A HILLE-WINTNER TYPE COMPARISON THEOREM FOR SECOND ORDER DIFFERENCE EQUATIONS

JOHN W. HOOKER

Department of Mathematics, Southern Illinois University
Carbondale, Illinois 62901 U.S.A.

(Received October 2, 1981)

ABSTRACT. For the linear difference equation

$$\Delta(c_{n-1} \Delta x_{n-1}) + a_n x_n = 0 \quad \text{with} \quad c_n > 0,$$

a non-oscillation comparison theorem given in terms of the coefficients c_n and the series $\sum_{n=k}^{\infty} a_n$, has been proved.

KEY WORDS AND PHRASES. Difference equations, oscillatory and non-oscillatory solutions, comparison theorems, Riccati transformation.

1. INTRODUCTION.

We consider linear homogeneous second order difference equations of the form

$$\Delta(c_{n-1} \Delta x_{n-1}) + a_n x_n = 0, \quad n = 1, 2, 3, \ldots,$$

(1.1)

where Δ denotes the forward difference operator $\Delta x_n = x_{n+1} - x_n$, and $a = \{a_n\}$ and $c = \{c_n\}$ are real-valued infinite sequences with $c_n > 0$ for $n = 0, 1, 2, \ldots$. (No assumption is made about the sign of a_n.)

Equation (1.1) is equivalent to the difference equation

$$c_n x_{n+1} + c_{n-1} x_{n-1} = b_n x_n,$$

(1.2)

where $b_n = c_n + c_{n-1} - a_n$, $n = 1, 2, 3, \ldots$. Recent papers ([1], [2], and [3]) have
treated oscillation and comparison theorems for this equation.

The theorem to be considered here is a difference equation analogue of Taam's
generalized version [4] of the well-known Hille-Wintner comparison theorem for
second-order linear differential equations (see [5, Thm. 7, p. 245] and [6], or
[7, p. 60-62]).

Let \(x = \{x_n\} \), \(n = 0,1,2,\ldots \), be a real, non-trivial solution of (1). Then \(x \)
is said to be oscillatory if, for every \(N \), there exists \(n_0 \geq N \) such that
\(x_n x_{n+1} \leq 0 \). Since either all non-trivial real solutions of (1.1) are oscillatory
or none are (see [8, p. 153]), equation (1.1) may be classified as oscillatory or
non-oscillatory. Also, if \(x \) is a solution of (1.1), so is \(-x \), and it then follows
that (1.1) is non-oscillatory if and only if there exists a solution \(x \) with \(x_n > 0 \)
for all \(n \geq N \), for some integer \(N \geq 0 \). (The variables \(j, k, n, M, N \) will always
be understood below to represent non-negative integers.)

2. MAIN RESULTS.

We will prove the following comparison result:

THEOREM 1. Given the difference equations

\[
\Delta(c_{n-1} \Delta x_{n-1}) + A_n x_n = 0 \\
\Delta(c_{n-1} \Delta x_{n-1}) + a_n x_n = 0,
\]

(2.1)

(2.2)

assume that

\[
0 < c_n \leq c_n \quad \text{and} \quad c_n \leq K
\]

(2.3)

for all \(n \geq 0 \), for some constant \(K > 0 \), and

\[
0 \leq \sum_{n=k}^{\infty} a_n \leq \sum_{n=k}^{\infty} A_n < \infty
\]

(2.4)

for all sufficiently large \(k \). Then, if (2.1) is non-oscillatory, (2.2) is non-
oscillatory also.

Before proceeding to the proof of Theorem 1, we need two preliminary results.
The first of these is an elementary property of real numbers:

LEMMA 1. If \(0 \leq a \leq b \) and \(c > 0 \), then
\[0 \leq \frac{a^2}{a + c} \leq \frac{b^2}{b + c}. \]

Our second lemma may be thought of as a discrete analogue of Theorem 4 of Hille [5, p. 243], which gives a necessary and sufficient condition for non-oscillation of solutions of \(x'' + f(t)x = 0 \) in terms of the existence of a solution of a related Riccati integral equation. Hille then used a successive approximations technique to show the existence of a solution of the integral equation. We will use a similar device here to prove Theorem 1. Our proof of Lemma 2 is a discrete version of a standard Riccati transformation argument, as used, for example, in the proof of the Hille-Wintner theorem presented by Swanson [7]. The resulting difference equation (2.7) below is quite different in form, however, from the Riccati differential equation.

Lemma 2. Assume that
\[\sum_{n=1}^{\infty} A_n < \infty. \]

Then the difference equation (1.2) is non-oscillatory if and only if there exists a sequence \(v \) satisfying
\[v_k = \sum_{n=k}^{\infty} \frac{v_n^2}{v_n + C_n} + \sum_{n=k}^{\infty} A_{n+1} \]
for all sufficiently large \(k \), say \(k \geq M \), with \(v_k + C_k > 0 \) for \(k \geq M \).

Proof. Let (2.1) be non-oscillatory and let \(x \) be a solution of (2.1) with \(x_n > 0 \) for \(n \geq M \). Let \(v_n = C_n (\Delta x_n)/x_n \), \(n \geq M \). Then
\[v_n = C_n \left(\frac{x_{n+1}}{x_n} - 1 \right) = C_n \left(\frac{x_{n+1}}{x_n} - 1 \right) > -C_n, \]
so \(v_n + C_n > 0 \), \(n \geq M \). From (2.1) we have
\[C_{n+1} \Delta x_{n+1} - C_n \Delta x_n + A_{n+1} x_{n+1} = 0. \]
Dividing by \(x_{n+1} \) and adding and subtracting \(v_n \), one obtains
\[v_{n+1} - v_n + v_n - v_n x_n/x_{n+1} + A_{n+1} = 0, \]

or

\[\Delta v_n + v_n (1 - x_n/x_{n+1}) + A_{n+1} = 0. \]

(2.6)

Now

\[\frac{x_{n+1}}{x_n} = \frac{x_{n+1} - x_n + x_n}{x_n} = \frac{\Delta x_n}{x_n} + 1 = \frac{v_n}{C_n} + 1, \]

and substitution of this expression into (2.6) yields

\[\Delta v_n + \frac{v_n^2}{v_n + C_n} + A_{n+1} = 0, \quad n \geq M. \]

(2.7)

Summing from \(k \) to \(N \), where \(M \leq k < N \), we obtain

\[v_{N+1} - v_k + \sum_{n=k}^{N} \frac{v_n^2}{v_n + C_n} = - \sum_{n=k}^{N} A_{n+1}. \]

(2.8)

By hypothesis, the right side of (2.8) has a finite limit as \(N \to \infty \), so the left side also has such a limit.

As noted above, \(v_n + C_n > 0 \) for \(n \geq M \), so \(v_n^2/(v_n + C_n) \geq 0 \) for \(n \geq M \). If

\[\sum_{n=k}^{\infty} \frac{v_n^2}{v_n + C_n} = +\infty, \]

then, from (2.8), \(v_{N+1} \to -\infty \) as \(N \to \infty \). But this is impossible, since \(v_n \geq -C_n \), and \(-C_n \geq -K \) by hypothesis. Thus, for every \(k \geq M \), we have

\[0 \leq \sum_{n=k}^{\infty} \frac{v_n^2}{v_n + C_n} < \infty. \]

Therefore, \(v_n^2/(v_n + C_n) \to 0 \) as \(n \to \infty \), from which it follows, since \(C_n \) is bounded, that \(v_n \to 0 \) as \(n \to \infty \). Equation (2.5) then follows immediately from (2.8).

Conversely, if \(v \) is a sequence satisfying (2.5), with \(v_n + C_n > 0 \) for \(n \geq M \), then application of the forward difference operator \(\Delta \) to both sides of (2.5) leads immediately to equation (2.7). We then define a sequence \(x \) inductively as

\[x_M = 1, \quad x_{n+1} = \left(\frac{v_n + C_n}{C_n} \right)x_n, \quad n \geq M. \]

Then \(x_n > 0 \) for \(n \geq M \), and \(v_n = C_n (x_{n+1}/x_n - 1) \); hence, \(v_n = C_n \Delta x_n/x_n \). Substitution of this expression into equation (2.7) then leads readily to equation (2.1),
so \(x_n \) as defined above satisfies (2.1) for \(n \geq M \). We may then define
\(x_{M-1}, x_{M-2}, \ldots, x_0 \) successively, using (2.1). The resulting sequence \(x \) is thus a non-oscillatory solution of (2.1), which completes the proof of Lemma 2.

Proceeding with the proof of Theorem 1, we assume that (2.1) is non-oscillatory. Then by Lemma 2 there exists a sequence \(V = \{v_k\}, \ k \geq M \), for some \(M \geq 0 \), which satisfies (2.5), with \(V_k + C_k > 0 \) for \(k \geq M \). We will use a successive approximations argument to show that there is a sequence \(v = \{v_k\}, \ k \geq M \), which satisfies

\[
 v_k = \sum_{n=k}^{\infty} \frac{v_n^2}{v_n + c_n} + \sum_{n=k}^{\infty} a_{n+1}, \quad k \geq M. \tag{2.9}
\]

It will then follow by Lemma 2 that equation (2.2) is non-oscillatory.

We define a sequence of successive approximations

\[
v^j = \{v^j_k\}, \ k \geq M, \ j \geq 0, \text{ as follows:} \]

\[
v_k^0 = v_k, \quad k \geq M, \tag{2.10a}
\]

\[
v_k^j = \sum_{n=k}^{\infty} \frac{(v_{k-1}^j)^2}{v_n + c_n} + \sum_{n=k}^{\infty} a_{n+1}, \quad k \geq M, \ j \geq 1. \tag{2.10b}
\]

We must first show that the sequences \(v^j \), \(j \geq 1 \), are well-defined by (2.10ab).

Since \(v_k^0 = v_k, \ k \geq M \), we have

\[
v_k^0 + c_k > v_k^0 + C_k = V_k + C_k > 0, \quad k \geq M.
\]

Then

\[
 0 \leq \frac{(v_k^0)^2}{v_k^0 + c_k} \leq \frac{(v_k^0)^2}{v_k^0 + C_k} = \frac{v_k^2}{V_k + C_k}, \quad k \geq M. \tag{2.11}
\]

Since the sequence \(V \) satisfies (2.5), it follows from (2.11) that the series in (2.10ab) converges for \(j = 1 \), for all \(k \geq M \). Therefore \(v_k^1 \) is well-defined by (2.10ab) for each \(k \geq M \). Furthermore, by (2.4), (2.10ab), and (2.11), we have

\[
 0 \leq v_k^1 \leq \sum_{n=k}^{\infty} \frac{(v_n)^2}{v_n + c_n} + \sum_{n=k}^{\infty} A_{n+1} = V_k = v_k^0, \quad k \geq M;
\]

i.e.,

\[
 0 \leq v_k^1 \leq v_k^0, \quad k \geq M.
\]
Proceeding inductively, we assume that v_k^j, $k \geq M$, has been defined by (2.10ab) for $j = 1, 2, 3, \ldots, i$ and that $0 \leq v_k^i \leq v_k^{i-1}$ for $k \geq M$, $j = 1, 2, 3, \ldots, i$. Then

$$v_k^i + c_k \geq c_k > 0, \ k \geq M. \quad \text{Using Lemma 1, we then obtain}$$

$$0 \leq \sum_{n=k}^{\infty} \frac{(v_n^i)^2}{v_n^i + c_n} \leq \sum_{n=k}^{\infty} \frac{(v_n^{i-1})^2}{v_n^{i-1} + c_n}, \ k \geq M. \quad (2.12)$$

It follows from (2.12) that v_k^{i+1} is well-defined by (2.10ab) for all $k \geq M$, and from (2.10ab) and (2.12) we have

$$0 \leq v_k^{i+1} \leq v_k^i, \ k \geq M.$$

Therefore, by induction, v_k^j is defined by (2.10ab) for all $j \geq 1$ and $k \geq M$, and

$$0 \leq v_k^j \leq v_k^{j-1}, \ j \geq 1, \ k \geq M. \quad (2.13)$$

Thus v_k^j is non-negative and non-increasing in j for each $k \geq M$ and we may define

$$v_k = \lim_{j \to \infty} v_k^j, \ k \geq M.$$

Note that $v_k \geq 0$, so that $v_k + c_k \geq c_k > 0, \ k \geq M$. Also, from (2.13) and Lemma 1, we obtain

$$0 \leq \frac{(v_k^j)^2}{v_k^j + c_k} \leq \frac{(v_k^{j-1})^2}{v_k^{j-1} + c_k}, \ j \geq 1, \ k \geq M. \quad (2.14)$$

Repeated application of (2.14) yields, with (2.13),

$$0 \leq \frac{(v_k^j)^2}{v_k^j + c_k} \leq \frac{(v_k^j)^2}{v_k^j + c_k} \quad \text{for all} \ j \geq 0.$$

Thus the convergence of the first series in (2.10b) is uniform with respect to j. Consequently, we may take limits in (2.10ab) as $j \to \infty$ and obtain equation (2.9). It then follows from Lemma 2 that equation (2.2) is non-oscillatory, which completes the proof of the theorem.

Since several recent discussions of oscillation of solutions of difference equations have treated equation (1.2) above, we restate theorem 1 for equations of the form (1.2).
THEOREM 2. Given the difference equations

\[C_n x_{n+1} + C_{n-1} x_{n-1} = B_n x_n \] \hspace{1cm} (2.15)

\[C_n x_{n+1} + C_{n-1} x_{n-1} = b_n x_n \] \hspace{1cm} (2.16)

assume that \(0 < C_n \leq c_n \) and \(C_n \leq K, n = 0,1,2, \ldots \), for some constant \(K > 0 \). If

\[0 \leq \sum_{n=k}^{\infty} (c_n + c_{n-1} - b_n) \leq \sum_{n=k}^{\infty} (C_n + C_{n-1} - B_n) < \infty \]

for all sufficiently large \(k \), then, if (2.15) is non-oscillatory, (2.16) is non-oscillatory also.

REFERENCES

