A GENERALIZATION OF A THEOREM
BY CHEO AND YIEN CONCERNING DIGITAL SUMS

CURTIS N. COOPER and ROBERT E. KENNEDY

Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, Missouri 64093 U.S.A.

(Received January 20, 1986)

ABSTRACT. For a non-negative integer n, let s(n) denote the digital sum of n. Cheo
and Yien proved that for a positive integer x, the sum of the terms of the sequence
\{s(n) : n = 0, 1, 2, \ldots, (x-1)\}
is (4.5)x\log x + O(x). In this paper we let k be a positive integer and determine that
the sum of the sequence
\{s(kn) : n = 0, 1, 2, \ldots, (x-1)\}
is also (4.5)x\log x + O(x). The constant implicit in the big-oh notation is dependent
on k.

KEY WORDS AND PHRASES. Digital sums.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 10H25

INTRODUCTION.

In Cheo and Yien [1], it was proven that for a positive integer x,
\[\sum_{n=0}^{x-1} s(n) = (4.5)x\log x + O(x) \] (1.1)
where s(n) denotes the digital sum of n. Here, we will show that, in fact, for any
positive integer k,
\[\sum_{n=0}^{x-1} s(kn) = (4.5)x\log x + O(x) \] (1.2)
where the constant implicit in the big-oh notation is dependent on k.

The following notation will be used to facilitate the proof of (1.2). For integers
x and y,
\[x \mod y \] (1.3)
will be the remainder when x is divided by y and, as usual, square brackets will denote
the integral part operator. In addition, for non-negative integers m, i, and j we let
\[[m]^i = m \mod 10^i, \] (1.4)
\[[m]_i = [m/10^i], \] (1.5)
and
\[
[m]^j_i = \left\lfloor [m]^j \right\rfloor_i
\]
for \(i < j \).

Thus, the \(j \) right-most digits of \(m \) are given by (1.4) and the number determined by dropping the \(i \) right-most digits of \(m \) is given by (1.5). Therefore, the number determined from the \(j \)th right-most digit of \(m \) to the \((i + 1)\)st right-most digit of \(m \) is given by (1.6).

2. A PROOF OF (1.2) WHEN \(k \) AND 10 ARE RELATIVE PRIME.

Let \((k, 10) = 1 \), \(x \) be a positive integer, and \(L = \lfloor \log x \rfloor \). Then
\[
\sum_{n=0}^{x-1} s([kn]) = \sum_{n=0}^{x-1} s([kn]^L) + \sum_{n=0}^{x-1} s([kn]_L) \quad (2.1)
\]
\[
= \sum_{n=0}^{x-1} s([kn]^L) + O(x) \quad (2.2)
\]
This follows since for non-negative integers \(L \) and \(m \),
\[
m = [m]^L + 10^L [m]_L \quad (2.3)
\]
and so
\[
s(m) = s([m]^L) + s([m]_L) \quad (2.4)
\]
Also, since each \(s([kn]_L) \) is bounded by a constant (dependent on \(k \)), we have that the second term of (2.1) is \(O(x) \).

Next, for \(i = 0, 1, 2, \ldots, L \) define
\[
x_i = [x]_{L+1-i} 10^{L+1-i} \quad (2.5)
\]
Then,
\[
\sum_{n=0}^{x-1} s([kn]^L) = \sum_{n=x_1}^{x_1-1} s([kn]^L) + \sum_{n=x_1}^{x_1-1} s([kn]_L) \quad (2.6)
\]
\[
= \sum_{n=x_1}^{x_1-1} s([kn]^L) + \sum_{n=x_1}^{x_1-1} s([kn]_L) + \sum_{n=x_1}^{x_2} s([kn]_L-1) + \sum_{n=x_1}^{x_2} s([kn]_L-2) \quad (2.7)
\]
In the same way,
\[
\sum_{n=x_1}^{x_2} s([kn]_L-1) = \sum_{n=x_2}^{x_2-1} s([kn]_L-1) + \sum_{n=x_2}^{x_2-1} s([kn]_L-2) + \sum_{n=x_2}^{x_3} s([kn]_L-3) \quad (2.7)
\]
Continuing in this manner and combining terms, we have
\[
\sum_{n=0}^{x-1} s([kn]_L) = \sum_{i=0}^{L} \sum_{n=x_i}^{x_i-1} s([kn]_L^{L+1-i}) + \sum_{i=1}^{L} \sum_{n=x_i}^{x_i-1} s([kn]_L^{L+1-i}) \quad (2.8)
\]
Since
\[s([kn]_{L+1-i}) \quad \text{(2.9)} \]
is a decimal digit and
\[x - x_i = [x]^{L+1-i} \leq 10^{L+1-i} \quad \text{(2.10)} \]
for each \(i \), it follows that
\[\sum_{i=1}^{L} \frac{x - 1}{n} \quad s([kn]_{L+1-i}) = O(x) \quad \text{(2.11)} \]

To determine the value of the first term of (2.8), we need the following lemma. Its proof is straightforward and will not be given.

Lemma 2. Let \(d \) and \(i \) be non-negative integers. Then for \((k,10) = 1 \),
\[\{[kn]^{i} \colon n = d, d+1, \ldots, d+10^i-1\} = \{n \colon n = 0, 1, \ldots, 10^i-1\}. \quad \text{(2.12)} \]

By this lemma and the fact that
\[x - x_i = [x]^{L+2-i} \quad 10^{L+1-i} \quad \text{(2.13)} \]
it follows that
\[\sum_{i=1}^{L} \frac{x - 1}{n} \quad s([kn]_{L+1-i}) = (\lfloor x \rfloor_{L+1-i}) \quad 10^{L+1-i} \quad \text{(2.14)} \]
for each \(i \).

Now since
\[\sum_{n=0}^{10^{L+1-i}-1} s(n) = 4.5(L + 1 - i)10^{L+1-i} \quad \text{(2.15)} \]
by [2], we have that
\[\sum_{i=1}^{L} \frac{x - 1}{n} \quad s([kn]_{L+1-i}) = (4.5)x\log x + O(x) \quad \text{(2.16)} \]
Using (2.16) and (2.11) in (2.8), by (2.2) we have the expression given in (1.2). The constant implicit in the big-oh notation is dependent on \(k \) with \(k \) and 10 relatively prime.

3. **Conclusion.**

For any positive integer \(k \), there exists non-negative integers \(a, b, \) and \(r \) such that \(k = 2^a5^b r \) with \((r,10) = 1 \). Note that if \(k = r \), then we have (1.2). However, by use of the following generalization to Lemma 2, and some technical modifications, it can be shown that the restriction that \(k \) and 10 be relatively prime can be removed in the derivation of (2.1). That is,
\[\sum_{n=0}^{x - 1} s(n) = (4.5)x\log x + O(x) \quad \text{(3.1)} \]
for any positive integer \(k \).

Lemma 3. Let \(k = 2^a5^b r \) with \((r,10) = 1 \) and \(i = \max \{a,b\} \). Then for any non-
negative integer d,

$$([kn]^d : n = d, d+1, d+2, \ldots, d + (10^d/2^{a5b}) - 1)$$

$$= \{2^{a+b} n : n = 0, 1, 2, \ldots, (10^d/2^{a5b}) - 1\}.$$ \hspace{3cm} (3.2)

Finally, based on the above techniques, it is strongly conjectured that for any positive integers k_1 and k_2, it again follows that

$$\sum_{n=0}^{x-1} s(k_1 n + k_2) = (4.5)x\log x + O(x).$$ \hspace{3cm} (3.3)

REFERENCES
