INTEGRAL OPERATORS OF CERTAIN UNIVALENT FUNCTIONS

O. P. AHUJA

Department of Mathematics
University of Papua New Guinea
Box 320, University P.O.
Papua New Guinea

(Received October I, 1984)

ABSTRACT. A function f, analytic in the unit disc A, is said to be in the family $R_n(\alpha)$ if \(\text{Re}\{(z^nf(z))^{n+1}/(z^{n-1}f(z))^n\} > (n+\alpha)/(n+1) \) for some \(\alpha (0 < \alpha < 1) \) and for all z in A, where $n \in \mathbb{N}$, $\mathbb{N} = \{0,1,2,\ldots\}$. The class $R_n(\alpha)$ contains the starlike functions of order α for $n \geq 0$, and the convex functions of order α for $n \geq 1$. We study a class of integral operators defined on $R_n(\alpha)$. Finally an argument theorem is proved.

KEY WORDS AND PHRASES: Univalent, convolution, starlike, convex

INTRODUCTION.

Let A denote the family of functions f which are analytic in the unit disc $A = \{z: |z| < 1\}$ and normalised such that $f(0) = 0 = f'(0) - 1$. The Hadamard product or convolution of two functions $f, g \in A$ is denoted by $f \ast g$. Let $D^n f = (z/(1-z)^{n+1}) f, n \in \mathbb{N} = \{0,1,2,\ldots\}$ which implies that $D^n f = z(z^{n-1}f(n))/n!, n \in \mathbb{N}$.

Denote by $S^\alpha(\alpha)$ and $K(\alpha)$ the subfamilies of A whose members are, respectively, starlike of order α and convex of order α, $0 < \alpha < 1$. Then

\[
 f \in S^\alpha(\alpha) \iff \text{Re}(D^2 f/Df) > \alpha, z \in A,
\]

\[
 f \in K(\alpha) \iff \text{Re}(D^2 f/Df) > (1+\alpha)/2, z \in A.
\]

Ruscheweyh [16] introduced the classes $\{K_n\}$ of functions $f \in A$ which satisfy the condition

\[
 \text{Re}(D^{n+1} f/Df) > \frac{1}{n}, z \in A \tag{1.1}
\]

so that the definition of K_n is a natural extension of $S^\alpha(1/2)$, and $K(0)$. He proved that $K_{n+1} \subseteq K_n$ for each $n \in \mathbb{N}_0$. Since $K_0 = S^\alpha(1/2)$, the elements of K_n are univalent and starlike of order $1/2$.

In this paper, we consider the classes of functions $f \in A$ which
satisfy the condition
\[Re\left(z^{n}f' / f^n \right) > \alpha, \; z \in \Delta \] (1.2)
for some \(\alpha (0 \leq \alpha < 1) \). We denote these classes by \(R_n(\alpha) \). We have \(R_n(\alpha) = S^*(\alpha) \) and \(R_n(\alpha) = K(\alpha) \) for \(0 \leq \alpha < 1 \). The classes \(R_n = R_n(0) \) were considered earlier by Singh and Singh [17]. It is readily seen that for each \(n \geq 1 \), \(R_n(\alpha) \subseteq R_0(\alpha) = R(\alpha) \) and for each \(n \geq 1 \), \(R_n(\alpha) \subseteq K_n \). We note that in definition (1.2), restriction \(\alpha \geq 0 \) can be replaced by \(\alpha \geq (1-n)/2 \) for each \(n \geq 1 \) and, further, that the negative choices of \(\alpha \) permit us fully to partition \(K_n \) into classes \(R_n(\alpha) \subseteq K_n \) such that
\[\cup R_n(\alpha) = K_n \]
\[\frac{1-n}{2} \leq \alpha < 1 \]

It can be easily seen that \(R_{n+1}(\alpha) \subseteq R_n(\alpha) \) for each \(n \in \mathbb{N}_0 \) and for all \(\alpha \). These inclusion relations establish that \(R_n(\alpha) \subseteq S^*(\alpha) \) for each \(n \geq 0 \) and \(R_n(\alpha) \subseteq K(\alpha) \) for each \(n \geq 1 \).

An important problem in univalent functions is the following: Given a compact family \(F \) and an operator \(J \) defined on \(F \), is \(J(f) \in F \) for every \(f \in F \) ? Libera [11] established that the operator
\[J(f) = \frac{2}{z} \int_{0}^{z} f(t) dt \] (1.3)
preserves convexity, starlikeness, and close-to-convexity. Bernardi [5] greatly generalised Libera's results. Many authors [1,2,7,8,12,15,17] studied operators of the form
\[J(f) = \frac{1+\gamma}{2} \int_{0}^{z} t^{\gamma-1} f(t) dt \] (1.4)
where \(\gamma \) is a real (or complex) constant and \(f \) belongs to some favoured class of univalent functions from \(A \). Recently, operators (1.4) have been studied in more general form by Causey and White [6], Miller, Mocanu and Reade [14], Barnard and Kellogg [3], and Bajpai [2]

In this paper, we study a class of integral operators of the form (1.4) defined on our family \(R_n(\alpha) \). We also obtain an argument theorem for the class \(R_n(\alpha) \).

2. INTEGRAL OPERATORS.

Let \(\gamma \) be a complex number with \(\text{Re} \gamma > 1 \). We define \(h_\gamma \) by
Let the operator $J: A
ightarrow A$ be defined by $F = J(f)$, where

$$F(z) = \frac{1+\gamma}{z^\gamma} \int_0^z f(t)t^{\gamma-1}dt$$

Then the function F can also be written in the form

$$F(z) = f(z)h_\gamma(z).$$

We need the following result of Jack [9] which is also due to Suffridge [18]

Lemma. Let w be nonconstant and analytic in $|z| < r < 1$, $w(0) = 0$ If $|w|$ attains its maximum value on the circle $|z| = r$ at z_0, then

$$z_0w'(z_0) = kW(z_0),$$

where k is a real number and $k \geq 1$

We first give a condition on $f \in A$ for which the function $J(f)$ belongs to $R_n(a)$

Theorem I. Let $0 < a < 1$, and $\gamma \neq -1$ be a complex constant such that $\Re \gamma < a$, $\Im \gamma \geq 0$, and $|\gamma|^2 + 2\alpha(1 + \Re \gamma) \geq 1$. If for a given $n \in N_0$, $f \in A$ satisfies the condition

$$\Re \frac{z(D^nf(z))'}{D^nf(z)} > a - \frac{(1-a)(1+\Re \gamma)}{2(|\gamma|^2 + 2\alpha \Re \gamma + \alpha^2 + (1-a)\Im \gamma)}$$

for all $z \in \Delta$, then $F(z)$ given by (2.2) belongs to $R_n(a)$.

Proof. From (2.2), we obtain

$$z(D^nF(z))' + \gamma D^nF(z) = (\gamma + 1)D^n\phi(z).$$

(2.4)

Define w in Δ by

$$\frac{z(D^nF(z))'}{D^nF(z)} = \frac{1+(2\alpha-1)w(z)}{1+w(z)}.$$

(2.5)

Here $\phi(z)$ is analytic in Δ with $\phi(0) = 0$ and $\phi(z) \neq -1$, $z \in \Delta$

We need to show that $|w(z)| < 1$ for all $z \in \Delta$. In view of (2.4), (2.5) yields

$$\frac{D^n\phi(z)}{D^nF(z)} = \frac{(1+\gamma)+(2\alpha-1+\gamma)w(z)}{(1+\gamma)(1+w(z))}$$

(2.6)

Differentiating (2.6) logarithmically and simplifying, we obtain
\[
\frac{z(D^n f(z))'}{D^n f(z)} = \alpha + (1-\alpha) \frac{1-w(z)}{1+w(z)} - \frac{2(1-\alpha)zw'(z)}{(1+w(z))(1+y+(2\alpha-1+y)w(z))} \tag{2.7}
\]

Now (2.7) should yield \(|w(z)| < 1\) for all \(z \in \Delta\) for otherwise, there exists a point \(z_0 \in \Delta\) at which \(|w(z_0)| = 1\) and by Lemma, we have

\[z_0 w'(z) = kw(z_0), \quad k \geq 1.\]

For this value of \(z = z_0\), we find that (2.7) yields

\[
\Re \frac{z_0(D^n f(z_0))'}{D^n f(z_0)} = \alpha - \frac{2k(1-\alpha)(\alpha + \Re y)}{|(1+y)+(2\alpha-1+y)w(z_0)|^2} \tag{2.8}
\]

which contradicts (2.3) Hence \(|w(z)| < 1\) for all \(z \in \Delta\) and by (2.5), it follows that \(F(z) \in R_n(\alpha)\).

COROLLARY. If for a given \(n \in N_0\), \(f \in \mathcal{A}\) satisfies the condition

\[
\Re \frac{z(D^n f(z))'}{D^n f(z)} > \frac{2\alpha(y+\alpha)-(1-\alpha)}{2(y+\alpha)}, \quad z \in \Delta, \tag{2.9}
\]

where \((\alpha, \gamma)\) is any point in the set

\[D = \{(\alpha, \gamma) : \gamma+2\alpha \geq 1, \quad 0 \leq \alpha < 1, \quad \gamma > -1\},\]

then \(F(z)\) given by (2.2) belongs to \(R_n(\alpha)\).

PROOF. If \(\gamma \neq -1\) is a real constant such that \(\gamma + \alpha \geq 0\), then

\[|\gamma|^2+2\alpha(1+\Re y) \geq 1\]

implies \((\gamma+1)(\gamma+2\alpha-1) \geq 0\). The result follows from Theorem 1.

It is easy to show that if \(f \in R_n(\alpha)\), then \(f\) satisfies the condition (2.3). Thus it follows from Theorem 1 that \(J(R_n(\alpha)) \subset R_n(\alpha)\). More precisely, we state the result in

THEOREM 2. If \(f \in R_n(\alpha)\), then the function

\[J(f) = \frac{Y+1}{Z} \int_0^{Z} f(t) t^{-1} dt\]

is again an element of \(R_n(\alpha)\), where \(\gamma \neq -1\) is a complex constant with restrictions as stated in Theorem 1.

REMARK 1. Letting \(n = 0 = \gamma - 1\) and \(n = 1 = \gamma\), in Theorem 1, we get \(L(S^*(B)) \subset S^*(\alpha)\) and \(L(K(\beta)) \subset K(\alpha)\) respectively, where \(L\) is the Libera transform defined in (1.3), and

\[B = ((2\alpha^2+3\alpha-1)/2(1+\alpha)) < \alpha.\]

These results improve the earlier results due to Libera [11] and Bernardi [5] in the sense that their results hold under much weaker conditions.
In [2], Bajpai has established that \(J(S^*) \subseteq S^\alpha(\alpha) \) for some \(\alpha \). We generalize this result in

Theorem 3. Let \(J: \mathbb{A} \to \mathbb{A} \) be defined as in (2 2), where \(\gamma \) is a complex constant. If \(f \in R_n \), then \(J(f) \in R_n(\alpha) \), where \(\alpha \) satisfies the inequality

\[
\alpha \leq 2(1-\gamma)(\alpha + \Re \gamma), \quad 0 \leq \alpha < 1
\]

Proof. Proceeding as in Theorem 1 and applying Lemma, we have

\[
\text{Re} \left[\frac{z_0(D^n f(z_0))'}{D^n f(z_0)} \right] \leq \alpha - \frac{2(1-\gamma)(\alpha + \Re \gamma)}{(1+\gamma+2\alpha-1+\gamma)w(z_0)^2}
\]

where \(\Re \gamma \geq -\alpha \). Since the right-hand side is \(\leq 0 \), we have a contradiction for \(f \in R_n \subseteq R_n(0) \). Thus we must have \(|w(z)| < 1 \) for all \(z \) in \(\Delta \) and by (2 5), it follows that \(J(f) \in R_n(\alpha) \).

Remark 1. If we let \(n = 0 = \gamma - 1 \) in the above theorem, then

\[
L(S^*) \subseteq S^\alpha(\gamma - \frac{\sqrt{17} - 3}{4}), \quad L(f) = (2/z) \int_0^z f(t) dt
\]

Thus we have recovered a result of Miller, Mocanu and Reade ([14], pp 162-163).

Remark 2. If \(n = 1 \), \(\gamma \) is a real constant such that \(\gamma + \alpha \geq 0 \), and \(f \in K \), then it follows from Theorem 3 that the function \(F(z) \) in (2 2) is an element of \(K(\alpha) \), where

\[
\alpha = \frac{-(2\gamma+1) + \sqrt{(2\gamma-1)^2 + 8(1+\gamma)}}{4}
\]

This result was proved by Miller, Mocanu and Reade ([14], pp 165). Further, this is an improvement of an earlier result due to Bernardi [5], who proved that \(f \in K \) implies \(F \in K \).

For \(\gamma = n \), where \(n \in \mathbb{N}_0 \), we have an improvement over Theorem 2

Theorem 4. Let

\[
F(z) = f(z) \ast h_n(z) = \frac{z^n+1}{z} \int_0^z f(t) t^{n-1} dt
\]

If \(f \in R_n(\alpha) \), then \(F \in R_{n+1}(\alpha) \)

Proof. From (2.10), we obtain

\[
z(D^{n+1} F(z))' + nD^{n+1} F(z) = (n+1)D^{n+1} f(z)
\]

and
Using the identity
\[z(D^n f(z))' + nD^n f(z) = (n+1)D^{n+1} f(z) \quad (2.12) \]

in (2.11) and (2.12), we obtain
\[(n+1)D^{n+1} f(z) = (n+2)D^{n+2} f(z) - D^{n+1} f(z) \quad (2.14) \]

and
\[D^n f(z) = D^{n+1} f(z) \quad (2.15) \]

In view of the identity (2.13) and the relations (2.14) and (2.15),
\[f \in R_n(\alpha) \text{ yields} \]
\[\text{Re} \left\{ \frac{(n+2)D^{n+2} f(z) - (n+1)D^{n+1} f(z)}{D^{n+1} f(z)} \right\} > \alpha \]

which implies that
\[\text{Re} \left\{ \frac{z(D^{n+1} f(z))'}{D^{n+1} f(z)} \right\} > \alpha , \quad z \in \Delta \]

This proves that \(f \in R_{n+1}(\alpha) \).

REMARK For \(n = 0 \), Theorem 4 gives the well known result:
\[J(S^0(\alpha)) \subset K(\alpha), \text{ where } J(f) = \int_0^1 f(t)/t \, dt \]

We now investigate the converse of Theorem 2. In fact, we find the sharp radius of the disc in which \(f \in R_n(\beta) \) when \(F \), defined in (2.2), is in \(R_n(\alpha) \) for \(0 \leq \alpha < 1, \ 0 < \beta \leq 1 \): In [12], Libera and Livingston have solved this converse problem for the case \(n = 0, \ \gamma = 1 \) when \(\alpha \leq \beta < 1 \). These authors were not able to obtain suitable results for the complementary case when \(\beta < \alpha \). However, the method used in the next theorem gives results that are more general and also covers both \(\beta \geq \alpha \) and \(\beta < \alpha \).

THEOREM 5. If \(F \) is an element of \(R_n(\alpha) \) for \(n \geq 0 \) and \(0 \leq \alpha < 1 \),
\[F(z) = \frac{1+\gamma}{z} \int_0^2 f(t)t^\gamma \, dt \quad (2.16) \]

with \(z \in \Delta, \text{Re} \gamma \geq -\alpha, \text{ and } 0 \leq \beta < 1 \), then the function \(f \) is an element of \(R_n(\beta) \) for \(|z| < r_0 \), where \(r_0 \) is the smallest positive root in \((0,1)\) of the equation
\[(\gamma+2\alpha-1)(2\alpha-\beta-1)r^2+2((\gamma+\alpha)(\alpha-\beta)-(1-\alpha)(2-\alpha))r+(\gamma+1)(1-\beta) = 0 \quad (2.17) \]

The result is sharp.
PROOF Since \(F \in R_n(\alpha) \), we can write

\[
\frac{z(D^nF(z))'}{D^nF(z)} = \alpha + (1-\alpha)P_n(z),
\]

(2.18)

where \(P_n(z) \) is analytic in \(\Delta \) and satisfies the conditions \(P_n(0) = 1 \) \(\Re P_n(z) > 0 \) for \(z \in \Delta \). Using the identity

\[
z(D^nF(z))' = (n+1)D^{n+1}F(z) - nD^nF(z)
\]

(2.19)

in (2.18) and then taking logarithmic derivative, we obtain

\[
z(D^{n+1}F(z))' = D^{n+1}F(z)[\alpha+(1-\alpha)P_n(z) + \frac{(1-\alpha)zP'(z)}{n+\alpha+(1-\alpha)P_n(z)}]
\]

(2.20)

From (2.16) we obtain

\[
z(D^{n+1}F(z))' + \gamma D^{n+1}F(z) = (\gamma+1)D^{n+1}F(z).
\]

(2.21)

From (2.20) and (2.21) we have

\[
(\gamma+1)D^{n+1}F(z) = D^{n+1}F(z)[\alpha+\gamma+(1-\alpha)P_n(z) + \frac{(1-\alpha)zP'(z)}{n+\alpha+(1-\alpha)P_n(z)}]
\]

(2.22)

Also (2.18) together with the identity (2.4) yields

\[
(1+\gamma)D^nF(z) = D^nF(z)(\alpha+\gamma+(1-\alpha)P_n(z)).
\]

(2.23)

Now from the relations (2.22), (2.23), and (2.18) we conclude that

\[
\frac{z(D^nF(z))'}{D^nF(z)} - \beta = \alpha - \beta + (1-\alpha)P_n(z) + \frac{(1-\alpha)zP'(z)}{\alpha+\gamma+(1-\alpha)P_n(z)}.
\]

(2.24)

Using the well known estimates

\[
|zP_n'(z)| \leq \frac{2r}{(1-r^2)}\Re P_n(z)
\]

and

\[
\Re P_n(z) \geq \frac{(1-r)}{(1+r)}, \quad |z| = r
\]

in (2.24), we obtain

\[
\Re \left\{ \frac{z(D^nF(z))'}{D^nF(z)} \right\} \geq (\alpha-\beta) + \frac{(1-\alpha)((1-r)(\gamma+\gamma+2\alpha-1)r)-2r}{(1-r)((\gamma+2\alpha-1)r+\gamma+1)}
\]

(2.25)

where \(\Re \gamma \geq -\alpha \). Therefore,

\[
\Re \left\{ \frac{z(D^nF(z))'}{D^nF(z)} \right\} > \beta
\]

if the right side of (2.25) is positive, which is satisfied provided that \(r < r_0 \), where \(r_0 \) is the smallest positive root in \((0,1)\) of (2.17).

The result in the theorem is sharp with the function \(f \) defined by

\[
f(z) = \frac{1}{(1+c)}z^{-c}(z^cF(z))',
\]

(2.26)
where \(c = \text{Re} \gamma \geq -\alpha \), and \(F \) is given by

\[
\frac{z^{(D^nF(z))'}}{D^nF(z)} = \frac{1-(2\alpha-1)z}{1-z} \tag{2.27}
\]

REMARK. By specializing choices of \(\alpha, \beta, \gamma, \) and \(n \), theorem 5 gives rise to the corresponding results obtained earlier in \([3, 4, 8, 12, 13, 15]\) and by many others.

3 AN ARGUMENT THEOREM.

THEOREM 6 If \(f \in R_n(\alpha) \), then

\[
|\arg \frac{D^k f(z)}{z} | - 2(1-\alpha) \sin^{-1} r + \sum_{m=0}^{k-1} \sin^{-1} \left(\frac{2(1-\alpha)r}{m+1-(m+2\alpha-1)r^2} \right)
\]

for each \(k(0 \leq k \leq n+1) \).

PROOF We may write

\[
\frac{D^k f(z)}{z} = \frac{f(z)}{z} \left(\sum_{m=0}^{k-1} \frac{D^m f(z)}{z} \right), \quad 0 \leq k \leq n+1,
\]

which yields

\[
|\arg \frac{D^k f(z)}{z} | = |\arg \frac{f(z)}{z} | + \sum_{m=0}^{k-1} |\arg \frac{D^m f(z)}{z} | . \tag{3.1}
\]

Since \(R_{n+1}(\alpha) \subset R_n(\alpha) \ \forall n \in \mathbb{N}_0 \), it follows that \(f \in R_m(\alpha) \) for each \(m(0 \leq m \leq n) \).

Setting

\[
\frac{D^{m+1} f(z)}{D^m f(z)} = q_m(z), \quad (0 \leq m \leq n), \tag{3.2}
\]

we note that \(\text{Re}(q_m(z)) \geq (m+\alpha)/(m+1) \).

Therefore, the function

\[
\omega(z) = \frac{(q_m(z) - \frac{m+\alpha}{m+1}) - (1 - \frac{m+\alpha}{m+1})}{(q_m(z) - \frac{m+\alpha}{m+1}) + (1 - \frac{m+\alpha}{m+1})}
\]

is analytic with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \) in \(\Delta \). Hence by Schwarz's Lemma,
\[\left| \frac{q_m(z) - 1}{q_m(z) + 1 - 2(m+a)/(m+1)} \right| < |z| \]

for \(z \in \Delta \). Now it is easy to see that the values of \(q_m(z) \) are contained in the circle of Appolonius whose centre is at the point
\[(m+1-(m+2a-1)r^2)/((1+m)(1-r^2)) \]
and has radius \(2(1-a)r/((m+1)(1-r^2)) \).

Thus \(\max |\arg q_m(z)| \) is attained at the points where \(z \in \Delta \)

\[\arg q_m(z) = \pm \sin^{-1}\left(\frac{2(1-a)r}{m+1-(m+2a-1)r}\right) \]

which gives

\[|\arg \frac{D^{m+1}f(z)}{D^m f(z)}| \leq \sin^{-1}\left(\frac{2(1-a)r}{m+1-(m+2a-1)r}\right), \quad (3.3) \]

for \(0 \leq m \leq n \), and \(z \in \Delta \).

Next, note that \(R_n(\alpha) : S^\alpha(\alpha), n \geq 0 \), and \(f \in S^\alpha(\alpha) \) if and only if \(F(z) = \int (f(z)/z)dz \) is in \(K(\alpha) \). But for \(F \in K(\alpha) \), we have

\[|\arg F'(z)| \leq 2(1-\alpha)\sin^{-1}r \quad (|z| = r) \]

Thus \(f \in R_n(\alpha) \) implies

\[|\arg \frac{f(z)}{z}| \leq 2(1-\alpha)\sin^{-1}r \quad (3.4) \]

Applying (3.3) and (3.4) to (3.1) we obtain the result.

For \(n = 0 \), we obtain

COROLLARY If \(f \in S^\alpha(\alpha) \), then (3.4)

and

\[|\arg f'(z)| \leq 2(1-\alpha)\sin^{-1}r + \sin^{-1}\left(\frac{2(1-a)r}{1-(2a-1)r^2}\right) \]

REMARK The case \(n = 0, \alpha = 0 \) way proved by Krzyz [10].

The author is grateful to the referee for his suggestions which greatly helped in presenting this paper in a compact form.

REFERENCES

8. GUPTA, V.P. and JAIN, P.K.: On starlike functions, Rendiconti di Mat. 9 (1976), 433-437.

