined by (3.8).

Lemma 3.2. The solution \(\{ z_i^h, \mu^h \} \) of the problem (3.13), (3.14) satisfies

\[
| \mu^h | \leq m_1^{-1} \| R \|_{\infty, \omega_h},
\]

\[
\| z_i^h \|_{\infty, \omega_h} \leq \alpha^{-1} \left(1 + m_1^{-1} M_1 \right) \| R \|_{\infty, \omega_h}.
\]
Proof. From (3.13), we obtain
\[z_i^h = \frac{\varepsilon \theta_i}{\varepsilon \theta_i + h a_i} z_i^{h-1} + \frac{h(\partial \tilde{f}/\partial \lambda)_i}{\varepsilon \theta_i + h a_i} \mu^h + \frac{h R_i}{\varepsilon \theta_i + h a_i}, \] (3.18)
where
\[\left(\frac{\partial \tilde{f}}{\partial \lambda} \right)_i = \frac{\partial f}{\partial \lambda}(x_i, \lambda + \gamma \mu^h), \quad 0 < \gamma < 1. \] (3.19)

Solving the first-order difference equation with respect to \(z_i^h \) and setting the boundary condition \(z_0^h = 0 \), we get
\[z_i^h = \mu^h h \sum_{k=1}^{i} \frac{(\partial f/\partial \lambda)_k}{\varepsilon \theta_k + h a_k} Q_{ik} + h \sum_{k=1}^{i} \frac{R_k}{\varepsilon \theta_k + h a_k} Q_{ik}, \] (3.20)
where
\[Q_{ik} = \begin{cases} 1, & k = i, \\ \prod_{j=k+1}^{i} \frac{\varepsilon \theta_j}{\varepsilon \theta_j + h a_j}, & 1 \leq k \leq i - 1. \end{cases} \] (3.21)

For \(i = N \), taking into consideration that \(z_N^h = 0 \), we have
\[\mu^h = - \frac{\sum_{k=1}^{N} \left(\frac{R_k}{\varepsilon \theta_k + h a_k} \right) Q_{N,k}}{\sum_{k=1}^{N} \left(\frac{(\partial f/\partial \lambda)_k}{\varepsilon \theta_k + h a_k} \right) Q_{N,k}}, \] (3.22)
from which, since \(\varepsilon \theta_i + h a_i > 0 \) (\(1 \leq i \leq N \)), the required result (3.16) easily follows.

Finally, applying the maximum principle for difference operator \(L^h z_i^h := \varepsilon \theta_i z_i^h + a_i z_i^h \), \(1 \leq i \leq N \), to (3.13) yields
\[\| z_i^h \|_{\infty, \bar{\omega}_h} \leq \alpha^{-1} (M_1 \| \mu^h \| + \| R \|_{\infty, \bar{\omega}_h}), \] (3.23)
which, along with (3.16), leads to (3.17).

Combining the two previous lemmas gives us the following convergence result.

Theorem 3.3. Let \(\{ u(x), \lambda \} \) be the solution of (1.1), (1.2) and \(\{ u^h, \lambda^h \} \) the solution of (3.13), (3.14). Then
\[| \lambda - \lambda^h | \leq C h, \quad \| u - u^h \|_{\infty, \bar{\omega}_h} \leq C h. \] (3.24)
4. Numerical results

In this section, we present some numerical experiments in order to illustrate the present method.

(a) We solve the nonlinear problem (3.12) using the following quasilinearization technique:

\[
\begin{align*}
\varepsilon \theta_i u_{i,n}^{(n)} + a_i u_i^{(n)} &= f(x_i, \lambda^{(n-1)}), \quad 1 \leq i < N, \\
u_0^{(n)} &= A, \\
\lambda^{(n)} &= \lambda^{(n-1)} - \frac{f(l, \lambda^{(n-1)}) - \theta_N \rho^{-1}(B - u_N^{(n-1)}) - a_N B}{(\partial f/\partial \lambda)(l, \lambda^{(n-1)})},
\end{align*}
\]

(4.1)

\(n = 1, 2, \ldots; \lambda^{(0)} \) given. (For simplicity, the \(h \) on \(u_i \) is omitted.) The initial guess \(\lambda^{(0)} \) is being chosen by condition (2.1).

(b) Consider the test problem

\[
\varepsilon u'(x) + \frac{1}{1 + x^2} u(x) = 2\lambda + \sin \frac{\lambda x}{2}, \quad 0 \leq x \leq 1,
\]

\(u(0) = 1, \quad u(1) = 0.
\]

(4.2)

The initial guess in (4.2) is taken as \(\lambda^{(0)} = 0.00039 \) and stopping criterion is

\[
\max_i |u_i^{(n)} - u_i^{(n-1)}| \leq 10^{-5}, \quad |\lambda^{(n)} - \lambda^{(n-1)}| \leq 10^{-5}.
\]

(4.3)

We use a double-mesh method (see, e.g., [5]) to compute the experimental rates of convergence:

\[
p^{\varepsilon,h}_u = \frac{\ln(e^{\varepsilon,h}_u/e^{\varepsilon,h/2}_u)}{\ln 2}, \quad e^{\varepsilon,h}_u = \max_{0 \leq i \leq N} |u_i^h - u_i^{h/2}| (4.4)
\]

for \(u_i^h \), and

\[
p^{\varepsilon,h}_\lambda = \frac{\ln(e^{\varepsilon,h}_\lambda/e^{\varepsilon,h/2}_\lambda)}{\ln 2}, \quad e^{\varepsilon,h}_\lambda = |\lambda^h - \lambda^{h/2}|
\]

(4.5)

for \(\lambda^h \).

Tables 4.1 and 4.2 contain some numerical results for different values of \(\varepsilon \) and \(h \), based on the double-mesh principle. The result established here is that the discrete solution is uniformly convergent with respect to the perturbation parameter, and also clearly, that we obtain first-order convergence, so Theorem 3.3 is sharp.
Finite-difference method

Table 4.1. Errors \(e_u^h, e_1^h \) and convergence rates \(p_u^h, p_1^h \) on \(\omega_0 \) for \(h = 1/8 \) and \(h = 1/16 \).

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(h = 1/8)</th>
<th>(h = 1/16)</th>
<th>(p_u^h)</th>
<th>(p_1^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-3})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.028</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-7})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-9})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-10})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-11})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
<tr>
<td>(10^{-12})</td>
<td>0.00002235 0.00000506</td>
<td>0.00001069 0.00000248</td>
<td>1.064</td>
<td>1.027</td>
</tr>
</tbody>
</table>

Table 4.2. Errors \(e_u^h, e_1^h \) and convergence rates \(p_u^h, p_1^h \) on \(\omega_0 \) for \(h = 1/16 \) and \(h = 1/32 \).

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(h = 1/16)</th>
<th>(h = 1/32)</th>
<th>(p_u^h)</th>
<th>(p_1^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-3})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000566 0.00000122</td>
<td>1.028</td>
<td>1.028</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-7})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-9})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-10})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-11})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(10^{-12})</td>
<td>0.00001152 0.00000248</td>
<td>0.00000571 0.00000123</td>
<td>1.014</td>
<td>1.014</td>
</tr>
</tbody>
</table>

Acknowledgment

The authors would like to thank the referees for their very useful comments and suggestions.

References

G. M. Amiraliyev: Department of Mathematics, Faculty of Science, Yuzuncu Yil University, 65080 Van, Turkey

E-mail address: gamirali2000@yahoo.com

Mustafa Kudu: Department of Mathematics, Faculty of Education, Dicle University, Siirt, 21280 Diyarbakir, Turkey

E-mail address: muskud28@yahoo.com

Hakki Duru: Department of Mathematics, Faculty of Science, Yuzuncu Yil University, 65080 Van, Turkey

E-mail address: hakkiduru2002@yahoo.com
Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk