ON UNIFORM CONVERGENCE FOR
(\(\mu, \nu\))-TYPE RATIONAL APPROXIMANTS IN \(\mathbb{C}^n\) - II

CLEMENT H. LUTTERODT

6935 Spinning Seed Road
Columbia, Maryland 21045 U.S.A.

(Received June 3, 1980)

ABSTRACT. This paper shows that if \(f(z)\) is analytic in some neighborhood of the origin, but meromorphic in \(\mathbb{C}^n\) otherwise, with a denumerable non-accumulating pole sections in \(\mathbb{C}^n\), and if for each fixed \(\nu\), the pole set of each \((\mu, \nu)\)-unisolvent rational approximant \(\pi_{\mu\nu}(z)\) tends to infinity as \(\mu' = \min(\mu) + \infty\), then \(f(z)\) must be entire in \(\mathbb{C}^n\). This paper also shows a monotonicity property for the "error sequence" \(e_{\mu\nu} = ||f(z) - \pi_{\mu\nu}(z)||_K\) on compact subsets \(K\) of \(\mathbb{C}^n\).

KEY WORDS AND PHRASES. uniform convergence, entire functions, approximations and expansions.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 41.

1. INTRODUCTION.

Two earlier papers by Lutterodt [1,2] gave results on uniform convergence under restricted assumptions made about the \((\mu, \nu)\)-rational approximants. In [1], the \(n^1\)-type \((\mu, \nu)\)-rational approximants, were assumed to be uniformly bounded on a polydisk; whereas, in [2], the \((\mu,1)\)-rational approximants were under the assumption that the coefficients of the denominator polynomial of degree \(\nu = (1,1,\ldots,1) = 1\) vanished as \(\mu \to (\infty, \ldots, \infty)\) except for \(b_0^{(\mu)} \neq 0\). In fact, \(b_0^{(\mu)}\) is normalized to unity.

In this paper, we attempt to provide a general result about uniform convergence of \((\mu, \nu)\)-rational approximants to entire functions in \(\mathbb{C}^n\).
The main results of this paper are Theorems 1 and 2. Theorem 1 establishes uniform convergence for \((\mu, \nu)\) unisolvent rational approximants with infinite pole sections that tend to infinity as \(\mu \to (\infty, \ldots, \infty)\) on compact subsets of \(\mathbb{C}^n\); Theorem 2 introduces an "error sequence"

\[e_{\mu \nu} = \|f(z) - \pi_{\mu \nu}(z)\|_K \]

on any compact subset of \(\mathbb{C}^n\) and shows that \(e_{\mu \nu}\) is monotonic in \(\nu\) for sufficiently large values of \(\mu\).

2. NOTATION AND DEFINITIONS.

Let \(z = (z_1, \ldots, z_n)\) be an \(n\)-tuple point in \(\mathbb{C}^n\); let \(\mu = (\mu_1, \ldots, \mu_n)\) and \(\nu = (\nu_1, \ldots, \nu_n)\) be \(n\)-tuples of non-negative integers in \(\mathbb{N}^n\).

Let \(\mathcal{R}_{\mu \nu}\) be the class of all rational functions of the form

\[R_{\mu \nu}(z) = \frac{P_\mu(z)}{Q_\nu(z)}, \quad Q_\nu(0) \neq 0 \]

where \(P_\mu(z)\) and \(Q_\nu(z)\) are polynomials of multiple degree of at most \(\mu\) and \(\nu\), respectively, with \((P_\mu(z), Q_\nu(z)) = 1\) in some neighborhood of the origin.

DEFINITION 1. Suppose \(f(z)\) is analytic at the origin and \(f(0) \neq 0\). An \(R_{\mu \nu}(z) \in \mathcal{R}_{\mu \nu}\) is said to be a \((\mu, \nu)\)-type rational approximant to \(f(z)\) at \(z = 0\) if

\[\frac{\partial |\lambda|}{\partial z^\lambda} (Q_\nu(z)f(z) - P_\mu(z))|_{z=0} = 0 \quad (2.1) \]

for \(\lambda \in E^{\mu \nu} \subset \mathbb{N}^n\), a lattice interpolation set with the following properties:

(i) \(0 \in E^{\mu \nu}\)
(ii) \(\lambda \in E^{\mu \nu} = \gamma \in E^{\mu \nu}, \gamma_i \leq \lambda_i \quad i = 1, \ldots, n\)
(iii) \(E_\mu = \{\lambda \in \mathbb{N}^n: 0 \leq \lambda_i \leq \mu_i, \quad i = 1, \ldots, n\} \subset E^{\mu \nu}\)
(iv) \(|E^{\mu \nu}| \leq \prod_{i=1}^{n-1} (\mu_i + 1) + \prod_{i=1}^{n} (\nu_i + 1) - 1\)
(v) Each projected variable has the Padé index set
(vi) Each \(\nu_i \leq \mu_i \quad i = 1, \ldots, n\).

Here \(|E^{\mu \nu}|\) is the cardinality of \(E^{\mu \nu}\) and

\[\frac{\partial |\lambda|}{\partial z^\lambda} = \left(\frac{\lambda_1 + \ldots + \lambda_n}{\partial z_1 \ldots z_n} \right)^{\lambda_1 \ldots \lambda_n} \]
DEFINITION 2. An $R_{\mu\nu}(z) \in R_{\mu\nu}$ is said to have multiple degree $\mu^* = (\mu_1^*, \ldots, \mu_n^*)$ if, in the z_j-variable, $R_{\mu\nu}(z)$ expressed as a quotient of two pseudo-polynomials in z_j, has degree given by $\mu_j^* = \max(\mu_j, \nu_j)$, $1 \leq j \leq n$.

It follows from property (vi) of $E_{\mu\nu}$, that the multiple degree of a (μ, ν)-type rational approximant is always μ.

We shall refer the reader to the definition of a unisolvent (μ, ν)-type rational approximant to $f(z)$ in Lutterodt [3]. We shall denote this by

$$\pi_{\mu\nu}(z) = \frac{\mu_{\nu}}{Q_{\mu\nu}(z)}.$$

We then normalize the denominator polynomial $Q_{\mu\nu}(z)$, dividing numerator and denominator by the modulus of largest coefficient of the denominator polynomial. Thus, we get

$$\pi_{\mu\nu}(z) = \frac{P_{\mu\nu}(z)}{Q_{\mu\nu}(z)}$$

where $Q_{\mu\nu}^*(z)$ is a normalized polynomial.

3. CONVERGENCE.

The uniform convergence for the (μ, ν)-rational approximants to $f(z)$ entire in \mathbb{C}^n rests on the assumptions made about $f(z)$ and the hypothesis that, for each fixed multiple denominator degree ν of $\pi_{\mu\nu}(z)$, the pole set tends to infinity as $\mu \to (\infty, \ldots, \infty)$. In Theorem 1 below, we assume that $f(z)$ is possibly meromorphic, not with a finite pole set as in Theorem 2 of [3], but with a pole set having infinite sections such that only a finite number of such pole sections overlap with any given polydisk. Thus, Theorem 1 of this paper extends the result in [3].

THEOREM 1: Suppose $f(z)$ is analytic at the origin and is possibly meromorphic with an infinite pole set in \mathbb{C}^n without accumulation of pole sections such that given $\rho > 1$, the polydisk

$$A_\rho^n = \{ z \in \mathbb{C}^n : |z_j| < \rho, \ j = 1, \ldots, n, \ \rho > 1 \}$$

overlaps with only a finite number of these pole sections.

Suppose $\pi_{\mu\nu}(z)$ is a unisolvent (μ, ν)-rational approximant to $f(z)$ such that for each fixed ν, the pole set of $\pi_{\mu\nu}(z)$ tends to infinity as $\mu \to (\infty, \ldots, \infty)$. Then

(i) $f(z)$ must be entire in \mathbb{C}^n

(ii) $\pi_{\mu\nu}(z) \to f(z)$ uniformly on every compact subset of \mathbb{C}^n.
THEOREM 2: Suppose the conditions of Theorem 1 are satisfied. Let K be any compact subset of \mathbb{C}^n. Let

$$e_{\mu \nu} = \| f(z) - \pi_{\mu \nu}(z) \|_K = \sup_{z \in K} |f(z) - \pi_{\mu \nu}(z)|$$

for each fixed ν.

Then for sufficiently large ν, $e_{\mu \nu}$ is monotonic in ν and satisfies

$$e_{\mu, \nu+1} \leq e_{\mu \nu} \quad \text{with} \quad \nu_j \leq \nu_j + 1, \quad 1 \leq j \leq n.$$

Lemma 1. Let ν be fixed and let $Q_{\mu \nu}^* (z)$ be a normalized denominator polynomial of $\pi_{\mu \nu}(z)$. The zero set of $Q_{\mu \nu}^* (z)$ tends to infinity as $\mu \to (\infty, \ldots, \infty) = Q_{\mu \nu}^* (z)$ tends to a constant.

Proof. Suppose the result is false; i.e., for fixed ν, $Q_{\mu \nu}^{-1} (0)$ tends to infinity, but $Q_{\mu \nu}^* (z)$ does not tend to a constant.

By Lemma 1 in [3], given $\rho > 1$ and a polydisk Δ^n_ρ, and μ sufficiently large,

$$Q_{\mu \nu}^{-1} (0) \cap \Delta^n_\rho = \emptyset$$

Suppose that $Q_{\mu \nu}^* (z) + Q_m^* (z)$ is not constant as $\mu \to (\infty, \ldots, \infty)$ where $m = (m_1, \ldots, m_n)$ s.t. $m_i \leq \nu_i$, $1 \leq i \leq n$ and that $Q_m^* (z)$ is a polynomial of multiple degree in less than ν in a partial ordered sense. Then since $Q_m^* (z)$ is non-constant, it has a set of non zero coefficients. Thus, $Q_m^{-1} (0)$, the zero set of $Q_m^* (z)$ cannot be empty. Now, taking $\rho_0 > 1$, we find that

$$Q_m^{-1} (0) \cap \Delta^n_{\rho_0} \neq \emptyset$$

a contradiction. Hence the above supposition must be false and the Lemma holds.

Proof of Theorem 1. $f(z)$ is analytic at $z = 0$ and is possibly meromorphic with an infinite pole set

$$G = \bigcup_{k=1}^{\infty} G_{\rho_k}$$

where

$$G_{\rho_k} \subset G_{\rho_{k+1}}$$

and
$G_{\sigma_k} := \{z \in \mathbb{C}^n : q_{\sigma_k}(z) = 0\}$.

$q_{\sigma_k}(z)$ is a polynomial of at most multiple degree,

$$\sigma_k = (\sigma_{k1}, \ldots, \sigma_{kn}).$$

Given any real number $\rho > 1$, and a polydisk Δ^n_{ρ}, then $k_o = k_o(\rho)$ such that the zero set $G_{\sigma_{k_o}}$ overlaps the polydisk Δ^n_{ρ}. Now, by Theorem 1 of [3], if we choose $\nu = \sigma_{k_o}$, then we must have on Δ^n_{ρ} as $\mu \to (\infty, \ldots, \infty)$

$$\Delta^n_{\rho} \cap Q_{\mu\nu}^{-1}(0) = \Delta^n_{\rho} \cap G_{\sigma_{k_o}}$$

But by hypothesis, the pole set of $\pi_{\mu\nu}(z)$ tends to infinity as $\mu \to (\infty, \ldots, \infty)$ for each fixed ν. Therefore, for the given $\rho > 1$ above as $\mu \to (\infty, \ldots, \infty)$, we must have

$$\Delta^n_{\rho} \cap Q_{\mu\nu}^{-1}(0) = \emptyset$$

Thus by (3.4) and (3.5) we must have

$$\Delta^n_{\rho} \cap G_{\sigma_{k_o}} = \emptyset.$$

Since $k_o = k_o(\rho)$ and ρ is arbitrary, it follows that $G_{\sigma_{k_o}}$ must tend to infinity as $k_o \to \infty$. Hence, all the poles of $f(z)$ must tend to infinity and $f(z)$ must therefore be entire. This completes (i).

To prove (ii), we note that the result follows immediately from Theorem 1 of [3] and the (i) part just proved above.

Proof of Theorem 2. Let K be any compact subset of \mathbb{C}^n. Then we can find $\rho > 1$ and a polydisk \mathbb{C}^n such that $K \subset \Delta^n_{\rho}$. Then, for μ sufficiently large and $z \in K$, we find by the hypothesis of Theorem 1, that for each fixed ν,

$$Q_{\mu\nu}^*(z) \neq 0 \quad \text{i.e.} \quad \delta > 0$$

such that

$$|Q_{\mu\nu}^*(z)| > \delta.$$

Hence, under these conditions, we get

$$||\pi_{\mu, \nu+1}(z) - \pi_{\mu\nu}(z)||_K \leq \frac{2||P_{\mu\nu}(z)||_K}{\delta^2} ||Q_{\mu, \nu+1}(z) - Q_{\mu\nu}(z)||_K.$$
By Lemma 1, we know that $\mathcal{Q}_{\mu\nu}^*(z)$ tends to a constant as $\mu \to (\infty, \ldots, \infty)$ for any fixed ν. Hence, given $\varepsilon > 0$, $\varrho_0 = (\mu_{10}, \ldots, \mu_{n0})$ such that for $\mu_{10} < \mu_i$, $1 \leq i \leq n$

\[\| \mathcal{Q}_{\mu,\nu+1}^*(z) - \mathcal{Q}_{\mu\nu}^*(z) \|_K < \varepsilon \frac{\delta^2}{2M}. \tag{3.7} \]

$M_\rho = \| \mathcal{P}_{\mu\nu}^*(z) \|_{\Delta_\rho} \geq \| \mathcal{P}_{\mu\nu}^*(z) \|_K$ by the maximum modulus principle, and M_ρ is dependent on ρ but independent of μ. Hence, by combining (3.6), (3.7) and (3.8) for each fixed ν and $\mu_{10} < \mu_i$, $1 \leq i \leq n$, we obtain

\[\| \pi_{\mu,\nu+1}(z) - \pi_{\mu\nu}(z) \|_K < \varepsilon. \tag{3.8} \]

To get the desired inequality, we note by triangular for sup-norms on K that

\[e_{\mu,\nu+1} \leq e_{\mu\nu} + \| \pi_{\mu,\nu+1}(z) - \pi_{\mu\nu}(z) \|_K, \tag{3.9} \]

where we have used the definition of $e_{\mu\nu}$ as in (3.1).

For $\mu_{10} < \mu_i$, $1 \leq i \leq n$, and for each fixed ν,

\[e_{\mu,\nu+1} < e_{\mu\nu} + \varepsilon \]

Since $\varepsilon > 0$ is arbitrary, the results follows.

ACKNOWLEDGEMENT. This paper was written while I was at the Mathematics Department, University of South Florida, Tampa, Florida.

REFERENCES

