ON PAIRWISE S-CLOSED BITOPOLOGICAL SPACES

M. N. MUKHERJEE

Department of Mathematics
Charu Chandra College
22 Lake Road
Calcutta, India 700 029

(Received August 5, 1982)

ABSTRACT. The concept of pairwise S-closedness in bitopological spaces has been introduced and some properties of such spaces have been studied in this paper.

KEY WORDS AND PHRASES. Pairwise semi-open, Pairwise almost compact, Pairwise S-closed, Pairwise regularly open and regularly closed, Pairwise extremally disconnectedness, Pairwise semi-continuous and irresolute functions.

1980 AMS MATHEMATICS SUBJECT CLASSIFICATION CODES. 54E55.

1. INTRODUCTION.

Travis Thompson [1] in 1976 initiated the notion of S-closed topological spaces, which was followed by its further study by Thompson [2], T. Noiri [3,4] and others. It is now the purpose of this paper to introduce and investigate the corresponding concept, i.e., pairwise S-closedness in bitopological spaces. To make the exposition of this paper self-contained as far as possible, we shall quote some definitions and enunciate some theorems from [5,6,7].

DEFINITION 1.1. [7] Let \((X, \tau_1, \tau_2)\) be a bitopological space.

(i) A subset \(A\) of \(X\) is called \(\tau_i\) semi-open with respect to \(\tau_j\) (abbreviated as \(s.o.w.r.t. \tau_j\)) in \(X\) if there exists a \(\tau_i\) open set \(B\) such that \(B \subset A \subset \overline{B}^{\tau_j}\) (where \(\overline{B}^{\tau_j}\) denotes the \(\tau_j\)-closure of \(B\) in \(X\)), where \(i, j = 1, 2\) and \(i \neq j\).

\(A\) is called pairwise semi-open (written as \(p.s.o\)) in \(X\) if \(A\) is \(\tau_1\) s.o.w.r.t. \(\tau_1\) as well as \(\tau_2\) s.o.w.r.t. \(\tau_1\) in \(X\).
(ii) A subset A of X is called τ_1 semi-closed with respect to τ_2 (denoted as τ_1 s.c.l.w.r.t. τ_2) if $X - A$ is τ_1 s.o.w.r.t. τ_2. Definitions for τ_2 s.c.l.w.r.t. τ_1 and p. s.c.l. sets can be given similarly as in (i).

(iii) A subset N of X is called a τ_i semi-neighborhood of x w.r.t. τ_j, where $x \in X$, if there is a τ_i s.o. set w.r.t. τ_j containing x and contained in N. A point x of X is said to be a τ_i semi-accumulation point of a subset A of X w.r.t. τ_j, if every τ_i semi-neighborhood of x w.r.t. τ_j intersects A in at least one point other than x, where $i, j = 1, 2$ and $i \neq j$.

(iv) The intersection of all τ_i s.c.l. sets w.r.t. τ_j, each containing a subset A of X, is called the τ_i semi-closure of A w.r.t. τ_j and will be denoted by $A_{\tau_i}(\tau_j)$, where $i, j = 1, 2$ and $i \neq j$.

It has been proved in [7] that a subset A of a bitopological space (X, τ_1, τ_2) is τ_i s.c.l.w.r.t. τ_j if and only if $A = A_{\tau_i}(\tau_j)$ and moreover, $x \in A_{\tau_i}(\tau_j)$ if and only if x is either a point of A or a τ_i semi-accumulation point of A w.r.t. τ_j, where $i \neq j$ and $i, j = 1, 2$.

In [7], it was deduced that $A \subseteq (X, \tau_1, \tau_2)$ is τ_1 s.o.w.r.t. τ_2 iff $\overline{A^{i2}} = (A^1)^{i2}$, where A^1 denotes the τ_1-interior of A in X. Similarly we shall use A^{i2} to mean the τ_2-interior of A in X.

It is very easy to see that every τ_i open set in (X, τ_1, τ_2) is τ_i s.o.w.r.t. τ_j and the union of any collection of sets that are τ_i s.o.w.r.t. τ_j, is also so, where $i, j = 1, 2$; $i \neq j$. It was shown in [5] that the intersection of two τ_1 s.o. sets w.r.t. τ_2 is not necessarily τ_1 s.o.w.r.t. τ_2. But we have,

THEOREM 1.2. [5] If A is τ_i s.o.w.r.t. τ_j in (X, τ_1, τ_2) and $B \subseteq T_1 \cap T_2$, then $A \cap B$ is τ_i s.o.w.r.t. τ_j, where $i, j = 1, 2$ and $i \neq j$.

The first part of the following theorem was proved in [7] and the converse part in [5].

THEOREM 1.3. Let $A \subseteq Y \subseteq (X, \tau_1, \tau_2)$. If A is τ_i s.o.w.r.t. τ_j, then A is $(\tau_i)_Y$ s.o.w.r.t. $(\tau_j)_Y$. Conversely, if A is $(\tau_i)_Y$ s.o.w.r.t. $(\tau_j)_Y$ and $Y \subseteq T_1$, then A is τ_i s.o.w.r.t. τ_j, where $i, j = 1, 2$ and $i \neq j$.

DEFINITION 1.4. [6] (a) A bitopological space (X, τ_1, τ_2) is said to be τ_i almost compact w.r.t. τ_j ($i, j = 1, 2$; $i \neq j$) if every τ_i open filterbase has a τ_j cluster point. (X, τ_1, τ_2) is called pairwise almost compact if it is τ_i
almost compact w.r.t. τ_2 and τ_2 almost compact w.r.t. τ_1.

(b) A bitopological space $(X^*, \tau^*_1, \tau^*_2)$ is called an extension of a bitopological space (X, τ_1, τ_2) if $X \subseteq X^*$, $\tau^*_i = X^*$ and $(\tau^*_i)_X = \tau_i$, for $i = 1, 2$.

A pairwise Hausdorff bitopological space (X, τ_1, τ_2) is called pairwise H-closed if the space cannot have any pairwise Hausdorff extension.

Theorem 1.5. [6] (a) (X, τ_1, τ_2) is pairwise almost compact if and only if for each cover $\{G_a : a \in A\}$ of X by τ_i open sets, there exists a finite subcollection $\{G_{a_1}, \ldots, G_{a_n}\}$ such that $X = \bigcup_{k=1}^n G_{a_k}$, where $i, j = 1, 2$ and $i \neq j$.

(b) If (X, τ_1, τ_2) is τ_i regular w.r.t. τ_j and τ_i almost compact w.r.t. τ_j, then (X, τ_i) is compact, for $i, j = 1, 2$ and $i \neq j$.

(c) A pairwise Hausdorff and pairwise almost compact bitopological space is pairwise H-closed.

In what follows, by (X, τ_1, τ_2) we shall always mean a bitopological space, i.e., a set X endowed with two topologies τ_1 and τ_2.

2. PAIRWISE S-CLOSED SPACES.

Definition 2.1. Let $F = \{F_a\}$ be a filterbase in (X, τ_1, τ_2) and $x \in X$. F is said to

(i) τ_i S-accumulate to x w.r.t. τ_j if for every τ_i s.o. set V w.r.t. τ_j containing x and each $F_a \in F$, $F_a \cap V^{\tau_j} \neq \emptyset$.

(ii) τ_i S-converge w.r.t. τ_j to x, if corresponding to each τ_i s.o. set V w.r.t. τ_j containing x, there exists $F_a \in F$ such that $F_a \subseteq V^{\tau_j}$.

In (i) and (ii) above, $i \neq j$ and $i, j = 1, 2$. F is said to pairwise S-converge to x if F is τ_1 S-convergent to x w.r.t. τ_2 as well as τ_2 S-convergent to x w.r.t. τ_1. The definition of pairwise S-accumulation point of F is similar.

Definition 2.2. (X, τ_1, τ_2) is called τ_1 S-closed w.r.t. τ_2 if for each cover $\{V_a : a \in A\}$ of X with τ_1 s.o. sets w.r.t. τ_2, there is a finite subfamily $\{V_{a_i} : i = 1, 2, \ldots, n\}$ such that $\bigcup_{i=1}^n V_{a_i} = X$ (where I is some index set). X is called pairwise S-closed if it is τ_1 S-closed w.r.t. τ_2 and τ_2 S-closed w.r.t. τ_1.

Theorem 2.3. Let F be an ultrafilter in X. Then F τ_1 S-accumulates to a point
$x_0 \in X$ w.r.t. τ_2 if and only if F is τ_1-convergent to x_0 w.r.t. τ_2.

Proof: Let F be τ_1-convergent w.r.t. τ_2 to x_0 and let it not τ_1-S-accumulate w.r.t. τ_2 to x_0. Then there exist a τ_1-s.o. set V w.r.t. τ_2 (containing x_0) and some $F_a \in F$ such that $F_a \cap \overset{\tau_2}{V} = \emptyset$. Then $F_a \subseteq X - \overset{\tau_2}{V}$ and hence

$$X - \overset{\tau_2}{V} \in F. \quad (2.1)$$

Since F is τ_1-convergent w.r.t. τ_2 to x_0, corresponding to V there exists $F_\beta \in F$ such that $F_\beta \subseteq \overset{\tau_2}{V}$. Then $\overset{\tau_2}{V} \in F. \quad (2.2)$ Clearly (2.1) and (2.2) are incompatible. Note that for this part we do not need maximality of F.

Conversely, if F does not τ_1-converge w.r.t. τ_2 to x_0, there exists a τ_1-s.o. set V w.r.t. τ_2 containing x_0, such that $F_a \notin \overset{\tau_2}{V}$, for each $F_a \in F$. But F has x_0 as a τ_1-accumulation point w.r.t. τ_2. Hence $F_a \cap \overset{\tau_2}{V} \neq \emptyset$, for each $F_a \in F$. Thus $F_a \cap \overset{\tau_2}{V} \neq \emptyset$ and $F_a \cap (X - \overset{\tau_2}{V}) \neq \emptyset$, for each $F_a \in F$. Since F is maximal, this shows that $\overset{\tau_2}{V}$ and $X - \overset{\tau_2}{V}$ both belong to F, which is a contradiction.

Note 2.4. In the above theorem, the indices 1 and 2 could be interchanged.

Theorem 2.5. In a bitopological space (X, τ_1, τ_2) the following are equivalent:

(a) X is τ_1-S-closed w.r.t. τ_2.

(b) Every ultrafilterbase F is τ_1-convergent w.r.t. τ_2.

(c) Every filterbase τ_1-accumulates w.r.t. τ_2 to some point of X.

(d) For every family (F_a) of τ_1-s.o. sets w.r.t. τ_2, with $\bigcap F_a = \emptyset$, there exists a finite subcollection $(F_{a_i})^n_{i=1}$ of (F_a) such that $\bigcap_{i=1}^n (F_{a_i})^{\tau_2} = \emptyset$.

Proof: (a) \Rightarrow (b) Let $F = (F_a)$ be an ultrafilterbase in X, which does not τ_1-converge w.r.t. τ_2 to any point of X. Then by Theorem 2.3, F has no τ_1-S-accumulation point w.r.t. τ_2. Thus for every $x \in X$, there is a τ_1-s.o. set $V(x)$ w.r.t. τ_2 containing x and an $F_{a(x)} \in F$ such that $F_{a(x)} \cap \overset{\tau_2}{V(x)} = \emptyset$.

Evidently, $(V(x): x \in X)$ is a cover of X with sets that are τ_1-s.o.w.r.t. τ_2 and by (a), there exists a finite subcollection $(V(x_i): i = 1, 2, \ldots, n)$ of $(V(x): x \in X)$ such that $\overset{n}{\bigcup}_{i=1} V(x_i)^{\tau_2} = X$.

Now, F being a filterbase, there exists $F_0 \in F$ such that

$$F_0 \subseteq \overset{n}{\bigcap}_{i=1} F_{a(x_i)}.$$
PAIRWISE S-CLOSED BITOPOLOGICAL SPACES
733

Then \(F_0 \cap V(x_i)^{\tau_2} = \emptyset \) for \(i = 1, 2, \ldots, n \).

\[
\Rightarrow F_0 \cap \left(\bigcup_{i=1}^{n} V(x_i)^{\tau_2} \right) = F_0 \cap X = \emptyset \Rightarrow F_0 = \emptyset \] which is a contradiction.

(b) \(\Rightarrow \) (c) Every filterbase \(F \) is contained in an ultrafilter base \(F^* \) and \(F^* \) is \(\tau_1 \) S-convergent w.r.t. \(\tau_2 \) to some point \(x_0 \) by (b), and hence \(x_0 \) is a \(\tau_1 \) S-accumulation point of \(F^* \) w.r.t. \(\tau_2 \). Since \(F \subset F^* \), \(x_0 \) is also a \(\tau_1 \) S-accumulation point of \(F \) w.r.t. \(\tau_2 \).

(c) \(\Rightarrow \) (d) Let \(F = (F_a) \) be a family of \(\tau_1 \) s.c.l. sets w.r.t. \(\tau_2 \) with \(\bigcap F_a = \emptyset \) and be such that for every finite subfamily \(\{F_{a_i}\}_{i=1}^{n} \) (say), \(\bigcap_{i=1}^{n} F_{a_i}^{\tau_2} \neq \emptyset \). Thus \(F = \bigcap_{i=1}^{n} F_{a_i}^{\tau_2} \). \(n = \) positive integer, \(F_{a_i} \in F \) forms a filterbase in \(X \) and hence by hypothesis has a \(\tau_1 \) S-accumulation point \(x_0 \) w.r.t. \(\tau_2 \). Then for any \(\tau_1 \) s.o. set \(V(x_0) \) w.r.t. \(\tau_2 \) containing \(x_0 \), \((F_{a_0})^{\tau_2} \bigcap V(x_0)^{\tau_2} \neq \emptyset \), for each \(F_{a_0} \in F \). Since \(\bigcap F_a = \emptyset \), there is some \(F_{a_0} \in F \) such that \(x_0 \notin F_{a_0} \). Hence \(x_0 \in X - F_{a_0} \) which is \(\tau_1 \) s.o.w.r.t. \(\tau_2 \). Hence \((F_{a_0})^{\tau_2} \bigcap (X - F_{a_0})^{\tau_2} \neq \emptyset \) or,

\[
(F_{a_0})^{\tau_2} \bigcap (X - (F_{a_0})^{\tau_2}) \neq \emptyset \] which is impossible.

(d) \(\Rightarrow \) (a) Let \(\{V_a\} \) be a covering of \(X \) with sets that are \(\tau_1 \) s.o.w.r.t. \(\tau_2 \). Then \(\bigcap (X - V_a) = X - \bigcup V_a = \emptyset \). By (d), there exists finite number of indices \(a_1, a_2, \ldots, a_n \) such that \(\bigcap_{k=1}^{n} (X - V_{a_k})^{\tau_2} = \emptyset \), i.e., \(\bigcap_{k=1}^{n} (X - V_{a_k})^{\tau_2} = \emptyset \) or,

\[
X - \bigcup_{k=1}^{n} V_{a_k}^{\tau_2} = \emptyset, \text{ or } \bigcup_{k=1}^{n} V_{a_k}^{\tau_2} = X \] and hence \(X \) is \(\tau_1 \) S-closed w.r.t. \(\tau_2 \).

NOTE 2.6. Obviously, in the above theorem, the indices 1 and 2 could have been interchanged and hence the statement (a) can be replaced by "\(X \) is pairwise S-closed" with corresponding alterations in (b), (c) and (d).

DEFINITION 2.7. A subset \(Y \) of \((X, \tau_1, \tau_2) \) will be called \(\tau_1 \) S-closed w.r.t. \(\tau_j \) in \(X \) if and only if for every cover \(\{V_a: a \in I\} \) of \(Y \) by \(\tau_1 \) s.o. sets w.r.t. \(\tau_j \) of \(X \), there exists a finite set of indices \(a_1, a_2, \ldots, a_n \in I \) such that \(Y \subset \bigcup_{k=1}^{n} V_{a_k}^{\tau_j} \), where \(i, j = 1, 2 \) and \(i \neq j \).
THEOREM 2.8. A subset Y of (X, τ_1, τ_2) will be $(\tau_i)_Y$ S-closed w.r.t. $(\tau_j)_Y$ if Y is τ_i S-closed w.r.t. τ_j in X and $Y \in \tau_i$, where $i, j = 1, 2$ and $i \neq j$.

PROOF: We prove the theorem by taking $i = 1$ and $j = 2$. Similar will be the proof when $i = 2$ and $j = 1$. By virtue of Theorem 1.3, every cover $\{V_a: a \in I\}$ of Y by sets that are $(\tau_1)_Y$ s.o.w.r.t. $(\tau_2)_Y$ can be regarded as a cover of Y by sets that are τ_1 s.o.w.r.t. τ_2. Then by hypothesis, there is a finite number of indices a_1, a_2, \ldots, a_n such that

$$Y \subseteq \bigcup_{k=1}^{n} \overline{V_{a_k}}^{\tau_2} \Rightarrow Y = \bigcup_{k=1}^{n} \overline{V_{a_k}}^{(\tau_2)_Y}$$

and the theorem follows.

THEOREM 2.9. If $Y \subset (X, \tau_1, \tau_2)$ is $(\tau_i)_Y$ S-closed w.r.t. $(\tau_j)_Y$ and $Y \in \tau_1 \cap \tau_2$, then Y is τ_i S-closed w.r.t. τ_j in X, for $i, j = 1, 2$ and $i \neq j$.

PROOF: We prove only the case when $i = 1$ and $j = 2$. Let $\{G_a\}$ be a cover of Y, where each G_a is τ_1 s.o.w.r.t. τ_2. Then by Theorem 1.2, $G_a \cap Y$ is τ_1 s.o.w.r.t. τ_2 for each a and hence by Theorem 1.3, $G_a \cap Y$ is $(\tau_1)_Y$ s.o.w.r.t. $(\tau_2)_Y$ for each a. By hypothesis, there exists a finite number of indices a_1, a_2, \ldots, a_n such that

$$Y = \bigcup_{k=1}^{n} (G_{a_k} \cap Y)^{\tau_2} \Rightarrow Y \subseteq \bigcup_{k=1}^{n} \overline{G_{a_k}}^{\tau_2} \Rightarrow Y \text{ is } \tau_1 \text{ S-closed w.r.t. } \tau_2 \text{ in } X.$$

DEFINITION 2.10. [7] A subset A in (X, τ_1, τ_2) is called τ_1 regularly open (closed) w.r.t. τ_2 if and only if $A = (A^\tau_2)^{\tau_1}$ (respectively if and only if $A = (A^\tau_1)^{\tau_2}$). Similarly we define sets that are τ_2 regularly open (closed) w.r.t. τ_1.

It has been shown in [7] that a subset B of (X, τ_1, τ_2) is τ_i regularly closed w.r.t. τ_j iff $(X - B)$ is τ_i regularly open w.r.t. τ_j, for $i, j = 1, 2$ and $i \neq j$.

LEMMA 2.11. If a subset A of a bitopological space (X, τ_1, τ_2) is τ_j regularly closed w.r.t. τ_i, then A is τ_i s.o.w.r.t. τ_j, where $i, j = 1, 2$ and $i \neq j$.

PROOF: Proof is done only in the case when $i = 1$ and $j = 2$.

A is τ_2 regularly closed w.r.t. $\tau_1 \Rightarrow (X - A)$ is τ_2 regularly open w.r.t. τ_1

$$\Rightarrow X - A = \left(\overline{(X - A)}^{\tau_1}\right)^{\tau_2} \quad (2.3)$$
Let $0 = X - \overline{(X - A)^{\tau_1}}$. Then 0 is τ_1 open and

$$0^{\tau_2} = \overline{\left[X - \overline{(X - A)^{\tau_1}} \right]^{\tau_2}} = \overline{X - \left[X - \overline{(X - A)^{\tau_1}} \right]^{\tau_2}} = A \text{ (by (2.3)).}$$

Thus $0 \subset A \subset 0^{\tau_2}$ and $0 \in \tau_1$. Hence A is τ_1 s.o.w.r.t. τ_2.

LEMMA 2.12. If a subset A of (X, τ_1, τ_2) is τ_1 s.o.w.r.t. τ_j then A^{τ_j} is τ_j regularly closed w.r.t. τ_i, where $i \neq j$ and $i, j = 1, 2$.

PROOF: As before we consider the case $i = 1$ and $j = 2$. Since A is τ_1 s.o.w.r.t. τ_2, we have $A^{\tau_1} \subset A \subset A^{\tau_2}$. Then $A^{\tau_2} = (A^{\tau_1})^{\tau_2}$ (2.4)

It has been shown in [7] that a set A in (X, τ_1, τ_2) is τ_1 regularly closed w.r.t. τ_j ($i, j = 1, 2; i \neq j$) if it is τ_1 closure of some τ_j open set. Since A^{τ_1} is τ_1 open, by virtue of (2.4) the result follows.

THEOREM 2.13. A bitopological space (X, τ_1, τ_2) is τ_1 S-closed w.r.t. τ_j if and only if every proper τ_j regularly open set w.r.t. τ_1 of X is τ_1 S-closed w.r.t. τ_j, for $i, j = 1, 2$ and $i \neq j$.

PROOF: We only take up the case $i = 1$ and $j = 2$.

Let X be τ_1 S-closed w.r.t. τ_2 and F be a proper τ_2 regularly open set of X w.r.t. τ_1. Let $\{V_\alpha : \alpha \in I\}$ be a cover of F by sets that are τ_1 s.o.w.r.t. τ_2. Since $X - F$ is τ_1 regularly closed w.r.t. τ_1, by Lemma 2.11, $(X - F)$ is τ_1 s.o.w.r.t. τ_2 and hence $(X - F) \cup \{V_\alpha : \alpha \in I\}$ is a cover of X by τ_1 s.o. sets w.r.t. τ_2. Since X is τ_1 S-closed w.r.t. τ_2, there exists a finite-number of indices $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $X = (X - F)^{\tau_2} \cup \bigcup_{k=1}^{n} (V_{\alpha_k}^{\tau_2})$.

Since F is τ_2 open, $F \cap X - F^{\tau_2} = \emptyset$ and hence $F \subset \bigcup_{k=1}^{n} (V_{\alpha_k}^{\tau_2})$, proving that F is τ_1 S-closed w.r.t. τ_2. Conversely, let $\{V_\alpha : \alpha \in I\}$ be a cover of X by sets that are τ_1 s.o.w.r.t. τ_2. If $X = V_\alpha^{\tau_2}$ for each $\alpha \in I$, then the theorem is proved. So, suppose $X \neq V_\alpha^{\tau_2}$, for some $\beta \in I$ and $V_\beta \neq \emptyset$. Then $V_\beta^{\tau_2}$ is a proper subset of X. Since V_β is τ_1 s.o.w.r.t. τ_2, by Lemma 2.12, $V_\beta^{\tau_2}$ is τ_2 regularly closed w.r.t. τ_1, so that $X - V_\beta^{\tau_2}$ is proper τ_2 regularly open w.r.t. τ_1 and by hypothesis, it is τ_1 S-closed w.r.t. τ_2. Then there exists a finite
set of indices \(a_1, a_2, \ldots, a_m \) such that \(X - V_{B}^{\tau_2} \subseteq \bigcup_{k=1}^{m} V_{a_k}^{\tau_2} \). Hence

\[
X = V_{B}^{\tau_2} \cup \left(\bigcup_{k=1}^{m} V_{a_k}^{\tau_2} \right)
\]

and \(X \) is \(\tau_1 \)-closed w.r.t. \(\tau_2 \).

THEOREM 2.14. A subset \(A \) in \((X, \tau_1, \tau_2) \) is \(\tau_1 \)-closed w.r.t. \(\tau_2 \) in \(X \) if and only if every cover of \(A \) by sets that are \(\tau_j \)-regularly closed w.r.t. \(\tau_1 \) in \(X \), has a finite subcover, where \(i, j = 1, 2 \) and \(i \neq j \).

PROOF: We consider only the case \(i = 1 \) and \(j = 2 \). Let \(A \) be \(\tau_1 \)-closed w.r.t. \(\tau_2 \) in \(X \) and \(\{V_a\} \) be a collection of \(\tau_2 \)-regularly closed sets in \(X \) w.r.t. \(\tau_1 \), which is a cover of \(A \). Then each \(V_a \) is \(\tau_1 \)-s.o.w.r.t. \(\tau_2 \), by Lemma 2.11 and hence there exists a finite set of indices \(a_1, a_2, \ldots, a_n \) such that

\[
A \subseteq V_{a_1}^{\tau_2} \cup \ldots \cup V_{a_n}^{\tau_2} = V_{a_1} \cup \ldots \cup V_{a_n}
\]

(since each \(V_{a_i} \) is \(\tau_2 \)-closed). Conversely, let the given condition hold and \(\{V_a\} \) be a \(\tau_1 \)-s.o. cover of \(A \) w.r.t. \(\tau_2 \). Then \(V_{a_i}^{\tau_2} \) is \(\tau_2 \)-regularly closed w.r.t. \(\tau_1 \) for each \(a_i \), by Lemma 2.12, and \(\{V_{a_i}^{\tau_2}\} \) is a cover of \(A \). Then by hypothesis, there exist a finite number of indices \(a_1, a_2, \ldots, a_n \) such that \(A \subseteq \bigcup_{k=1}^{n} V_{a_k}^{\tau_2} \), showing that \(A \) is \(\tau_1 \)-closed w.r.t. \(\tau_2 \).

THEOREM 2.15. If \(A \) and \(B \) are \(\tau_1 \)-closed w.r.t. \(\tau_j \) in \((X, \tau_1, \tau_2) \), then \(A \cup B \) is also so, where \(i, j = 1, 2 \) and \(i \neq j \).

PROOF: Let \(\{V_a\} \) be a cover of \(A \cup B \) by sets that are \(\tau_i \)-s.o.w.r.t. \(\tau_j \) in \(X \). Then it is a cover of \(A \) as well as of \(B \). By hypothesis, there will exist a finite number of indices \(a_{11}, a_{12}, \ldots, a_{1k} \) and \(a_{21}, a_{22}, \ldots, a_{2r} \) such that

\[
A \subseteq \bigcup_{k=1}^{k} V_{a_{1k}}^{\tau_j} \quad \text{and} \quad B \subseteq \bigcup_{k=1}^{r} V_{a_{2k}}^{\tau_j}.
\]

Then \(A \cup B \subseteq \bigcup_{k=1}^{k} V_{a_{1k}}^{\tau_j} \cup \bigcup_{k=1}^{r} V_{a_{2k}}^{\tau_j} \) and hence \(A \cup B \) is \(\tau_1 \)-closed w.r.t. \(\tau_j \).

THEOREM 2.16. If \(A \) is \(\tau_1 \)-closed w.r.t. \(\tau_2 \) in \((X, \tau_1, \tau_2) \) then \(A^{\tau_2} \) is also so.

PROOF: Let \(\{V_a\} \) be a cover of \(A^{\tau_2} \) by sets that are \(\tau_1 \)-s.o.w.r.t. \(\tau_2 \), then it is also a cover of \(A \). Thus there exists a finite number of indices \(a_1, \ldots, a_n \) such that \(A \subseteq \bigcup_{i=1}^{n} V_{a_i}^{\tau_2} \Rightarrow A^{\tau_2} \subseteq \bigcup_{i=1}^{n} V_{a_i}^{\tau_2} \) and the result follows.
Theorem 2.9 and Theorem 2.16 we get:

COROLLARY 2.17. If \((X, \tau_1, \tau_2) \) is pairwise open and \((A, (\tau_1)_A, (\tau_2)_A)\) is pairwise \(S\)-closed, then \(A^\tau_i\) is pairwise \(S\)-closed in \(X\), for \(i = 1, 2\).

COROLLARY 2.18. A space \((X, \tau_1, \tau_2)\) is \(\tau_i\) \(S\)-closed w.r.t. \(\tau_j\) if there exists a \(\tau_i\) \(S\)-closed subset \(A\) w.r.t. \(\tau_j\) in \(X\), which is \(\tau_j\) dense in \(X\), where \(i, j = 1, 2\) and \(i \neq j\).

THEOREM 2.19. Let \(A \subseteq (X, \tau_1, \tau_2)\) be \(\tau_1\) \(S\)-closed w.r.t. \(\tau_2\) and \(B\) is \(\tau_2\) regularly open w.r.t. \(\tau_1\) in \(X\). Then \(A \cap B\) is \(\tau_1\) \(S\)-closed w.r.t. \(\tau_2\).

PROOF. Let \(\{V_{\alpha}: \alpha \in I\}\) be a \(\tau_1\) s.o. cover of \(A \cap B\) w.r.t. \(\tau_2\), where \(I\) is some index set. Since \(X - B\) is \(\tau_2\) regularly closed w.r.t. \(\tau_1\), by Lemma 2.11, \((X - B)\) is \(\tau_1\) s.o.w.r.t. \(\tau_2\). Thus \(A \subseteq \bigcup_{\alpha \in I} (V_{\alpha}) \cup (X - B)\) and \(A\) is \(\tau_1\) \(S\)-closed w.r.t. \(\tau_2\).

Then there exist indices \(a_1, a_2, \ldots, a_n\), finite in number, such that

\[
A \subseteq \bigcup_{i=1}^{n} V_{a_i}^\tau_2 \cup (X - B)^\tau_2 = \bigcup_{i=1}^{n} V_{a_i}^\tau_2 \cup (X - B).
\]

Thus \(A \cap B \subseteq \bigcup_{i=1}^{n} V_{a_i}^\tau_2\) and \(A \cap B\) is \(\tau_1\) \(S\)-closed w.r.t. \(\tau_2\).

COROLLARY 2.20. Let \(A \subseteq (X, \tau_1, \tau_2)\) be \(\tau_1\) \(S\)-closed w.r.t. \(\tau_2\) and \(B\) is \(\tau_2\) regularly open w.r.t. \(\tau_1\), then

(a) \(B\) is \(\tau_1\) \(S\)-closed w.r.t. \(\tau_2\) if \(B \subseteq A\).

(b) \(A^\tau_1\) is \(\tau_2\) \(S\)-closed w.r.t. \(\tau_2\) if \(A\) is \(\tau_1\) closed in \(X\).

PROOF: (a) Follows immediately from Theorem 2.19.

(b) Since \((A^\tau_1)^\tau_2\) is \(\tau_2\) regularly open w.r.t. \(\tau_1\) and \((A^\tau_1)^\tau_2 \cap A = A^\tau_1 \cap A = A^\tau_1\), the result follows by virtue of Theorem 2.19.

THEOREM 2.21. If \((X, \tau_1, \tau_2)\) is \(\tau_i\) regular w.r.t. \(\tau_j\) and \(\tau_i\) \(S\)-closed w.r.t. \(\tau_j\), then \((X, \tau_i)\) is compact, where \(i, j = 1, 2; i \neq j\).

Proof By virtue of Theorem 1.5(a), we see that every \(\tau_i\) \(S\)-closed space w.r.t. \(\tau_j\) is \(\tau_i\) almost compact w.r.t. \(\tau_j\). Hence by Theorem 1.5(b) the result follows.

In Theorem 3.7 we shall prove a partial converse of the above theorem.

3. **PAIRWISE EXTREMALLY DISCONNECTEDNESS AND \(S\)-CLOSED SPACE.**

DEFINITION 3.1. A bitopological space \((X, \tau_1, \tau_2)\) is said to be \(\tau_i\) extremally disconnected w.r.t. \(\tau_j\) if and only if for every \(\tau_i\) open set \(A\) of \(X\),
is \(\tau_i \) open, where \(i, j = 1,2 \) and \(i \neq j \). \(X \) is called pairwise extremally disconnected if and only if it is \(\tau_1 \) extremally disconnected w.r.t. \(\tau_2 \) and \(\tau_2 \) extremally disconnected w.r.t. \(\tau_1 \).

Datta in [8] has defined pairwise extremally disconnected bitopological space identically as above, we shall show (see Corollary 3.4) that the concept can be defined by a weaker condition.

The conclusion of the following theorem was also derived in [8] under the hypothesis that the space is pairwise Hausdorff and pairwise extremally disconnected. We prove a much stronger result here.

THEOREM 3.2. Let \((X, \tau_1, \tau_2) \) be \(\tau_1 \) extremally disconnected w.r.t. \(\tau_2 \) or \(\tau_2 \) extremally disconnected w.r.t. \(\tau_1 \). Then for every pair of disjoint sets \(A, B \) in \(X \), where \(A \in \tau_1 \) and \(B \in \tau_2 \), one has \(A^{\tau_2} \cap B^{\tau_1} = \emptyset \).

PROOF: Suppose \((X, \tau_1, \tau_2) \) is \(\tau_1 \) extremally disconnected w.r.t. \(\tau_2 \) and \(A \in \tau_1 \), \(B \in \tau_2 \) with \(A \cap B = \emptyset \). Then \(A^{\tau_2} \cap B = \emptyset \) ... (1). Now, if \(A^{\tau_2} \cap B^{\tau_1} \neq \emptyset \), then there exists \(x \in B^{\tau_1} \) and \(x \in A^{\tau_2} \in \tau_1 \). Hence \(A^{\tau_2} \cap B \neq \emptyset \) contradicting (1). Similarly the other case can be handled.

We prove a stronger converse of the above theorem.

THEOREM 3.3. \((X, \tau_1, \tau_2) \) is pairwise extremally disconnected if for every pair of disjoint sets \(A \) and \(B \), where \(A \in \tau_1 \) and \(B \in \tau_2 \), \(A^{\tau_2} \cap B^{\tau_1} = \emptyset \) holds.

PROOF: Suppose \((X, \tau_1, \tau_2) \) is not \(\tau_1 \) extremally disconnected w.r.t. \(\tau_2 \). Then there is a \(\tau_1 \) open set \(A \) such that \(A^{\tau_2} \tau_1 \). Then \(X - A^{\tau_2} \tau_2 \) and \(A \in \tau_1 \) such that \(A \cap (X - A^{\tau_2}) = \emptyset \). Hence by hypothesis, \(A^{\tau_2} \cap (X - A^{\tau_2})^{\tau_1} = \emptyset \). Then \((X - A^{\tau_2})^{\tau_1} = X - A^{\tau_2} \) and \(X - A^{\tau_2} \) is \(\tau_1 \) closed. Thus \(A^{\tau_2} \) is \(\tau_1 \) -open. A contradiction.

Similarly, \((X, \tau_1, \tau_2) \) is \(\tau_2 \) extremally disconnected w.r.t. \(\tau_1 \).

From Theorems 3.2 and 3.3 we have,

COROLLARY 3.4. \((X, \tau_1, \tau_2) \) is pairwise extremally disconnected if and only if it is either \(\tau_1 \) extremally disconnected w.r.t. \(\tau_2 \) or \(\tau_2 \) extremally disconnected w.r.t. \(\tau_1 \).

LEMMA 3.5. If \((X, \tau_1, \tau_2) \) is pairwise extremally disconnected, then for every \(\tau_1 \)
PAIRWISE S-CLOSED BITOPOLITICAL SPACES

For every s.o. set \(V \) w.r.t. \(\tau_2 \), \(V_{\tau_2}(\tau_1) = \overline{V}^{\tau_2} \) and for every s.o. set \(U \) w.r.t. \(\tau_1 \),
\[U_{\tau_1}(\tau_2) = \overline{U}^{\tau_1} \]

Proof: Obviously, \(V_{\tau_2}(\tau_1) \subseteq \overline{V}^{\tau_2} \).

Now, if \(x \notin \overline{V}^{\tau_2}(\tau_1) \), then there exists a s.o. set \(W \) w.r.t. \(\tau_1 \), containing \(x \) such that \(V \cap W = \emptyset \). Then \(\overline{V}^{\tau_1} \) and \(\overline{W}^{\tau_2} \) are nonempty disjoint sets, respectively \(\tau_1 \) open and \(\tau_2 \) open. Since \((X, \tau_1, \tau_2) \) is pairwise extremally disconnected, we have
\[\overline{V}^{\tau_1} \cap \overline{W}^{\tau_2} = \emptyset, \text{ i.e., } \overline{V}^{\tau_2} \cap \overline{W}^{\tau_1} = \emptyset \]
Thus \(x \notin \overline{V}^{\tau_2} \). Hence \(V_{\tau_2}(\tau_1) = \overline{V}^{\tau_2} \).

Similarly the other part can be proved.

Lemma 3.6. In a pairwise extremally disconnected space \((X, \tau_1, \tau_2) \), every \(\tau_1 \) regularly open set w.r.t. \(\tau_2 \) is \(\tau_1 \) open and \(\tau_2 \) closed, where \(i, j = 1, 2 \) and \(i \neq j \).

Proof: Let \(A \) be a \(\tau_1 \) regularly open set in \(X \) w.r.t. \(\tau_2 \) so that \((\overline{A}^{\tau_2})^i_1 = A \).

Now, \((X - \overline{A}^{\tau_2}) \) and \(A \) are disjoint sets, respectively \(\tau_2 \) open and \(\tau_1 \) open.

Since \((X, \tau_1, \tau_2) \) is pairwise extremally disconnected, we have
\[(X - \overline{A}^{\tau_2}) \cap \overline{A}^{\tau_2} = \emptyset, \text{ by Theorem 3.2.} \]
Then \((X - \overline{A}^{\tau_2})^{i_1} = X - \overline{A}^{\tau_2} \) and \(X - \overline{A}^{\tau_2} \) is \(\tau_1 \) closed. Hence \(\overline{A}^{\tau_2} \) is \(\tau_1 \)-open, so that \(\overline{A}^{\tau_2} = (\overline{A}^{\tau_2})^{i_1} = A \) is \(\tau_1 \) open and \(\tau_2 \) closed.

Similarly, we can show that every \(\tau_2 \) regularly open set in \(X \) w.r.t. \(\tau_1 \) is \(\tau_2 \) -open and \(\tau_1 \) -closed.

Theorem 3.7. If \((X, \tau_1, \tau_2) \) is pairwise extremally disconnected and \((X, \tau_1) \) is compact, then \((X, \tau_1, \tau_2) \) is \(\tau_1 \) S-closed w.r.t. \(\tau_2 \).

Proof: Let \(\{V_\alpha : \alpha \in I\} \) be a cover of \(X \) by sets that are \(\tau_1 \) s.o.w.r.t. \(\tau_2 \).

For each \(x \in X \), there is a \(V_\alpha \) containing \(x \), for some \(\alpha_x \in I \). Then there exists a \(\tau_1 \) open set \(O_\alpha \) such that \(O_\alpha \subseteq V_\alpha \subseteq \overline{O_\alpha}^{\tau_2} \). Since \(X \) is pairwise extremally disconnected, \(\overline{O_\alpha}^{\tau_2} \) is \(\tau_1 \) open for each \(x \in X \). By compactness of \((X, \tau_1) \) there exists a finite set of points \(x_1, x_2, \ldots, x_n \) of \(X \) such that \(X = \bigcup_{k=1}^{n} (\overline{O_\alpha}^{\tau_2}) \). But \(O_\alpha \subseteq V_\alpha \), for each \(x \). Hence \(\overline{O_\alpha}^{\tau_2} \subseteq \overline{V_\alpha}^{\tau_2} \).

Hence \(X = \bigcup_{k=1}^{n} (\overline{V_\alpha}^{\tau_2}) \) and \(X \) is \(\tau_1 \) S-closed w.r.t. \(\tau_2 \).
We have earlier observed that every τ_i S-closed space (X, τ_1, τ_2) w.r.t. τ_j is always τ_j almost compact w.r.t. τ_j for $i, j = 1, 2$ and $i \neq j$. Now we have:

THEOREM 3.8. If (X, τ_1, τ_2) is τ_1 almost compact w.r.t. τ_2 and pairwise extremally disconnected, then (X, τ_1, τ_2) is τ_1 S-closed w.r.t. τ_2.

PROOF: Let us consider a cover $\{V_a : a \in I\}$ of X with sets that are τ_1 s.o.w.r.t. τ_2. For each $a \in I$, we consider the set $U_a = (V_a^{\tau_2})^{\tau_1}$ which is τ_1 regularly open w.r.t τ_2. Then $U_a \subseteq U_a \cup V_a \subseteq V_a^{\tau_2} = (V_a^{\tau_2})^{\tau_1} = U_a^{\tau_2}$. Since U_a is τ_1 regularly open w.r.t τ_2, by Lemma 3.6, U_a is τ_2-closed and hence, $U_a \subseteq U_a \cup V_a \subseteq U_a^{\tau_2} = U_a$. Thus $U_a = U_a \cup V_a$. Again, U_a being τ_1-open, for each $a \in I$, it follows that $(U_a \cup V_a : a \in I)$ is a τ_1-open cover of (X, τ_1, τ_2). (X, τ_1, τ_2) being τ_1 almost compact w.r.t. τ_2, there exists a finite subfamily I_0 of I such that $X = \bigcup_{a \in I_0} (U_a \cup V_a)^{\tau_2}$. Now, since $U_a \cup V_a \subseteq V_a^{\tau_2}$ for each $a \in I$ and hence $X \subseteq \bigcup_{a \in I_0} (V_a^{\tau_2})$.

Hence (X, τ_1, τ_2) is τ_1 S-closed w.r.t. τ_2.

4. **SEMI CONTINUITY, IRRESOLUTE FUNCTIONS AND S-CLOSEDNESS.**

DEFINITION 4.1. [7] A function f from a bitopological space (X, τ_1, τ_2) into a bitopological space (Y, σ_1, σ_2) is called $\tau_1 \sigma_1$ semi-continuous w.r.t. τ_2 if for each $A \in \sigma_1$, $f^{-1}(A)$ is τ_1 s.o.w.r.t. τ_2. Similar goes the definition of $\tau_2 \sigma_2$ semi-continuity of f w.r.t. τ_1. f is called pairwise semi-continuous if f is $\tau_1 \sigma_1$ semi-continuous w.r.t. τ_2 and $\tau_2 \sigma_2$ semi-continuous w.r.t. τ_1.

LEMMA 4.2. If a function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_1 \sigma_1$ semi-continuous w.r.t. τ_2, then for any subset A of X, $f(A) \cap (\tau_1(\tau_2)) \subseteq f(A)^{\sigma_1}$.

PROOF: Let $y \in f(A \cap (\tau_1(\tau_2)))$ and $y \in V \in \sigma_1$. Then there exists $x \in A \cap (\tau_1(\tau_2))$ such that $f(x) = y$ and $x \in f^{-1}(V)$ and $f^{-1}(V)$ is τ_1 s.o.w.r.t. τ_2. Hence $f^{-1}(V) \cap A \neq \emptyset \Rightarrow f(f^{-1}(V) \cap A) \neq \emptyset \Rightarrow V \cap f(A) \neq \emptyset \Rightarrow y \in f(A)^{\sigma_1}$.

THEOREM 4.3. Pairwise semi-continuous surjection of a pairwise S-closed space onto a pairwise Hausdorff space is pairwise H-closed.

PROOF: Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a pairwise semi-continuous surjection, where X is pairwise S-closed. We first show that (Y, σ_1, σ_2) is σ_1 almost compact w.r.t. σ_2. Let $\{V_a : a \in I\}$ be a σ_1 open cover of Y. Then
PAIRWISE S-CLOSED BITOPOLITICAL SPACES

\(\{ f^{-1}(V_a) : \alpha \in \Pi \} \) is a cover of \(X \) by sets that are \(\tau_1 \) s.o.w.r.t. \(\tau_2 \). Since \(X \) is \(\tau_1 \) S-closed w.r.t. \(\tau_2 \), there exists a finite subfamily \(I_0 \) of \(I \), such that

\[X = \bigcup_{\alpha \in I_0} f^{-1}(V_a) \].

We show that \(\bigcup_{\alpha \in I_0} f^{-1}(V_a)_{\tau_2}(\tau_1) = X \). In fact, let \(x \in X \)

and \(W \) be any \(\tau_2 \) s.o. set w.r.t. \(\tau_2 \), containing \(x \). Then there exists \(U \in \tau_2 \) such that \(U \subset W \subset U^{1} \) and \(U \neq \emptyset \). Since \(\bigcup_{\alpha \in I_0} f^{-1}(V_a) \) is \(\tau_2 \) dense in \(X \), every nonempty \(\tau_2 \) open set must intersect \(\bigcup_{\alpha \in I_0} f^{-1}(V_a) \) and hence

\[x \in \bigcap_{\alpha \in I_0} f^{-1}(V_a) \].

Now,

\[Y = f(X) = f \left(\bigcup_{\alpha \in I_0} f^{-1}(V_a) \right) \tau_1(\tau_1) \]

\[\subseteq f \left(\bigcup_{\alpha \in I_0} f^{-1}(V_a) \right) \tau_2(\tau_1) \]

\[= \bigcup_{\alpha \in I_0} \overset{\text{f}}{V_a} \).

(Using Lemma 4.2 and the fact that \(f \) is \(\tau_2 \) \(\sigma_2 \) semi-continuous w.r.t. \(\tau_1 \)). Thus by Theorem 1.5(a), \(Y \) is \(\sigma_1 \) almost compact w.r.t. \(\sigma_2 \). Similarly, \(Y \) is \(\sigma_2 \) almost compact w.r.t. \(\sigma_1 \). Since \(Y \) is pairwise Hausdorff, it finally follows by virtue of Theorem 1.5(c) that \((Y, \sigma_1, \sigma_2) \) is pairwise H-closed.

DEFINITION 4.4. A function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is called \(\tau_1 \sigma_1 \sigma_2 \) irresolute w.r.t \(\tau_2 \) if for every \(\sigma_1 \) s.o. set \(V \) w.r.t. \(\sigma_2 \), \(f^{-1}(V) \) is \(\tau_1 \) s.o.w.r.t. \(\tau_2 \). Functions that are \(\tau_2 \sigma_2 \) irresolute w.r.t. \(\tau_1 \) and pairwise irresolute can be defined in the usual manner.

Clearly, every \(\tau_1 \sigma_1 \) irresolute function w.r.t \(\tau_j \) is \(\tau_i \sigma_i \) semi-continuous w.r.t. \(\tau_j \), where \(i, j = 1, 2 \) but \(i \neq j \), but it can be shown that the converse is not true, in general. This converse is true if the function \(f \) is, in addition, pairwise open [7].

LEMMA 4.5. A function \(f \) from a bitopological space \((X, \tau_1, \tau_2)\) to a bitopological space \((Y, \sigma_1, \sigma_2)\) is \(\tau_1 \sigma_1 \) irresolute w.r.t \(\tau_2 \) if and only if for every subset \(A \) of \(X \), \(f(A)_{\tau_1(\tau_2)} \subset f(A)_{\sigma_1(\sigma_2)} \).

PROOF: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be \(\tau_1 \sigma_1 \) irresolute w.r.t \(\tau_2 \) and \(A \subset X \). Then \(f^{-1}(f(A))_{\sigma_1(\sigma_2)} \) is \(\tau_1 \) s.c.l.w.r.t. \(\tau_2 \). Since \(A \subset f^{-1}(f(A)) \subset f^{-1}(f(A)_{\sigma_1(\sigma_2)}) \), we have \(A_{\tau_1(\tau_2)} \subset f^{-1}(f(A)_{\sigma_1(\sigma_2)}) \) and hence
f(A_{\tau_1(\tau_2)}) = f^{-1}(f(A)_{\sigma_1(\sigma_2)})$, i.e. $f(A_{\tau_1(\tau_2)}) \subseteq f(A)_{\sigma_1(\sigma_2)}$.

Conversely, let B be σ_1 s.c.l.w.r.t. σ_2 in Y. By hypothesis, $f(f^{-1}(B)_{\tau_1(\tau_2)}) \subseteq f^{-1}(B)_{\sigma_1(\sigma_2)} \subseteq B_{\sigma_1(\sigma_2)} = B$.

Then $f^{-1}(B)_{\sigma_1(\tau_2)} \subseteq f^{-1}(B)$ and hence $f^{-1}(B) = f^{-1}(B)_{\tau_1(\tau_2)}$. This shows that $f^{-1}(B)$ is τ_1 s.c.l.w.r.t. τ_2 and then f is $\tau_1 \sigma_1$ irresolute w.r.t. τ_2.

COROLLARY 4.6. If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_1 \sigma_1$ irresolute w.r.t. τ_j, then for any subset A of X, $f(A)_{\tau_1(\tau_j)} \subseteq f(A)_{\sigma_1(\sigma_j)}$, where $i, j = 1, 2$ and $i \neq j$.

PROOF: For every subset B of a bitopological space (X, τ_1, τ_2) we always have $B_{\tau_1(\tau_j)} \subseteq B_{\tau_1(\tau_j)}$, for $i, j = 1, 2$ and $i \neq j$. Hence by Lemma 4.5, the corollary follows.

NOTE 4.7. Following a similar line of proof as in Lemma 4.2, we could also prove the above corollary 4.6.

THEOREM 4.8. Let (X, τ_1, τ_2) be pairwise extremally disconnected and $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be pairwise irresolute, where (Y, σ_1, σ_2) is a bitopological space. If a subset G of X is pairwise S-closed in X, then $f(G)$ is pairwise S-closed in Y.

PROOF: Let $(A_\alpha: \alpha \in I)$ be a cover of $f(G)$ by sets that are σ_1 s.w.r.t. σ_2 in Y. Then $f^{-1}(A_\alpha)$ is τ_1 s.w.r.t. τ_2 in X, for each $\alpha \in I$ and $(f^{-1}(A_\alpha): \alpha \in I)$ is a cover of G. Since G is pairwise S-closed in X, there exist a finite number of indices $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $G \subseteq \bigcup_{k=1}^{n} f^{-1}(A_{\alpha_k})_{\tau_2}$. By Lemma 3.5, we have $f^{-1}(A_{\alpha_k})_{\tau_2} = f^{-1}(A_{\alpha_k}_{\tau_1})_{\tau_2}$ for $k = 1, 2, \ldots, n$. Since f is $\tau_2 \sigma_2$ irresolute w.r.t. τ_1, we have by Lemma 4.5 $f(f^{-1}(A_{\alpha_k})_{\tau_2} \tau_1) \subseteq f^{-1}(A_{\alpha_k})_{\tau_2} \subseteq A_{\alpha_k}^\sigma_{\alpha_k} \subseteq A_{\alpha_k}^\sigma_{\alpha_k} \subseteq A_{\alpha_k}^\sigma_{\alpha_k}$ for $k = 1, 2, \ldots, n$.

Hence $f(G) \subseteq f\left(\bigcup_{k=1}^{n} f^{-1}(A_{\alpha_k})_{\tau_2}\right) \subseteq \bigcup_{k=1}^{n} A_{\alpha_k}^\sigma_{\alpha_k}$ and then $f(G)$ is σ_1 s-closed w.r.t. σ_2 in Y. Similarly, $f(G)$ is σ_2 s-closed w.r.t. σ_1 in Y. Hence $f(G)$ is pairwise S-closed in Y. This completes the proof.
NOTE 4.9. If the set \(G \) of Theorem 4.8 is the whole space \(X \), then we do not require the condition that \((X, \tau_1, \tau_2)\) is pairwise extremally disconnected. In fact, proceeding in a similar fashion as in Theorem 4.3 and using Corollary 4.6, we can have:

THEOREM 4.10. If \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is pairwise irresolute and surjective, where \((X, \tau_1, \tau_2)\) is pairwise \(S \)-closed, then \((Y, \sigma_1, \sigma_2)\) is also pairwise \(S \)-closed.

THEOREM 4.11. Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be \(\tau_1 \sigma_1 \) semi-continuous w.r.t. \(\sigma_2 \), \(f: (X, \tau_2) \rightarrow (Y, \sigma_2) \) is continuous and open. If \(G \subseteq X \) is \(\tau_1 \) \(S \)-closed w.r.t. \(\tau_2 \) in \(X \), then \(f(G) \) is \(\sigma_1 \) \(S \)-closed w.r.t. \(\sigma_2 \) in \(Y \).

PROOF: Let \(\{ U_\alpha : \alpha \in I \} \) be a cover of \(f(G) \) by sets that are \(\sigma_1 \) s.o.w.r.t. \(\sigma_2 \).

For each \(\alpha \), there is \(V_\alpha \subseteq \sigma_1 \) such that \(V_\alpha \subseteq U_\alpha \subseteq V_\alpha^{\sigma_2} \). Since \(f: (X, \tau_2) \rightarrow (Y, \sigma_2) \) is open, we have \(f^{-1}(V^{\sigma_2}_\alpha) \subseteq f^{-1}(V_\alpha) \). Since \(f \) is \(\tau_1 \sigma_1 \) semi-continuous w.r.t. \(\tau_2 \), \(f^{-1}(V_\alpha) \) is \(\tau_1 \) s.o.w.r.t. \(\tau_2 \) and hence there exists \(0 \in \tau_1 \), such that

\[
0 \subseteq f^{-1}(V_\alpha) \subseteq 0^{\tau_2} \Rightarrow 0 \subseteq f^{-1}(V_\alpha) \subseteq 0^{\tau_2}. \quad \text{Thus,} \quad 0 \subseteq f^{-1}(V_\alpha) \subseteq f^{-1}(V^{\sigma_2}_\alpha) \subseteq f^{-1}(V_\alpha^{\sigma_2}) \subseteq f^{-1}(V^{\sigma_2}_\alpha) \subseteq 0^{\tau_2}. \quad \text{That is,} \quad 0 \subseteq f^{-1}(U_\alpha) \subseteq 0^{\tau_2} \quad \text{and} \quad 0 \in \tau_1. \quad \text{Therefore,}
\]

\[
f^{-1}(U_\alpha) \text{ is } \tau_1 \text{ s.o.w.r.t. } \tau_2, \text{ for each } \alpha \in I, \text{ and } \{ f^{-1}(U_\alpha) : \alpha \in I \} \text{ is a cover of } G. \text{ Then there exists a finite number of indices } \alpha_1, \ldots, \alpha_n \text{ such that}
\]

\[
G \subseteq \bigcup_{i=1}^{n} f^{-1}(U^{\tau_2}_{\alpha_i}) \quad \text{Since } f: (X, \tau_2) \rightarrow (Y, \sigma_2) \text{ is continuous,}
\]

\[
f \left[f^{-1}(U^{\tau_2}_{\alpha_i}) \right] \subseteq \bigcup_{i=1}^{n} U^{\sigma_2}_{\alpha_i}, \text{ for } i = 1, 2, \ldots, n. \quad \text{Therefore, } f(G) \subseteq \bigcup_{i=1}^{n} U^{\sigma_2}_{\alpha_i}, \text{ and then}
\]

\[
f(G) \text{ is } \sigma_1 \text{ S-closed w.r.t. } \sigma_2 \text{ in } Y.
\]

COROLLARY 4.12. Pairwise \(S \)-closedness is a bitopological invariant.

PROOF: Since every pairwise continuous function is pairwise semi-continuous, the corollary follows by virtue of Theorem 4.11.

COROLLARY 4.13. Let \(\{ (X_\alpha, \tau_1^\alpha, \tau_2^\alpha) : \alpha \in I \} \) be a family of bitopological spaces and \((X, \tau_1, \tau_2) \) be their product space. If \((X, \tau_1, \tau_2)\) is pairwise \(S \)-closed, then each \((X_\alpha, \tau_1^\alpha, \tau_2^\alpha)\) is also pairwise \(S \)-closed.

PROOF: Since \(P_\alpha : (X, \tau_1) \rightarrow (X_\alpha, \tau_1^\alpha) \) is an open, continuous surjection, for \(i = 1, 2 \) and for each \(\alpha \in I, \), the corollary becomes evident because of Theorem 4.11.
THEOREM 4.14. The pairwise irresolute image of a pairwise S-closed and pairwise extremally disconnected bitopological space in any pairwise Hausdorff bitopological space is pairwise closed.

PROOF: Let f be a pairwise irresolute function from a pairwise S-closed and pairwise extremally disconnected space (X, τ_1, τ_2) into a pairwise Hausdorff space (Y, σ_1, σ_2). Let $y \in f(X)$ and $N_1(y)$ denote the σ_1-open neighborhood system at y in (Y, σ_1, σ_2). Then $F = \{f^{-1}(V): V \in N_1(y)\}$ is a filter-base in X.

Since X is τ_2 S-closed w.r.t. τ_1, F has a τ_2 S-accumulation point x w.r.t. τ_1.

We show that $f(F)$ has $f(x)$ as a σ_2 accumulation point. In fact, let $f(x) \in V \in \sigma_2$. Then $f^{-1}(V)$ is τ_2 s.o.w.r.t. τ_1 and contains x. Now, for each $W \in N_1(y), f^{-1}(W) \in F$ and hence $f^{-1}(W) \cap \overline{f^{-1}(V)}^{\tau_1} \neq \emptyset$. Since (X, τ_1, τ_2) is pairwise extremally disconnected, we then must have $\overline{f^{-1}(W)}^{\tau_1} \cap \overline{f^{-1}(V)}^{\tau_2} \neq \emptyset$.

Indeed, if $\overline{f^{-1}(W)}^{\tau_1} \cap \overline{f^{-1}(V)}^{\tau_2} = \emptyset$, then $\overline{f^{-1}(W)}^{\tau_1} \cap \overline{f^{-1}(V)}^{\tau_2} = \emptyset$, i.e., $f^{-1}(W)^{\tau_2} \cap \overline{f^{-1}(V)}^{\tau_1} = \emptyset$ which is not the case.

Now, $\emptyset \neq f(\overline{f^{-1}(W)}^{\tau_1} \cap \overline{f^{-1}(V)}^{\tau_2}) \subset f(\overline{f^{-1}(W)}^{\tau_1} \cap \overline{f^{-1}(V)}^{\tau_2}) \subset W \cap V$. Hence $W \cap V \neq \emptyset$. This shows that $f(x)$ is a σ_2 accumulation point of $f(F)$ in Y. But $f(F)$ being finer than $N_1(y), N_1(y)$ also σ_2 accumulates to $f(x)$. Now, if $y \neq f(x)$, by pairwise Hausdorff property of (y, σ_1, σ_2), there exist σ_1 open set A and σ_2 open set B such that $y \in A, f(x) \in B$ and $A \cap B = \emptyset$. Since $A \in N_1(y), f(f^{-1}(A)) \in f(F)$ and hence $B \cap f(f^{-1}(A)) \neq \emptyset$, because $f(x)$ is a σ_2 accumulation point of $f(F)$. In other words $B \cap A \neq \emptyset$, which is a contradiction. Hence $y = f(x)$ and then $f(y) = f(x)$. Consequently $f(x)$ is σ_2 closed in Y. Similarly $f(x)$ is σ_1 closed in Y. This completes the proof.

ACKNOWLEDGEMENT. I sincerely thank Dr. S. Ganguly, Reader, Department of Pure Mathematics, Calcutta University, for his kind help in the preparation of this paper.

REFERENCES

