PARTIAL HENSELIZATIONS

ROBERT W. SHEETS

Department of Mathematics
Southeast Missouri State University
Cape Girardeau, Missouri 63701

(Received January 28, 1980)

ABSTRACT. We define and note some properties of k H-pairs (k Henselian pairs), k N-pairs, and k N'-pairs. It is shown that the 2-Henselization and the 3-Henselization of a pair exist. Characterizations of quasi-local 2H-pairs are given, and an equivalence to the chain conjecture is proved.

KEY WORDS AND PHRASES. k Henselian pair, k N-pair, k N'-pair, chain conjecture.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 13J15.

1. INTRODUCTION.

We define a pair (A,m) to be a k H-pair (a k Henselian pair) in case the ideal m is contained in the Jacobson radical of the commutative ring A and if for every monic polynomial f(X) of degree k in A[X] such that \(\overline{f}(X) \in A/m [X] \) factors into \(\overline{f}(X) = \overline{g}_o(X)\overline{h}_o(X) \) where \(\overline{g}_o(X) \) and \(\overline{h}_o(X) \) are monic and coprime, there exist monic polynomials g(x), h(X) \(\in A[X] \) such that f(X) = g(X)h(X), \(\overline{g}(X) = \overline{g}_o(X) \), and \(\overline{h}(X) = \overline{h}_o(X) \). It is shown that the 2-Henselization and the 3-Henselization of a pair (A,m) exist. Several properties of k H-pairs are noted. And an equivalence to the Chain Conjecture is also given.

2. k H-PAIRS, k N-PAIRS, AND k N'-PAIRS.

In this section we define and give some facts about k H-pairs, k N-pairs, and
The main result, Theorem (2.10) states that (i) a \(k \) \(H\)-pair is a \(k \)
\(N\)-pair, (ii) a \(k \) \(N\)-pair is a \(k \) \(N'\)-pair, and (iii) an \(k \) \(N'\)-pair is a \(j \) \(H\)-pair provided \(k \geq \max \{c_{j,n} \mid n = 0,1,...,j\} \).

We begin by stating several definitions. In these definitions and throughout
the paper a ring shall mean a commutative ring with an identity element, and \(J(A) \)
denotes the Jacobson radical of the ring \(A \).

Definition 2.1. \((A,m)\) is a pair in case \(A \) is a ring and \(m \) is an ideal in \(A \).

Definition 2.2. \((A,m)\) is a \(k \) \(H\)-pair in case

(i) \(m \subset J(A) \); and

(ii) for every monic polynomial \(f(X) \) of degree \(k \) in \(A[X] \) such that
\(f(X) \in A/m[X] \) factors into \(\bar{f}(X) = \bar{g}_0(X) \bar{h}_0(X) \) where \(\bar{g}_0(X) \) and \(\bar{h}_0(X) \) are monic and
coprime, there exist monic polynomials \(g(X), h(X) \in A[X] \) such that \(f(X) = g(X)h(X) \),
\(\bar{g}(X) = \bar{g}_0(X) \) and \(\bar{h}(X) = \bar{h}_0(X) \).

Definition 2.3. Let \((A,m)\) be a pair. A monic polynomial \(X^k + a_{k-1}X^{k-1} + ... + a_1X + a_0 \) of degree \(k \) is called a \(k \) \(N\)-polynomial over \((A,m)\) in case \(a_d \in m \) and
\(a_1 \) is a unit mod \(m \).

Definition 2.4. \((A,m)\) is a \(k \) \(N\)-pair in case

(i) \(m \subset J(A) \); and

(ii) every \(k \) \(N\)-polynomial over \((A,m)\) has a root in \(m \).

The next results give some facts about \(k \) \(N\)-polynomials and \(k \) \(N\)-pairs.

Lemma 2.5. Let \(f(X) \) be a \(k \) \(N\)-polynomial over the pair \((A,m)\). If \(m \subset J(A) \),
then \(f(X) \) has at most one root in \(m \).

Proof. The proof follows from [5, Lemma 1.5], since a \(k \) \(N\)-polynomial is an
\(N\)-polynomial.

Remark. Every \(k \) \(N\)-polynomial over a \(k \) \(N\)-pair \((A,m)\) has one and only one root
in \(m \).

Proposition 2.6. If \((A,m)\) is a \(k \) \(N\)-pair, then \((A,m)\) is an \(j \) \(N\)-pair for 2
\(2 \leq j \leq k \).

Proof. Given a \(k \) \(N\)-pair \((A,m)\), it suffices to show that \((A,m)\) is a \((k-l)\)
\(N\)-pair. Let \(f(X) \) be a \((k-l)\) \(N\)-polynomial over \((A,m)\). Let \(u \) be a unit in \(A \) and
\(g(X) = (X + u)f(X) \). Then \(g(X) \) is a \(k \) \(N \)-polynomial and thus has a root \(r \) in \(m \) and
\(0 = g(r) = (r + u)f(r) \). Since \(r + u \) is a unit, we have \(f(r) = 0 \). Therefore,
\((A, m) \) is a \((k - 1) \) \(N \)-pair.

Definition 2.7. Let \((A, m) \) be a pair. A monic polynomial
\[x^k + d_1 x^{k-1} + d_2 x^{k-2} + \ldots + d_k \]
of degree \(k \) is called a \(k \) \(N' \)-polynomial over \((A, m) \) in case \(d_1 \) is a unit mod \(m \) and \(d_2, \ldots, d_k \) belong to \(m \).

Definition 2.8. \((A, m) \) is a \(k \) \(N' \)-pair in case

(i) \(m \subseteq J(A) \); and

(ii) every \(k \) \(N' \)-polynomial over \((A, m) \) has a root in \(A \), which is a unit.

We note that if \((A, m) \) is a \(k \) \(N' \)-pair, \(f(X) = x^k + d_1 x^{k-1} + \ldots + d_k \) is a \(k \) \(N' \)-polynomial over \((A, m) \) and \(r \in A \) is a root of \(f(X) \) given by the definition of a \(k \) \(N' \)-pair, then \(r = -d_1 \), and \(f'(r) \) is a unit.

Proposition 2.9. Let \((A, m) \) be a \(k \) \(N' \)-pair, then \((A, m) \) is an \(j \) \(N' \)-pair for \(2 \leq j \leq k \).

Proof. Given a \(k \) \(N' \)-pair \((A, m) \), it suffices to show that \((A, m) \) is a \((k-1) \) \(N' \)-pair. Let \(f(X) \) be a \((k-1) \) \(N' \)-polynomial over \((A, m) \). Then \(Xf(X) \) is a \(k \) \(N' \)-polynomial and has a root \(u \), which is a unit. and \(uf(u) = 0 \) implies that \(f(u) = 0 \), therefore \((A, m) \) is a \((k-1) \) \(N' \)-pair.

Theorem 2.10. (i) A \(kH \)-pair is a \(kN \)-pair

(ii) A \(kN \)-pair is a \(kN' \)-pair

(iii) A \(kN' \)-pair is a \(jH \)-pair, provided
\[k \geq \max \{ C_{j, n} \mid n = 0, 1, \ldots, j \} \]

Proof. Part (i) follows from the definitions.

The proof of (ii) follows from the proof of [10, Lemma 7]

The proof of (iii) follows from Crépeaux's proof of [3, Prop. 1]

3. \(k \) \(N \)-Closure.

In this section we construct the \(k \) \(N \)-closure for a given pair \((A, m) \). That is, we find the "smallest" \(k \) \(N \)-pair which "contains" \((A, m) \). The development of this section parallels Greco's development in [5].

In order to construct the \(k \) \(N \)-closure we need the following definitions.
DEFINITION 3.1. A morphism (of pairs) $\phi: (A,m) \to (B,n)$ is a ring homomorphism $\phi: A \to B$, such that $\phi^{-1}(n) = m$.

DEFINITION 3.2. A morphism (of pairs) $\phi: (A,m) \to (B,n)$ is strict in case $n = \phi(m)B$ and ϕ induces an isomorphism $A/m \to B/n$.

DEFINITION 3.3. Let (A,m) be a pair. A k-pair (B,n) together with a morphism $\phi: (A,m) \to (B,n)$ is a k-closure of (A,m) if for any k-pair (B',n') and any morphism $\psi: (A,m) \to (B',n')$ there exists a unique morphism $\psi': (B,n) \to (B',n')$ such that $\psi' \circ \phi = \psi$.

DEFINITION 3.4. Let (A,m) be a pair and $f(X)$ a k-polynomial over (A,m). Let $A[x] = A[X]/(f(X))$, $S = 1 + (m,x)A[x]$ and $B = S^{-1}A[x]$. Then (B,mB) is called a simple k-extension of (A,m).

DEFINITION 3.5. A k-extension of (A,m) is a pair obtained from (A,m) by a finite number of simple k-extensions.

The next two results give some useful properties of simple k-extensions and k-extensions.

LEMMA 3.6. Let (B,n) be a simple k-extension of (A,m). Let $\phi: A \to B$ be the canonical morphism. Then:

(i) $x \in n$.

(ii) $\phi^{-1}(n) = m$ and $\phi: (A,m) \to (B,n)$ is a morphism of pairs.

(iii) $\phi: (A,m) \to (B,n)$ is strict.

PROOF. The proof follows from [5, Lemmas 2.3, 2.4, and 2.5] since a simple k-extension is a simple N-extension.

COROLLARY 3.7. If (B,n) is a k-extension of (A,m), then the canonical morphism $\phi: (A,m) \to (B,n)$ is strict.

We note that a k-extension of a quasi-local ring (A,m) is a quasi-local ring.

The following lemma is used to show that the partial order defined in Definition (3.9) is well defined.

LEMMA 3.8. Let (A',m') be a k-extension of (A,m) and let (B,n) be a pair with $n \subseteq J(B)$. Let $\phi: (A,m) \to (A',m')$ be the canonical morphism. Then for any
morphism \(\psi: (A, m) \to (B, n) \) there is at most one morphism \(\psi': (A', m') \to (B, n) \) such that \(\psi' \circ \emptyset = \psi \).

PROOF. The proof follows from [5, Lemma 3.1] since a \(k \)-\(N \)-extension is an \(N \)-extension.

In particular, the above lemma holds when \((B, n)\) is a \(k \)-\(N \)-extension of \((A, m)\).

DEFINITION 3.9. Define a partial order on the set of \(k \)-\(N \)-extensions of \((A, m)\) as follows: If \((A', m')\) and \((A'', m'')\) are two \(k \)-\(N \)-extensions of \((A, m)\), then \((A', m') \leq (A'', m'')\) if and only if there is a morphism \(\psi: (A', m') \to (A'', m'') \) such that \(\psi \circ \emptyset = \emptyset '' \), where \(\emptyset: (A, m) \to (A', m') \) and \(\emptyset '': (A, m) \to (A'', m'') \) are the canonical morphisms.

PROPOSITION 3.10. Let \((A, m)\) be a pair. Then the \(k \)-\(N \)-extensions of \((A, m)\) form a directed set with the order relation and the morphisms defined above.

PROOF. The proof is analogous to [5, Prop. 3.3].

LEMMA 3.11 Let \((A', m')\) be a \(k \)-\(N \)-extension of \((A, m)\) and let \(\emptyset: (A, m) \to (A', m') \) be the canonical morphism. Let \((B, n)\) be a \(k \)-\(N \)-pair and let \(\psi: (A, m) \to (B, n) \) be a morphism. Then there is a unique morphism \(\psi': (A', m') \to (B, n) \) such that \(\psi = \psi' \circ \emptyset \).

PROOF. The proof is analogous to [5, Prop. 3.4].

THEOREM 3.12. Let \((A, m)\) be a pair and let \((A^{kN}, m^{kN})\) be the direct limit of the set of all \(k \)-\(N \)-extensions. Then \((A^{kN}, m^{kN})\) with the canonical morphism \((A, m) \to (A^{kN}, m^{kN})\) is a \(k \)-\(N \)-closure of \((A, m)\).

PROOF. The proof is analogous to [5, Thm. 3.5].

We note that if \((A, m)\) is a quasi-local ring; then a \(k \)-\(N \)-closure \((A^{kN}, m^{kN})\) of \((A, m)\) is quasi-local, since the direct limit of quasi-local rings is quasi-local.

4. **\(k \)-\(H \)-CLOSURES AND AN EQUIVALENCE TO THE CHAIN CONJECTURE.**

In this section, we note the existence of a \(2H \)-closure and of a \(3H \)-closure, we give some characterization of a quasi-local \(2H \)-pair, and we observe that the \(H \)-closure (or Henselization) of a pair \((A, m)\) can be written as the direct limit or union of \(k \)-\(H \)-pairs, \(k = 2, 3, 4, \ldots \). We also give an equivalence to the Chain Conjecture.

DEFINITION 4.1. Let \((A, m)\) be a pair. A \(k \)-\(H \)-pair \((B, n)\), together with a
morphism $\phi:(A,m)\to(B,n)$ is a k-H-closure of (A,m) if for any k-H-pair (B',n') and any morphism $\psi:(A,m)\to(B'n')$, there exists a unique morphism $\psi':(B,n)\to(B',n')$ such that $\psi'\circ\phi=\psi$.

THEOREM 4.2. Let (A,m) be a pair. Then:

(i) a 2-H-closure of (A,m) is (A^{2N}, m^{2N}).

(ii) a 3-H-closure of (A,m) is (A^{3N}, m^{3N}).

PROOF. It suffices to show that a k-N-closure $(k=2,3)$ is a k-H-pair. And by Theorem 2.10, we have that a $2N$-pair is a 2H-pair, and that a $3N$-pair is a 3H-pair.

DEFINITION 4.3. If $\phi:A+B$ is a ring homomorphism, then B is said to be k-integral over A in case each $b \in B$ satisfies a monic polynomial of degree k over $\phi(A)$.

REMARK. If B is k-integral over A, then B is also j-integral over A for all $j \geq k$.

In the next three items we give examples of rings and elements which are k-integral over a given ring A.

LEMMA 4.4. If A is an integrally closed domain and $f(X) \in A[X]$ is a monic polynomial of degree k, then $A[X]/(f(X))$ is k-integral over A.

PROOF. Let $A[x] = A[X]/(f(X))$ and let L be the quotient field of A. Then $[L(x):L] \leq k$ and thus each $\alpha \in A[x]$ satisfies a monic polynomial $g(X) \in L[X]$ of degree $\leq k$. Since α is integral over A and A is integrally closed, it follows that $g(X) \in A[X]$. Therefore $A[x]$ is k-integral over A.

LEMMA 4.5. Let A be a ring and let $f(X) = X^2 + \alpha X + \beta \in A[X]$. Then $A[X]/(f(X))$ is 2-integral over A.

PROOF. Let $A[x] = A[X]/(f(X))$ and then all of the elements of $A[X]$ are of the form $ax + b$ where $a,b \in A$. To show that $A[x]$ is 2-integral over A, we need to find $F,G \in A$ such that

$$(ax + b)^2 + F(ax + b) + G = 0.$$

By expanding the left side, we see that $F = a\alpha - 2b$ and $G = a^2\alpha - b^2 - Fb = a^2\beta + b^2 - ab\alpha$ are the needed values. Therefore $A[X]$ is 2-integral over A.

EXAMPLE 4.6. Each element of $\text{End}_A(A^k)$ is k-integral over A by [1, Proposition 2.4].
In fact, if M is any A-module generated by k elements, each element of $\text{End}_A(M)$ is k-integral over A.

Definition 4.7. (A,m) is a $(\leq k)H$-pair in case (A,m) is a jH-pair for $2 \leq j \leq k$.

It follows by Theorem 2.10 that if (A,m) is a jN-pair (or jH-pair), then (A,m) is a $(\leq k)H$-pair provided $j \geq \max\ {C_k,n \mid n = 0, 1, \ldots k}$. In particular we have that for $k = 2,3$, or 4, a kH-pair is also a $(\leq k)H$-pair.

Lemma 4.8. Let (A,m) be a quasi-local domain which is a $(\leq k)H$-pair. Then every k-integral extension domain of A is quasi-local.

Proof. The proof is analogous to [6, (30.5)]

Definition 4.9. A ring A is decomposed if A is the product of finitely many quasi local rings.

Theorem 4.10. Let (A,m) be a quasi local ring. Then the following statements are equivalent.

(i) Every finite 2-integral A-algebra B is decomposed.

(ii) Every finite free 2-integral A-algebra B is decomposed.

(iii) Every A-algebra of the form $A[X]/(f(X))$, where $f(X) \in A[X]$ is monic and of degree 2, is decomposed.

(iv) (A,m) is a $2H$-pair.

Proof. (i) \Rightarrow (ii) is clear. (ii) \Rightarrow (iii) is clear by (4.5). The proofs that (iii) \Rightarrow (i) and that (iii) \Leftrightarrow (iv) follow classical lines; for example, see [9, Prop. 5, p.2].

Theorem 4.11. A quasi local domain (A,m) is a $2H$-pair if and only if every 2-integral extension domain A' of A is quasi-local.

Proof. (\Rightarrow) is true by (4.8).

(\Leftarrow). We will show that (A,m) is a $2H$-pair by showing that every finite free 2-integral A-algebra is decomposed. Let B be a finite free 2-integral A-algebra. Since B is decomposed if and only if $B/\text{nil \, rad \, B}$ is decomposed, we may assume that B is reduced. Since B is flat over A, regular elements of A are also regular in B. Thus the minimal primes of B contract to $\{0\}$ in A. Let $\{P_i \mid i \in I\}$ be the minimal primes of B. Then for each $i \in I$, B/P_i is a 2-integral extension domain of A and is quasi local by the hypothesis. Thus each minimal prime P_i is contained in a unique maximal
ideal. By [2, Proposition 3, p. 329], the set of minimal primes of B is finite. Let $I_j = \cap_{i \in M_j} P_i$, where M_j, $j=1,\ldots, n$, are the maximal ideals of B. Then the I_j are coprime, and $\cap_{j=1}^n I_j = 0$ since B is reduced. So by the Chinese Remainder Theorem $B \cong \prod_{j=1}^n B/I_j$ and each B/I_j is quasi local. Thus B is decomposed and therefore (A,m) is a $2H$-pair.

COROLLARY 4.12. Let (A,m) be a quasi local domain which is $2H$-pair. Let A' be an integral extension domain of A. If $b \in A'$ is 2-integral over A, then $b \in J(A')$ or b is a unit.

PROOF. $A[b]$ is a 2-integral extension domain of A and is thus quasi local. The result follows since all the maximal ideals of A' contract to the unique maximal ideal of $A[b]$.

We will now show that the N-closure of a pair (A,m) is the direct limit of the k N-closures of (A,m). It will follow from this result that the H-closure of (A,m) can be written as the direct limit of k H-pairs.

DEFINITION 4.13. Let (A,m) be a pair. Then (A,m) is an N-pair (respectively, a H-pair) in case (A,m) is a k N-pair (respectively, a k H-pair) for $k = 2,3,\ldots$.

DEFINITION 4.14. Let (A,m) be a pair. An N-pair (respectively, an H-pair) (B',n'), together with a morphism $\phi:(A,m)\rightarrow(B',n')$ is an N-closure (respectively, an H-closure) of (A,m) if for any N-pair (respectively, any H-pair) (B',n'), and any morphism $\psi':(A,m)\rightarrow(B',n')$, there exists a unique morphism $\psi:(B,n)\rightarrow(B',n')$ such that $\psi' \circ \phi = \psi$.

THEOREM 4.15. Let (A,m) be a pair. Then the H-closure of (A,m) is isomorphic to the N-closure.

PROOF. See [5, Lemma 1.4 and Theorem 5.10].

PROPOSITION 4.16. Let (A^N,m^N) be an N-closure of (A,m). Then $(A^N,m^N) \sim \operatorname{dir lim} (A^{kN},m^{kN})$, where the directed system $\{(A^{kN},m^{kN}),\mu_{kj}\}$ of k N-closures of (A,m), $k=2,3,\ldots$, is ordered by $(A^{kN},m^{kN}) \leq (A^{jN},m^{jN})$ iff $k \leq j$ and if $k \leq j$, then $\mu_{kj}:(A^{kN},m^{kN})\rightarrow(A^{jN},m^{jN})$ is the unique morphism which makes the following diagram commute:
where \(\emptyset_j \) and \(\emptyset_k \) are the canonical morphisms.

Proof. The proof follows immediately from Definitions (3.3) and (4.14) and the definition of a direct limit.

Corollary 4.17. Let \((A^H, m^H) \) be the \(H \)-closure of \((A, m) \). Then \((A^H, m^H) \) is
\[
\text{dir lim } (A_j, m_j)_i \quad \text{where } (A_j, m_j)_i \text{ is an } i - \text{pair for } i = 2, 3, \ldots.
\]

Proof. For a given \(i \), let \((A_j, m_j)_i = (A_{kN}, m_{kN}) \) where \(k = \max \{ C_j, n=0, 1, \ldots, j \} \).

Then the corollary follows by results (2.10), (4.15) and (4.16).

We now give an equivalence to the Chain Conjecture. The terminology used is the same as in [8] or [10].

Theorem 4.18. The following statements are equivalent:

(i) The Chain Conjecture holds.

(ii) Every \(2 \)-Henselian local domain \(A \), such that the integral closure of \(A \) is quasi-local, is catenary.

Proof. (i) \(\Rightarrow \) (ii). This follows by [8, Thm. 2.4].

(ii) \(\Rightarrow \) (i). By [8, Thm. 2.4] it suffices to show that every Henselian local domain is catenary. Let \(A \) be a Henselian local domain. Then \(A \) is also \(2 \)-Henselian and the integral closure of \(A \) is quasi-local by [6, (43.12)]. Thus by the hypothesis \(A \) is catenary.

5. **Examples.**

In this section we show that there exist \(k \)-N-pairs which are not N-pairs and there exist \(k \)-H-pairs which are not H-pairs. More precisely, for each prime number \(p \) we give an example of a pair which is not a \(p \)-N-pair but is a \(k \)-N-pair for \(2 \leq k < p \). This example also shows that for any integer \(k \geq 2 \), there exists a \(k \)-H-pair which is not a \(p \)-H-pair for some sufficiently large prime number \(p \).

Let \(p > 2 \) be a prime number. Let \((R, q) \) be a normal quasi-local domain such that there exists an \(f(X) = X^p + \ldots + a_1X + a_0 \in R[X] \), where \(a_1 \notin q \), \(a_0 \in q \) and \(f(X) \)
is irreducible over \(R[X]\).

In particular, let \(R = \mathbb{Z}(2)\) and let \(f(X) = X^p + 3X + 6\). Then by Eisenstein's Criterion, \(f(X)\) is irreducible in \(Q[X]\), and thus irreducible in \(\mathbb{Z}(2)[X]\) since \(f(X)\) has content 1.

Let \(K\) be the quotient field of \(R\) and let \(\overline{K}\) be an algebraic closure of \(K\). Let \(R'\) be the integral closure of \(R\) in \(\overline{K}\) and \(P'\) any maximal ideal in \(R'\). Now \(f(X)\) as an element of \(R'[X]\) factors completely, and since \(P' \cap R = q\), \(f(X)\) has a unique root \(\alpha \in P'\). Let \(L\) be the least normal extension of \(K\) containing \(\alpha\). Then \(p\mid [L:K]\) and by [7, Thm. 6] there is a maximal field \(M\) without \(\alpha\) of exponent \(p\) with \(K \subset M \subset \overline{K}\). Let \(A = R' \cap M\) and let \(m = P' \cap A\).

Now \((A,m)\) is not a \(p\) \(N\)-pair since \(f(X)\) is a \(p\) \(N\)-polynomial over \((A,m)\) which does not have a root in \(m\). But \((A,m)\) is a \(k\) \(N\)-pair for \(2 \leq k < p\). For, let \(g(X)\) be a \((p - 1)N\)-polynomial over \((A,m)\). Then \(g(X)\) as an element of \(R'[X]\) has a unique root \(\beta \in P'\). Now \([M(\beta):M] \leq p - 1\), but by [7, Thm. 2], \([M(\beta):M] = p^i\) for some \(i \geq 0\). So \([M(\beta):M] = 1\) and \(\beta \in M\). Thus \(\beta \in m = P' \cap A\) and \((A,m)\) is a \((p - 1)N\)-pair. It follows by (2.6) that \((A,m)\) is a \(k\) \(N\)-pair for \(2 \leq k < p\).

REMARK. If \(j\) and the prime number \(p\) are closed such that \(p > \max \{C_{j,n} | n=0,1,\ldots,j\}\), then by Theorem 2.10, the above example is an example of a pair \((A,m)\) such that \((A,m)\) is not a \(p\) \(H\)-pair, but \((A,m)\) is a \(k\) \(H\)-pair for \(2 \leq k \leq j\).

Let the notation be as in the above example. Then \((A_m,mA_m)\) is as an example of a normal quasi-local domain which is not a \(p\) \(N\)-pair, but is a \(k\) \(N\)-pair for \(2 \leq k < p\).

6. **PROPERTIES OF \(k\) \(N\)-PAIRS.**

We conclude this paper by noting that many of the properties of the Henselization or \(N\)-closure of a pair which S. Greco proved in [5] also hold for a \(k\) \(N\)-closure and thus also for a \(2\) \(H\)-closure and a \(3\) \(H\)-closure. Some of these results are: direct limits commute with \(k\) \(N\)-closures, cf. [5, Cor. 3.6]; a \(k\) \(N\)-closure of \((A,m)\) is flat over \(A\) and is faithfully flat over \(A\) iff \(m \subset J(A)\), cf. [5, Thm. 6.5]; a \(k\) \(N\)-closure of a noetherian ring is noetherian, and if a \(k\) \(N\)-closure of \((A,m)\) is Noetherian and \(m \subset J(A)\), then \(A\) is Noetherian, cf. [5, Cor. 6.9]; if \(A\) is Noetherian
and A has one of the properties R_k, S_k, regular, or Cohen-Macaulay, then a k N-closure of (A, m) also has that property, and the converse is also true provided $m \subseteq J(A)$, cf. [5, Cor. 7.7]; a k N-closure preserves locally normal, cf. [5, Thm. 9.7]; and a k N-closure of a reduced ring is reduced, cf. [5, Thm. 8.7].

REFERENCES

