FUNCTIONS IN THE SPACE $R^2(E)$
AT BOUNDARY POINTS OF THE INTERIOR

EDWIN WOLF
Department of Mathematics
Marshall University
Huntington, West Virginia 25701
(Received September 15, 1982)

ABSTRACT. Let E be a compact subset of the complex plane \mathbb{C}. We denote by $R(E)$ the algebra consisting of (the restrictions to E of) rational functions with poles off E. Let m denote 2-dimensional Lebesgue measure. For $p \geq 1$, let $R^p(E)$ be the closure of $R(E)$ in $L^p(E, dm)$.

In this paper we consider the case $p = 2$. Let $x \in \partial E$ be a bounded point evaluation for $R^2(E)$. Suppose there is a $C > 0$ such that x is a limit point of the set $S = \{y \in \text{Int} E, \text{Dist}(y, \partial E) \geq C \cdot |y - x|\}$. For those $y \in S$ sufficiently near x we prove statements about $|f(y) - f(x)|$ for all $f \in R(E)$.

KEY WORDS AND PHRASES. Rational functions, compact set L^p spaces, bounded point evaluation, admissible function.

1. INTRODUCTION AND DEFINITIONS

Let E be a compact subset of the complex plane \mathbb{C}. We denote by $R(E)$ the algebra consisting of (the restrictions to E of) rational functions with poles off E. Let m denote 2-dimensional Lebesgue measure. For $p \geq 1$, let $R^p(E)$ be the closure of $R(E)$ in $L^p(E, dm)$. A point $x \in E$ is said to be a bounded point evaluation (BPE) for $R^p(E)$ if there is a constant F such that

$$\frac{1}{P} \int_E |f(z)|^p dm(z) \cdot |f(x)| \leq F$$

for all $f \in R(E)$.

In [4] we studied the smoothness properties of functions in $R^p(E)$, $p > 2$, at BPE's. When $p = 2$, the situation is quite different (see Fernström and Polking [2] and Fernström [1]). In [5] we showed that at certain BPE's the functions in $R^2(E)$ have the following smoothness property: Let $x \in \partial E$ be both a BPE for $R^2(E)$ and the vertex of a sector contained in Int E. Let L be a line segment that bisects the sector and has an end point at x. Then for each $\varepsilon > 0$ there is a $\delta > 0$ such that if $y \in L$ and $|y - x| < \delta$, $|f(y) - f(x)| \leq \varepsilon \|f\|_2$ for all $f \in R(E)$. The goal of this paper is to extend this result to certain cases where there may not be a sector in Int E having vertex at x, but x is still a limit point of Int E.

If $x \in E$ is a BPE for $R^2(E)$, there is a function $g \in L^2(E)$ such that $f(x) = \int_E fg \, dm$ for any $f \in R(E)$. Such a function g is called a representing function for x.

A point $x \in E$ is a bounded point derivation (BPD) of order s for $R^2(E)$ if the map $f \mapsto f^{(s)}(x)$, $f \in R(E)$, extends from $R(E)$ to a bounded linear functional on $R^2(E)$.

Let $A_n(x)$ denote the annulus $\{z|2^{-n-1} \leq |z - x| \leq 2^{-n}\}$. Let $A_n'(x) = \{z|2^{-n-2} < |z - x| < 2^{-n+1}\}$. If $x = 0$, we will denote $A_n(0)$ by A_n and $A_n'(0)$ by A_n'.

For an arbitrary set $X \subset \mathbb{C}$ we let $C_2(X)$ denote the Bessel capacity of X which is defined using the Bessel kernel of order 1 (see [3]).

We say that ϕ is an admissible function if ϕ is a positive, non-decreasing function defined on $(0, \infty)$, and $r \cdot \phi(r)^{-1}$ is nondecreasing and tends to zero when $r \to 0^+$.

Using the techniques of [4] and [2] one can prove:

Theorem 1.1. Let s be a nonnegative integer and E a compact set. Suppose that x is a BPE for $R^2(E)$ and ϕ is admissible. Then x is
represented by a function $g \in L^2(E)$ such that

$$g \cdot \phi(|z-x|) \in L^2(E)$$

if and only if $\sum_{n=0}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_2 (A_n(x) - E) < \infty$.

2. **THE MAIN RESULTS**

Let $x \in \partial E$ be a BPE for $R^2(E)$. We may assume that $x = 0$ and that $E \subset \{ |z| < 1 \}$. Suppose there is a positive constant C such that 0 is a limit point of the set $S = \{ y | y \in \text{Int } E, \text{Dist}(y, \partial E) \geq C |y| \}$.

We will construct a function $g \in L^2(E)$ which represents 0 for $R^2(E)$ and has support disjoint from S.

LEMMA 2.1. Let $0 \in \partial E$ be a BPE for $R^2(E)$. Suppose there is a positive constant C such that 0 is a limit point of the set $S = \{ y | y \in \text{Int } E, \text{Dist}(y, \partial E) \geq C |y| \}$. Then there is a function $g \in L^2(E)$ such that:

(i) g represents 0 for $R^2(E)$,

(ii) $m(\text{supp } g) \cap S) = 0$,

$$k = \left\lceil \frac{n-2}{2} \right\rceil + 1$$

(iii) For all $n \geq 2$, \[\int_{A_n \cap E} |g|^2 \, dm \leq F \sum_{k=0}^{2^{n-1}} C_2 (A_{2k+1} - E) \]

where F is a constant independent of n.

PROOF. For each $i, i = 0, 1, 2, \ldots$ consider all the intersections of the set $A_i = \{ z | 2^{-i-1} \leq |z| \leq 2^{-i} \}$ with the bounded components of $E - E$. Let Y_i be the closure of the union of these intersections.

Since Y_i is compact, it can be covered by finitely many open discs of radius $<C 3^{-i-1}$. Let the union (finite) of these discs be denoted by B_i. The set B_i is bounded by finitely many closed Jordan curves each of which is the union of finitely many circular arcs. Each set B_i is contained in a set C_i bounded by finitely many closed Jordan curves Γ_{ij}, $j = 1, 2, \ldots, n_i$ such that if z belongs to any one of these
curves, \(\text{Dist} (z, B_1) = 2C_3^{-1}z^{-1} \).

Now for each \(k, k = 0, 1, 2, \ldots \) choose a function \(\lambda_k \in C^1_0 \) such that:

1. \(\supp \lambda_k \subset A_{2k+1} \)

2. \(\lambda_k(z) = 1 \) for \(z \in \{z | 2^{-2k-2} \leq |z| \leq 2^{-2k-1} \} \cap B_{2k+1} \)

3. \(\lambda_k(z) = 0 \) for \(z \in \bigcup_{i=0}^{\infty} C_i \)

4. \(\frac{\partial \lambda_k(z)}{\partial x_1} \leq F_1 \cdot 2^{2k+1}, \quad \frac{\partial \lambda_k(z)}{\partial x_2} \leq F_2 \cdot 2^{2k+1} \)

where \(z = x_1 + ix_2 \) and \(F_1 \) and \(F_2 \) are constants independent of \(k \).

5. \(\lambda_k(z) + \lambda_{k+1}(z) = 1 \) for \(z \in \{z | 2^{-2k-3} \leq |z| \leq 2^{-2k-2} \} \cap B_{2k+2} \).

Given any \(\varepsilon > 0 \) we use a lemma of Fernström and Polking [2] to obtain functions \(\psi_k \in C^\infty \) such that:

1. \(\psi_k(z) \equiv 1 \) for \(z \) near \(A_k' = [z | \text{Dist}(z, E) < \varepsilon] \).

2. \(\int |D^\beta \psi_k(z)|^2 \, dm(z) \leq F \cdot 2^{-2k(1-|\beta|)} C_2(A_k' - E) \)

for \(\beta = (0,0), (0,1), \) and \((1,0) \). Here the constant \(F \) is independent of \(\varepsilon \) and \(k \).

Since \(\supp \lambda_k \subset A_{2k+1} \), we have \(\psi_{2k+1} \cdot \lambda_k = \lambda_k \) on the set \(\{z | \text{Dist}(z, E) \geq \varepsilon\} \). Thus \(\sum_{\beta}^{\infty} \psi_{2k+1} \cdot \lambda_k \equiv 1 \) on \(\{|z| \leq 4^{-1}\} \) - \(\{z | \text{Dist}(z, E) < \varepsilon\} \). Choose \(\chi \in C^\infty \) with \(\chi(z) \equiv 1 \) near \(E \). Set \(h(z) = \chi(z) \cdot \frac{1}{|z|^2} \). For each double index \(\beta = (0,0), (0,1), \) and \((1,0) \) there is a constant \(F_{\beta} \) such that

\[
|D^\beta h(z)| \leq F_{\beta} \cdot |z|^{-1-|\beta|}.
\]

Set \(f_\varepsilon = h \cdot \sum_{\beta}^{\infty} \psi_{2k+1} \cdot \lambda_k = \sum_{\beta}^{\infty} \psi_{2k+1} \cdot h_k \)

where \(h_k = \lambda_k h \).
Since $\text{supp } \lambda_k \subset A_{2k+1}^1$, the above inequalities imply that
\[
|D^B h_k(z)| \leq F_{B^2}(2k+1)(1+|B|)
\]
The subadditivity of C_2 and the convergence of $\sum_0^\infty 2^{2k} C_2(A_k - E)$ (see Theorem 1.1) imply that the net $\{f_\varepsilon\}$ is bounded in $L^2_{1,\text{loc}}$. There is a subsequence that converges weakly to a function $f \in L^2_{1,\text{loc}}$ which satisfies $f(z) = \frac{\chi(z)}{nz}$ for $z \in \mathbb{C} - E$ and $f(z) = 0$ for every $z \in E \cap \{z|\text{Dist}(z, \partial E) \geq C|z|\}$. Set $g = -\frac{\partial f}{\partial z}$. Then $g \in L^2(E)$ since $f \in L^2_{1}(E)$, and g is a representing function for 0. The proof of (iii) proceeds as in [5].

The above lemma can be used to prove the following theorem in almost the same way that in [5] Lemma 5.1 is used to prove Theorem 5.1.

THEOREM 2.1. Let $0 \in \partial E$ be a BPE for $R^2(E)$. Let C be a positive constant such that 0 is a limit point of the set $S = \{y|y \in \text{Int } E, \text{Dist}(y, \partial E) \geq C|y|\}$. Let g be a representing function for 0 and suppose that $g(z) \cdot \phi(|z|)^{-1} \in L^2(E)$ where ϕ is an admissible function. Then for any $\varepsilon > 0$ there is a $\delta > 0$ such that if $y \in S$ and $|y| < \delta$,
\[
|f(y) - f(0)| \leq \varepsilon\phi(|y|)\|f\|_2
\]
for all $f \in R(E)$.

Using this theorem and the methods in [4] one can prove:

COROLLARY 2.1. Suppose that all the conditions of Theorem 2.1 hold. Suppose, moreover, that s is a positive integer such that $g(z) \cdot z^{-s} \cdot \phi(|z|)^{-1} \in L^2(E)$. Then for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $y \in S$ and $|y| < \delta$,
\[
|f(y) - f(0) - \frac{f'(0)}{1!} (y - 0) - \cdots - \frac{f^{(s)}(0)}{s!} (y - 0)^s| \leq \varepsilon |y-0|^s \phi(|y|)\|f\|_2
\]
for all $f \in R(E)$.
Finally, there is a corollary with weaker preconditions.

COROLLARY 2.2. Let $0, g,$ and ϕ be as in Theorem 2.1. Suppose there is a positive constant C such that 0 is a limit point of the set

$$S = \{ y \mid y \in \text{Int } E, \text{Dist}(y, \partial E) \geq C \cdot \phi(|y|)|y| \}$$

Then for each $\epsilon > 0$ there is a $\delta > 0$ such that if $y \in S$ and $|y| < \delta$,

$$|f(y) - f(0)| \leq \epsilon \|f\|_2 \text{ for all } f \in R(E).$$

The proof is similar to the proof of Theorem 2.1.

One uses the fact that there exists an admissible function $\overline{\phi}$ such that $g \cdot \overline{\phi}^{-1} \cdot \phi^{-1} \in L^2(E)$.

3. **EXAMPLES**

EXAMPLE 1. We will construct a compact set E such that $0 \in \partial E$, 0 is a BPE for $R^2(E)$, and 0 is a limit point of $\text{Int } E$. Let $D = \{ |z| \leq 1 \}$. Let D_i, $i = 1, 2, 3, \ldots$, be the open disc centered on the positive real axis at $3 \cdot 2^{-i-3}$ and having radius $r_i = \exp(-2^{2i-1})$.

Let $E = D - \bigcup_{i=1}^{\infty} D_i$. Then since $C_2(B(x,r)) \leq F(\log \frac{1}{r})^{-1}, r \leq r_0 < 1$, (see [3]), we have

$$\sum_{n=1}^{\infty} 2^n C_2(A_n - E) = \sum_{n=1}^{\infty} 2^n C(D_n) \leq F \cdot \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

Thus 0 is a BPE for $R^2(E)$. If C is a positive constant sufficiently small (any positive number $< \frac{1}{2}$ will do), the set $\{ y \mid y \in \text{Int } E, \text{Dist}(y, \partial E) \geq C |y| \}$ intersects the positive real axis in a sequence of disjoint intervals $[a_n, b_n]$ such that $b_n \to 0$.

EXAMPLE 2. Next we construct a compact set E which is like Example 1 in that 0 is a limit point of $\text{Int } E$ and a BPE for $R^2(E)$. In this example, however, there exists no sequence $\{y_n\} \subset \text{Int } E$ such that $|f(y_n) - f(0)| \leq \epsilon \|f\|_2$ for all $f \in R(E)$ if $|y_n| < \delta$. We will use
important parts of Fernström's construction in [1]. Let F be a positive constant such that $C_2(B(z,r)) \leq F(\log \frac{1}{r})^{-1}$ for all $r, r < r_0 < 1$. Choose $a, a \geq 1$ such that

$$
\frac{F}{a} \sum_{n=1}^{\infty} \frac{1}{n \log 2n} < C_2(B(0,1/2)).
$$

Let A_0 be the closed unit square with center at 0. Cover A_0 with 2^{-n} squares of side 2^{-n}. Call the squares $A_n^{(i)}, i = 1, 2, \ldots, 4^n$. In every set $A_n^{(i)}$ put an open disc $B_n^{(i)}$ such that $B_n^{(i)}$ and $A_n^{(i)}$ have the same center, and the radius of $B_n^{(i)}$ is $\exp(-4^n n \log 2n)$. Let $D_i, i = 1, 2, 3, \ldots$ be an open disc centered on the positive real axis such that $D_i \subset \{z | 2^{-i-1} \leq |z| \leq 2^{-i}\}$ and $r_i = \exp(-2^{2i} i^2)$. For each $n, n = 1, 2, 3, \ldots$, let $G_n = \bigcup_{i=1}^{4^n} B_n^{(i)}$ where the summation is over those indices i such that $1 \leq i \leq 4^n$ and $B_n^{(i)} \cap (\bigcup_{i=1}^{n} D_i) = \emptyset$. Set $E_1 = A_0 - \bigcup_{n=2}^{\infty} G_n$. Then $R^2(E_1)$ has no BPE's in ∂E_1 as is shown in [1].

Now replace a suitable number of the discs $B_n^{(i)}, B_n^{(i)} \subset \bigcup_{j=1}^{\infty} G_j$, to obtain a compact set E_2 such that 0 is the only boundary point of E_2 that is a BPE for $R^2(E_2)$, (see [1]). This can be done so that $\text{Int } E_2 = \bigcup_{i=1}^{\infty} D_i$. If $y \in \text{Int } E_2$, let $\text{norm}(y)$ denote the norm of "evaluation at y" as a linear functional on $R^2(E_2)$. Then if $[y_k] \subset D_i$, and $y_k \to \partial D_i$, $\text{norm}(y_k) \to \infty$; otherwise some point on ∂D_i would be a BPE for $R^2(E_2)$.

For each i choose an open disc $D_i' \subset D_i$ such that D_i' and D_i are concentric and such that if $y \in D_i - D_i'$, then $\text{norm}(y)$ for the space $R^2(E_2 - D_i')$ is greater than i.
Now let \(E = E_2 - \bigcup_{i=1}^{\infty} D_i' \).

The radii of the \(D_i' \) are so small that 0 is also a BPE for \(R^2(E) \). Let \(\{y_n\} \) be any sequence in \(\text{Int} \ E \) such that \(y_n \to 0 \). Let \(\text{norm}(y_n) = \text{norm of "evaluation at } y_n \text{" on } R^2(E) \). Then for no \(\epsilon > 0 \) is there a \(\delta > 0 \) such that if \(|y_n| < \delta \), \(|f(y_n) - f(0)| \leq \epsilon \|f\|_2 \) for all \(f \in R(E) \).

EXAMPLE 3. Let \(\varphi \) be an admissible function. Obtain a compact set \(E \) in the same way that the set \(E_2 \) was obtained in Example 2 so that:

1. \(D_i \) is centered at \(3 \cdot 2^{-i-2} \) and has radius
 \[r_i = \varphi(3 \cdot 2^{-i-2}) \cdot 2^{-i-2} \]
2. \(\sum_{n=0}^{\infty} 2^n \cdot \varphi(2^{-n})^2 C_2(A_n(0) - E) < \infty \), and
3. \(\sum_{n=0}^{\infty} 2^n C_2(A_n(x) - E) = \infty \) for \(x \neq 0 \), \(x \not\in \bigcup D_i \).

Let \(y_i = 3 \cdot 2^{-i-2} \). Then by the choice of \(r_i \), \(\text{Dist}(y_i, E) \geq 3^{-1} \varphi(|y_i|) |y_i| \). But there is no \(C > 0 \) such that \(\text{Dist}(y_i, \partial E) \geq C|y_i| \) for all \(i \). Hence Corollary 2.2 applies to the sequence \(\{y_i\} \) but Theorem 2.2 does not.

REFERENCES

1. Fernström, C., Some remarks on the space \(R^2(E) \), Math. Reports, University of Stockholm 1982.