RESEARCH NOTES

A CHARACTERIZATION OF PSEUDOCOMPACTNESS

PRABDUH RAM MISRA
I.M.F. - U.F.G.
Caixa Postal - 597
74000 - Goiânia - Go, BRASIL
and
VINODKUMAR
I.I.T.
New Delhi, INDIA

(Received October 6, 1980)

ABSTRACT. It is proved here that a completely regular Hausdorff space X is
pseudocompact if and only if for any continuous function f from X to a pseudo-
compact space (or a compact space) Y, \(f^\# \) is a z-ultrafilter whenever \(\# \) is a
z-ultrafilter on X.

KEY WORDS AND PHRASES. Pseudocompact, \(\beta X \), z-filter, z-ultra function.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54D99.

1. INTRODUCTION.

For notations and basic results one is referred to [1]. We only consider
here completely regular Hausdorff spaces.

Let \(f \) be continuous from \(X \) to \(Y \). Let \(\# \) be a z-ultrafilter on \(X \), then \(f^\# \)
denotes the z-filter \(\{ B \in Z(Y): f^{-1}(B) \in \# \} \) on \(Y \) and is known to be prime. We
further know that a prime z-filter is contained in a unique z-ultrafilter. Let
\(\Delta(f)\# \) denote the z-ultrafilter containing \(f^\# \). Thus we have a function \(\Delta(f) \)
from \(\beta X \) to \(\beta Y \) sending \(\# \) to \(\Delta(f)\# \). The function \(f \) is called z-ultra if \(f^\# = \Delta(f)\# \)
for every z-ultrafilter \(\# \) on \(X \).
2. MAIN RESULTS

PROPOSITION. A continuous function f from X to Y is z-ultra if and only if for every zero-set B in Y, $\Delta(f)^{-1}(\overline{B}^Y) = f^{-1}(B)$.

PROOF. Let f be z-ultra. Then, $\phi \in \Delta(f)^{-1}(\overline{B}^Y)$ if and only if $\Delta(f)\phi = f^* \in \overline{B}^Y$. But this is equivalent to $B \in f^* \phi$ or to $f^{-1}(B) \in \phi$, which happens if and only if $\phi \in f^{-1}(B)$.

Conversely, $B \in f^* \phi$ if and only if $\phi \in f^{-1}(B)$, i.e. $\Delta(f)\phi \in \overline{B}^Y$, since $f^{-1}(B) = \Delta(f)^{-1}(\overline{B}^Y)$. But $\Delta(f)\phi \in \overline{B}^Y$ is equivalent to saying that $B \in \Delta(f)\phi$.

We see that $f^* = \Delta(f)\phi$.

In order to prove the main theorem of the paper we need the following observations for pseudocompact spaces. If X is pseudocompact, then a subset of βX is a zero-set if and only if it is closure of a zero-set in X and conversely, a subset of X is a zero-set in X if and only if its closure is so in βX.

THEOREM. If a space X is pseudocompact then any continuous function f from X to any pseudocompact space Y is z-ultra. Conversely, if the inclusion of X in βX is z-ultra, then X is pseudocompact.

PROOF. Let B be a zero-set in Y. Since \overline{B}^Y is a zero-set in βY as Y is pseudocompact, $\Delta(f)^{-1}(\overline{B}^Y)$ is a zero-set in βX. Pseudocompactness of X implies that $\Delta(f)^{-1}(\overline{B}^Y) = A^{\beta X}$ for some zero-set A in X. We show that $A = f^{-1}(B)$.

Since $\Delta(f)/X = f$, we observe that $\Delta(f)^{-1}(B) \cap X = f^{-1}(B)$. Clearly, $\Delta(f)^{-1}(\overline{B}^Y) \cap X = \Delta(f)^{-1}(B) \cap X = f^{-1}(B)$. Next, $\Delta(f)^{-1}(\overline{B}^Y) \cap X = A^{\beta X} \cap X = A$. Hence $f^{-1}(B) = A$, and we have f to be z-ultra.

Conversely, let i be the inclusion of X in βX. Since $\Delta(i)/X = i$, $\Delta(i)$ is the identity on βX. Let B be a nonempty zero-set in βX. Since i is z-ultra, $\overline{B}^X \cap X = \Delta(i)^{-1}(B) = i^{-1}(B) = B \cap X$ and [1,61.1] shows that X is pseudocompact.

As an application of our theorem we prove the following well known theorem due to Glicksberg [2].
THEOREM. If X is pseudocompact and Y is compact, then $X \times Y$ is pseudocompact.

PROOF. Let $f: X \times Y \to Z$ be a continuous function, Z some pseudocompact space. Consider a z-ultrafilter ϕ on $X \times Y$. Let $\pi_2: X \times Y \to Y$ denote the projection on the second coordinate. Since Y is compact and $\pi_2^* \phi$ is a z-filter, it is fixed as well. Let $y_0 \in \bigcap \pi_2^* \phi$. Hence ϕ_1, the restriction of ϕ to the subspace $X \times \{y_0\}$ is a z-ultrafilter on $X \times \{y_0\}$. Let f_1 denote the restriction of f to the subspace $X \times \{y_0\}$. Since X is pseudocompact, f_1 is z-ultra. Clearly, $f^* \phi \subseteq f_1^* \phi_1$. Next, let $B \in f_1^* \phi_1$. Hence $f_1^{-1}(B) \in \phi_1$. Since $f_1^{-1}(B)$ contains $f_1^{-1}(B)$, $f^{-1}(B)$ intersects every member of ϕ. Thus $f^{-1}(B) \in \phi$ as it is a z-ultrafilter. We get that $B \in f^* \phi$. Hence $f^* \phi = f_1^* \phi_1$ and it follows that f is z-ultra.

ACKNOWLEDGEMENT

This work was done while the first author was visiting Mehta Research Institute, Allahabad in summer 1977.

REFERENCES
