ON RANK 4 PROJECTIVE PLANES

O. BACHMANN
Département de mathématiques
Ecole polytechnique fédérale
CH-1007 Lausanne, Suisse

(Received October 4, 1979)

ABSTRACT. Let a finite projective plane be called rank m plane if it admits a collineation group G of rank m, let it be called strong rank m plane if moreover \(G_P = G_1 \) for some point-line pair (P,1). It is well known that every rank 2 plane is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only rank 3 plane is the plane of order 2. By [1] and [7] the only strong rank 3 plane is the plane of order 2. In this paper it is proved that no strong rank 4 plane exists.

KEY WORDS AND PHRASES. Projective planes, rank 4 groups.

1. INTRODUCTION.

In [6] Kallaher gives restrictions for the order n of a finite rank 3 pro-
jective plane and conjectures that no such plane exists if \(n \neq 2 \). Let a finite projective plane be called a strong rank \(m \) projective plane if it admits a rank \(m \) collineation group \(G \) such that \(G_P = G_1 \) for some point-line pair \((P,1)\). By Bachmann [1] and Kantor [7] no strong rank 3 projective plane of order \(n \neq 2 \) exists. If the conjecture is true that for projective designs the representations on the points and on the blocks of an arbitrary transitive collineation group are similar (see Dembowski [2], p. 78), then every rank \(m \) projective plane is a strong rank \(m \) plane.

We shall prove in this article the following

THEOREM: No strong rank 4 projective plane exists.

To prove the Theorem we first divide the strong rank 4 planes into 3 classes (see Lemma 2 and 3). Then we associate with each such plane \((0,1)\)-matrices \(A \) and \(C \) of trace 0 (see [3]). Finally we show that for each class the trace condition contradicts the integrality of the multiplicities of the eigenvalues of \(A \) or \(C \).

We shall use the following notations, definitions and basic results (see Dembowski [2]):

A collineation group of a projective plane has equally many point orbits and line orbits. The rank of a transitive permutation group is the number of orbits of the stabilizer of one of the permuted elements. If \(G \) is a (point or line) transitive collineation group of a projective plane, then the point and line ranks are equal (Kantor [8]). A rank \(m \) projective plane is a projective plane which admits a transitive collineation group whose (point or line) rank is \(m \) \((m \geq 2)\). The lines (points) are identified with the set of points (lines) on them. We write \(P \in \Gamma^G \) if and only if \(P \in \Gamma^\gamma \) for all \(\gamma \in G \).
2. **Proof of the Theorem.**

Let \(\mathcal{P} = (P, L, \xi) \) be a projective plane of finite order \(n \) and let \(G \) be a rank 4 collineation group of \(\mathcal{P} \) such that \(G_{P_0} = G_{1_0} \) for some point-line pair \((P_0, 1_0)\). It is easily seen that \(n \geq 3 \). A bijective map \(\sigma : P \rightarrow L \) is defined by \(P^\sigma = 1 \) if and only if \(P = P_0^\gamma \) and \(1 = 1_0^\gamma \) for some \(\gamma \in G \). If \(i \in \mathbb{N} \) we write \(i \) for \(P_i^\sigma \). Clearly \(P_0^\sigma = 1_0 \) and

\[
P_0^{\gamma \sigma} = P_0^{\gamma} \quad \text{and} \quad 1_0^{\sigma^{-1} \gamma} = 1_0^{\gamma^{-1}} \text{ for all } P \in \mathcal{P}, 1 \in L, \gamma \in G. \tag{1}
\]

For \(P \in \mathcal{P} \), \(G_P \) has exactly 4 orbits \(\{P\}, \Delta(P), \Gamma(P), \Pi(P) \). We choose the notation in such a way that

\[
(\Delta(P))^{\gamma} = \Delta(P_0^{\gamma}), \quad (\Gamma(P))^{\gamma} = \Gamma(P_0^{\gamma}), \quad (\Pi(P))^{\gamma} = \Pi(P_0^{\gamma}) \text{ for all } P \in \mathcal{P}, \gamma \in G. \tag{2}
\]

Lemma 2.1: If \(A, A', A'' \in \{\Delta, \Gamma, \Pi\} \), then \(|\bigwedge_1(A) \cap \bigwedge_2(B)| = |\bigwedge_1(A') \cap \bigwedge_2(B')| \) if \(A \in \bigwedge_3(B) \) and \(A' \in \bigwedge_3(B') \).

Proof: If \(A \in \bigwedge_3(B), A' \in \bigwedge_3(B'), \) then for some \(\gamma \in G, \gamma_0 \in G_B \)

\[
B' = B^{\gamma} = B_0^{\gamma \gamma_0}, \quad A' = A_0^{\gamma \gamma_0}, \quad \text{whence by (2)}
\]

\[
|\bigwedge_1(A') \cap \bigwedge_2(B')| = |\bigwedge_1(A_0^{\gamma \gamma_0}) \cap \bigwedge_2(B_0^{\gamma \gamma_0})| = |\bigwedge_1(A) \cap \bigwedge_2(B)| ^{\gamma \gamma_0} = |\bigwedge_1(A) \cap \bigwedge_2(B)| .
\]

Lemma 2.2: Suppose that \(P_0 \in 1_0 \). Then \(1_0 - \{P_0\} \) and \(G_{P_0} - 1_0 \) are \(G_{P_0} \)-orbits, say \(\Delta(P_0) = 1_0 - \{P_0\} \) and \(\Gamma(P_0) = G_{P_0} - 1_0 \) with \(P_2 = \Gamma(P_0) \). \(P_1 \in \Delta(P_0) \) and \(P_3 \in \Pi(P_0) \) can be chosen such that \(P_1 \in 1_0; P_0, P_2, P_3 \in 1_2; P_2 \in 1_1; P_1 \notin 1_3 \) (Fig. 1).

The case described by Lemma 2 will be called case I.

Proof: If \(1_0 - \{P_0\} \) is not a \(G_{P_0} \)-orbit, then it is the union of 2 orbits, say \(1_0 - \{P_0\} = \Delta(P_0) \cup \Gamma(P_0) \). Then \(P_0 - 1_0 \) is a line orbit \(P_0 \) and \(\Pi(P_0) = G_{P_0} \) with \(1 = P_0 \). This leads to the contradiction.
\[n = |G_{P_0}| = |P \times G_{P_0}| = |P \times G_{P_0}| = |P \times G_{P_0}| = |P - 1_o| = n^2. \]

Hence we may assume that \(\Delta(P_o) = 1_o - \{P_o\} \).

Dually: \(P_o - \{1_o\} \) is a \(G_{P_0} \)-orbit, say \(1_o = P_o - \{1_o\} \) where \(P_2 = \Gamma(P_o) \) (note that \(P_o \notin 1_o \)).

\[|G_{P_0}| = |1_o| = |P_o - \{1_o\}| = n \text{ implies } \Gamma(P_o) \cap 1_o = \{P_2\}. \]

For any point \(Q \neq P_0 \), \(P_2 \) on \(1_o \) holds \(Q^{P_0} = \Pi(P_o) \).

Let \(P_1 \in \Delta(P_o) \). If \(P_2 \notin 1_o \) put \(P_1 = P_2 \). If \(P_2 \in 1_o \) then

\[|G_{P_0}, P_2| = |P_1, G_{P_0}, P_2| \geq |(1_o \cap 1_o)| = n - 1 = |(1_o \cap 1_o)| = n. \]

It follows that

\[G_{P_0}, P_2 = P_1 \text{ for some point } \]

\(P_1 \in \Delta(P_o) \) and hence \(P_2 \in 1_o \).

It remains to prove that \(P_3 \in \Pi(P_o) \cap 1_o \) exists such that \(P_1 \notin 1_o \). If no such \(P_3 \) exists then \(P_1 \notin Q^{P_0} \) for all \(Q \in 1_o - \{P_o, P_2\} \) and hence \(G_{P_0}, P_2 \neq G_{P_0}, P_1 \).

Let \(\gamma \in G \) be such that \(P_2 = P_0 \). Then \(1_o = \gamma_0 \) and therefore \(\gamma \in 1_o, P_o \neq P_0 \) and \(P_1 = P_1 \) for some \(\gamma \in G_{P_0} \). It follows that \(G_{P_0}, P_1 = (\gamma_0)^{-1} G_{P_0}, P_2 \gamma \).

Hence

\[G_{P_0}, P_1 = G_{P_0}, P_2. \] (3)

Further

\[P_2 \notin 1_o \text{ for some } \gamma \in G_{P_0}, \] (4)

for otherwise \(P_2 = 1_o \) for all \(\gamma_0, \gamma \in G_{P_0} \) which cannot occur.

\[P_2 \in 1_o \text{ for some } \gamma \in G_{P_0} \text{ if and only if } \gamma \in G_{P_2}. \] (5)

To prove (5) note that by (4) through any point of \(1_o - \{P_o\} \) goes at least \(G_{P_0} \) (3) and \(P_2 \in 1_o \) then imply (5).

Let's apply (5) to \(G_{P_1} \) in place of \(G_{P_0} \):

\[\Delta(P_1) = 1_o - \{P_2\}; \Gamma(P_1) = \Gamma(P_0) \gamma = G_{P_0} \gamma^{-1} G_{P_0} \gamma = G_{P_1}. \]
where \(\gamma \in G \) such that \(P_0^\gamma = P_1, P_2^\gamma = P_0 \); \(\Pi(P_1) = S P_1 \) for some \(S \in l_0 \) - \(\{P_0, P_1\} \); hence \(P_0^\gamma \in l_2 \) for some \(\gamma_1 \in G P_1 \) if and only if \(\gamma_1 \in G P_0 \).

It follows that \(R \notin P_0 P_1 \) for any \(R \in l_2 - \{P_0, P_2\} \). Let \(R = R' \) for some such \(R \).

Of the 3 orbits \((P_0, l_1)^G \), \((P_0, l_2)^G \), \((P_0, r)^G \) induced by \(G \) on \(P \times \perp - (P_0, l_1)^G \) only one consists of flags. Thus \((P_1, l_0) \) and \((P_1, r) \) and then also \((P_0, l_1) \) and \((R, l_1) \) belong to the same \(G \)-orbit. This contradicts \(R \notin P_0 P_1 \).

Hence there exists \(P_3 \in \Pi(P_0) \cap l_2 \) such that \(P_1 \notin l_3 \).

Lemma 2.3: Suppose that \(P_0 \notin l_0 \). Then \(l_0 \) and dually \(P_0 \) are \(G P_0 \)-orbits, say \(\Delta(P_0) = l_0 \). \(P_1 \in \Delta(P_0) \), \(P_2 \in \Gamma(P_0) \), \(P_3 \in \Pi(P_0) \) can be chosen such that either \(P_0, P_2, P_3 \in l_1 \); \(P_1 \in l_2, l_3 \); \(P_2 \notin l_3 \); \(P_3 \notin l_2 \) or \(P_0, P_1, P_2 \in l_2 \); \(P_1 \notin l_0 \); \(\Gamma(P_0) \cap l_2 = \{P_2^\gamma\} \) for some \(\gamma \in G P_0 \); \(P_2^\gamma \in l_1 \); \(P_1, P_2, P_3 \notin l_1, l_3 \). In both cases \(n \geq 4 \).

The 2 cases described by Lemma 3 will be called case III resp. case II2 (Fig. 2).

Proof: It is easily seen that \(l_0 \) and \(P_0 \) are \(G P_0 \)-orbits; say \(\Delta(P_0) = l_0 \). Let \(P_1 \in \Delta(P_0) \). We have to distinguish 2 cases:

Case III: \(P_0 \notin l_1 \)

Case II2: \(P_0 \notin l_1 \).

Case II1: Clearly \(P_0 = P_1 \) and \(\Gamma(P_0) = P_2 \); \(\Pi(P_0) = P_3 \) for some \(P_2, P_3 \in l_1 - \{P_0, l_0 \cap l_1\} \). If \(P_2 \in l_3 \) then \((P_2, l_3) \in (P_0, l_1)^G \), hence \((P_3, l_2) \in (P_1, l_0)^G \), so \(P_3 \in l_2 \).
Analogously $P_2 \in l_3$ if $P_3 \in l_2$. Thus

$$P_2 \in l_3 \text{ if and only if } P_3 \in l_2. \quad (6)$$

Similarly one proves

$$P_1 \in l_2, l_3. \quad (7)$$

If $n > 3$ then, by (6), we can choose P_2, P_3 such that $P_2 \notin l_3, P_3 \notin l_2$.

Let's show that $n > 3$ (Fig. 3). Suppose that $n = 3$. Put $P_4 = l_\circ \cap l_1$.

Then, since $P_\circ \in l_1$ and $P_1 \in l_\circ$,

$$l_4 = P_\circ P_1. \text{ Let } P_5 \in l_\circ - \{P_1, P_4\}.$$

Then $P_\circ \in l_5$ and then $l_5 \cap l_2 = (P_\circ P_5 \cap l_3)P_4 \cap l_2$. Denote this point by T. Clearly $P_2P_5 \cap l_2 = T$. Since $(P_2P_5)^{d-1} \in l_2 \cap l_5$ we obtain the contradiction

$$(P_2P_5)^{d-1} \notin P_2P_5.$$
CASE II: We may assume that \(P_0, P_1, P_2 \in L \) where \(P_2 \in \Gamma(P_0) \). Then

\[G_{P_0, P_1} = G_{P_0, P_2} \].

We first assume that \(n > 3 \). Let \(l_2 \cap \Gamma(P_0) = \{ \gamma_0 \} \) with some \(\gamma_0 \in G_{P_0} \). Then \(P_3 \gamma_0 \in l_2 - \{ P_0, P_1, P_2 \} \) and hence, since \(P_2 \gamma_0 \) is invariant under \(G_{P_0, P_1} \) and since \(n > 3 \), \(l_2 \cap l_2 = P_0 \).

The only \(G \)-orbit of \(P \times L \) consisting of flags is \((P_0, l_2)^G \). Hence \(P_1, l_2 \), \((P_2, l_2) \), \((P_0, l_0) \in (P_0, l_2)^G \). \(P_0 \notin l_1 \) then implies that \((P_2, l_1), (P_2, l_3) \), \((P_0, l_1), (P_2, l_0) \notin (P_0, l_2)^G \), in particular \(P_2 \notin l_0, l_1, l_3 \).

If \(P_1 \notin l_3 \) then \((P_1, l_3) \notin (P_0, l_2)^G \) and hence \((P_3, l_1) \notin (P_2, l_0)^G \).

Since also \((P_0, l_1) \notin (P_2, l_0)^G \) we have \(P_0 \gamma_1 = P_3 \) for some \(\gamma_1 \in G_{l_1} = G_{P_1} \).

This implies that \(G_{P_1} \) is transitive on \(l_2 - \{ P_1, P_2 \} \) which is impossible.

Hence \(P_1 \notin l_3 \).

If \(n = 3 \) then \(l_2 = \{ P_0, P_1, P_2, P_3 \} \). \(\gamma_0 \) is of order 4, for if \(\gamma_0^2 = 1 \) then \((P_2, l_2^2) \notin (P_2, l_2)^G \) which is impossible. Moreover \(P_2 \neq p_2 \) since otherwise \(\gamma_0^2 \in G_{P_0, P_2} = 1 \). It follows that \(|(P_2^2 P_2^2) G_{P_0}| = 1 \) which contradicts

\[(P_2^2 P_2^2) = \{ P_2^2 P_2^0, P_2^2 P_2^0 \} \].

This completes the proof of the Lemma.

Let us now associate with \((G, P) \) 3 \((0,1)\)-matrices.

If \(\rho (P) \) is a \(G \)-orbit then let \(\rho' (P) \) denote the paired orbit (see Wielandt [9]). If \(Q \in \rho (P) \) then \(Q = P^\gamma \) for some \(\gamma \in G \) and \(\gamma \in (\rho (P))^\gamma = \rho (P^\gamma) = \rho (Q) \).

Hence \(Q = P \in \rho' (Q) \), i.e.

\[Q \in \rho (P) \] implies that \(P \in \rho' (Q) \).
This implies that in

Case I:
\[A'(P) = A(P), \quad r'(r) = r(P) \]

Case III:
\[A'(P) = A(P), \quad r'(r) = r(P) \]

Case II:
\[A'(P) = A(P), \quad r'(r) = r(P) \]

Now let \(P = \{ P_1, P_2, \ldots, P_v \} \), \(L = \{ l_1, l_2, \ldots, l_v \} \), \(l_k = P_k^o \) (\(k = 1, 2, \ldots, v \)). Let \(A \) be the \((0,1)\)-matrix with rows enumerated by the points \(P_k \) and columns by \(A(P_k) \) and such that \(\langle P_k, A(P_l) \rangle = 1 \) if and only if \(P_k \in A(P_l) \). Let \(B, C \) be the analogous matrices with \(R(P_k) \) resp. \(\Pi(P_k) \) in place of \(A(P_k) \).

We have in

case I:
\[A^t = B, \quad C^t = C \]

case III:
\[A^t = A, \quad B^t = C \]

Let \(k = |A(P)|, \quad l = |R(P)|, \quad m = |\Pi(P)|, \quad n = |\Gamma(P)| \).

\[|A(P) \cap A(Q)| = \begin{cases} \lambda & \text{if } Q \in \Delta(P) \\ \mu & \text{if } Q \in \Pi(P) \end{cases} \]

\[|\Pi(P) \cap \Pi(Q)| = \begin{cases} \lambda' & \text{if } Q \in \Delta(P) \\ \mu' & \text{if } Q \in \Pi(P) \end{cases} \]

A straightforward calculation shows that

\[I + A + B + C = J \], the \(v \times v \)-matrix with 1's in every entry

\[A^t A = k I + \lambda A + \mu B + \nu C \]

\[C^t C = m I + \mu' A + \nu' B + \lambda' C \]
Now we determine the eigenvalues of A in case III and of C in the cases I and II.

CASE III: $k = n + 1$

\[l = n_2(n + 1) \quad \text{where} \quad n_2 = |P_2^{P_0, P_1}| \]

\[m = n_3(n + 1) \quad \text{where} \quad n_3 = |P_3^{P_0, P_1}| \]

\[k + 1 + m + 1 = v = n^2 + n + 1, \quad n_2 + n_3 = n - 1, \quad \lambda = \mu = \nu = 1. \]

It follows that $A^2 = A^TA = (n + 1)I + A + B + C = nI + J$; hence

\[(A - (n + 1)I)(A^2 - nI) = 0. \]

This gives the eigenvalues of A:

\[\lambda_1 = n + 1, \quad \lambda_{2,3} = \pm \sqrt{n}. \]

CASE I: $k = 1 = n, \quad m = n(n - 1), \quad k + 1 + m + 1 = v = n^2 + n + 1.$

We have

\[\lambda' = |\mathbb{I}(P_0) \cap \mathbb{I}(P_3)| \]

\[\mu' = |\mathbb{I}(P_0) \cap \mathbb{I}(P_1)| \]

\[\nu' = |\mathbb{I}(P_0) \cap \mathbb{I}(P_2)|. \]

Let's calculate λ':

\[n(n - 1) = |\Pi(P_3)| = |\Pi(P_3) \cap \Delta(P_0)| + |\Pi(P_3) \cap \Gamma(P_0)| + |\Pi(P_3) \cap \Pi(P_0)| + 1 \quad (9) \]

(note that $\Gamma(P_3) = P_2^{P_3}$ and hence $P_0 \in \Pi(P_3)$).

\[n = |\Delta(P_0)| = |\Delta(P_0) \cap \Delta(P_3)| + |\Delta(P_0) \cap \Gamma(P_3)| + |\Delta(P_0) \cap \Pi(P_3)|. \quad (10) \]

Clearly

\[|\Delta(P_0) \cap \Delta(P_3)| = 1 \quad (11) \]

\[|\Delta(P_0) \cap \Gamma(P_3)| = |\Delta(P_3) \cap \Gamma(P_0)| = 2. \quad (12) \]
PROOF of (12): \(P_o \in \Pi(P_3) \) and \(P_3 \in \Pi(P_o) \), hence, by Lemma 1, \(|\Delta(P_o) \cap \Gamma(P_3)| = \frac{1}{n - 1} \) implies that \(|Y_o \cap \Gamma(P_3)| = n - 1\). Hence \(|Y_o \cap \Gamma(P_3)| = n - 1\). Since \(P_1 \notin \gamma_o \) we then have \(P_1 \gamma_o P_2 = P_1 \), i.e. \(G_{P_o} P_2 \leq G_{P_o} P_1 \). Since both groups are conjugate (see the proof of Lemma 2) this gives \(G_{P_o} P_1 = G_{P_o} P_2 \).

Moreover \(P_2 \in \gamma^* \) if and only if \(\gamma_o \in G_{P_1} \). Thus \(P_2 \in \gamma_1 \), \(P_2 \in \gamma_1 \), \(P_2 \in \gamma_1 \), \(P_1 \not\in \gamma_1 \) for some \(\gamma' \), \(\gamma'' \), \(\gamma'' \), \(\gamma'' \). Since, by the above, \(G_{P_o} P_2 \) is transitive on \(1_0 \) - \(\{P_o, P_1\} \), \(|P_2 \gamma_o P_2 \cap P_o| = n - 1 \); hence \(|1_0 \cap P_2 P_1| = |1_0 \cap P_2 P_1| = 2 \). This proves (12).

Equations (10), (11), (12) imply

\[|\Pi(P_3) \cap \Delta(P_o)| = n - 3. \tag{13} \]

To determine \(|\Pi(P_3) \cap \Gamma(P_o)|\) we use

\[n = |\Gamma(P_o)| = |\Gamma(P_o) \cap \Delta(P_3)| + |\Gamma(P_o) \cap \Gamma(P_3)| + |\Gamma(P_o) \cap \Pi(P_3)|. \tag{14} \]

By (12) \(|\Gamma(P_o) \cap \Delta(P_3)| = 2 \). Since \(\Gamma(P_3) = \gamma_{P_3} \), \(|\Gamma(P_o) \cap \Gamma(P_3)| = \gamma_{P_3} \gamma_{P_3} \), \(|\gamma_{P_3} \cap P_2 P_3| = |1_2 \cap 1_2 P_3| = 1 \). It follows that

\[|\Pi(P_3) \cap \Gamma(P_o)| = n - 3. \tag{15} \]

Equations (9), (13) and (15) imply that

\[\lambda' = n^2 - 3n + 5. \tag{16} \]

Analogously we calculate \(\mu' \) and \(\nu' \):

\[n(n - 1) = |\Pi(P_1) \cap \Delta(P_o)| + |\Pi(P_1) \cap \Gamma(P_o)| + |\Pi(P_1) \cap \Pi(P_o)| \]

with \(|\Pi(P_1) \cap \Delta(P_o)| = n - 1\).

In

\[n = |\Gamma(P_o)| = |\Gamma(P_o) \cap \Delta(P_1)| + |\Gamma(P_o) \cap \Gamma(P_1)| + |\Gamma(P_o) \cap \Pi(P_1)| \]
\[|\Gamma(P_o) \cap \Delta(P_1)| = 1 \] by the proof of (12) and \[|\Gamma(P_o) \cap \Gamma(P_1)| = G_{P_o}^G \cap G_{P_1}^G = |1_2 o \cap 1_o^2| = 0. \] Hence \[|\Pi(P_1) \cap \Gamma(P_o)| = n - 1 \] and thus
\[\mu' = (n - 1)(n - 2). \] (17)

\[n(n - 1) = |\Pi(P_2)| = |\Pi(P_2) \cap \Delta(P_o)| + |\Pi(P_2) \cap \Gamma(P_o)| + |\Pi(P_2) \cap \Pi(P_o)|. \]

In\[n = |\Delta(P_o)| = |\Delta(P_o) \cap \Delta(P_2)| + |\Delta(P_o) \cap \Gamma(P_2)| + |\Delta(P_o) \cap \Pi(P_2)| \]
\[|\Delta(P_o) \cap \Delta(P_2)| = 0 \text{ and } |\Delta(P_o) \cap \Gamma(P_2)| = G_{P_o}^G \cap G_{P_2}^G \]
\[= |1_1 o \cap 1_1^2| = 1 \]
(note that \[|1_1 o \cap 1_2| = |1_1^2| = n \] and hence \[\Gamma(P_2) = P_1 o 2 \]). Hence \[|\Pi(P_2) \cap \Delta(P_o)| = n - 1. \]

Further \[|\Pi(P_2) \cap \Gamma(P_o)| = |\Gamma(P_o)| - |\Gamma(P_2) \cap \Delta(P_2)| - |\Gamma(P_2) \cap \Gamma(P_2)| - 1 \]
where \[|\Gamma(P_o)| = n, |\Gamma(P_2) \cap \Delta(P_2)| = 0 \] and \[|\Gamma(P_2) \cap \Gamma(P_2)| = |G_{P_2}^G \cap G_{P_2}^G| = |1_2 o \cap 1_2^2| = 0. \] Hence \[|\Pi(P_2) \cap \Gamma(P_o)| = n - 1. \] It follows that
\[\nu' = (n - 1)(n - 2). \] (18)

Equations (16), (17) and (18) imply that \[c^2 = c c = n(n - 1) I + \]
\[(n - 1)(n - 2)(A + B) + (n^2 - 3n + 5) C = n(n - 1) I + (n - 1)(n - 2)(I - I) + 3C \]
and then \[(C - n(n - 1) I)(c^2 - 3C - 2(n - 1) I) = 0. \]

The eigenvalues of \(C \) are \[\lambda_1 = n(n - 1); \lambda_{2,3} = (3 \pm \sqrt{8n - 1})/2. \]

CASE II2: \(k = 1 = n + 1, m = (n - 2)(n + 1), k + 1 + m + 1 = v = n^2 + n + 1. \)

By the proof of Lemma 3 \(n \geq 4. \) Let's determine \(\lambda', \mu', \nu' \):
\[(n + 1)(n - 2) = |\Xi(P_3)| = |\Xi(P_3) \cap \Delta(P_o)| + |\Xi(P_3) \cap \Gamma(P_o)| + |\Xi(P_3) \cap \Pi(P_o)| - 1. \] In \(n + 1 = |\Delta(P_o)| = |\Delta(P_o) \cap \Delta(P_3)| + |\Delta(P_o) \cap \Gamma(P_3)| + |\Delta(P_o) \cap \Pi(P_3)| \]
\[\text{clearly } |\Delta(P_o) \cap \Delta(P_3)| = 1. \] Let's show that
\[|\Delta(P_1) \cap \Gamma(P_o)| = 2 \] (19)
\[|\Delta(P_1) \cap \Gamma(P_o)| = 2. \] (20)
PROOF of (19) and (20): By Lemma 1 \(|\Delta(P_o) \cap \Gamma(P_3)| = |\Delta(P_3) \cap \Gamma(P_o)|\).

For \(\gamma'_o \in G_{P_o}\)

\[
\gamma'_o \in \gamma'_o G_{P_o}, 1_1 \neq p_2 o 2 \text{ if and only if } \gamma'_o \in G_{P_o} P_1,
\]

(21)

for otherwise, \(\gamma'_o 1_1 o P_1, 1_1 \neq p_2 o 2, |1_1 o G_{P_o} P_1| = n - 2, p_2 \in
\gamma'_o G_{P_o} P_1\), which leads to the contradiction \(n + 1 = |1_1 o | > (|P_2| - 2) + (|P_2| - 2) = 2(n - 1)\).

Further

\[
\gamma'_o \notin 1_1 \cup \gamma'_o P_2 \text{ for some } \gamma'_o \in G_{P_o}.
\]

otherwise, since \(|P_2 o | > 5\), every line of \(1_1 o G_{P_o}\) would contain at least 3 points of \(P_2 o\) and this would imply that a point of \(P_2 o - (1_1 \cup \gamma'_o P_2)\) exists. By (21) and (22) \(\gamma'_o G_{P_o} P_2, 1_3 o P_2, 1_2 o \neq p_2 o 2 \text{ for some } \gamma'_o \in G_{P_o}\). Since \(|1_3 o G_{P_o} P_1| = n - 2, |P_2 o \cap 1_3| = |\Gamma(P_o) \cap \Delta(P_3)| = 2\). This proves (19).

Each of the \(n - 2\) lines of \(1_3 o - \{\gamma'_o P_2\}\) through \(\gamma'_o\) contains exactly one point of \(P_2 o - \{\gamma'_o\}\). Together with \(P_2 o, P_2\) this gives \(n\) points of \(G_{P_o}\). It follows that exactly one point of \(P_2 o - \{\gamma'_o\}\) lies on \(1_3\). This proves (20).

By means of (19) we obtain

\[
|\Pi(P_3) \cap \Delta(P_o)| = n - 2.
\]

In

\[
|\Gamma(P_o)| = |\Gamma(P_o) \cap \Delta(P_3)| + |\Gamma(P_o) \cap \Gamma(P_3)| + |\Gamma(P_o) \cap \Pi(P_3)|
\]

\[
|\Gamma(P_o) \cap \Delta(P_3)| = 2 \text{ by (19) and } |\Gamma(P_o) \cap \Gamma(P_3)| = |P_2 o \cap P_2 o 3| = |1_2 o \cap 1_2 o 3| = 1\).
\]

Hence \(|\Pi(P_3) \cap \Gamma(P_o)| = n - 2\). It follows that \(\lambda' = n^2 - 3n + 1\).

\[
u' = |\Pi(P_o) \cap \Pi(P_1)| = |\Pi(P_1)| - |\Pi(P_1) \cap \Delta(P_o)| - |\Pi(P_1) \cap \Gamma(P_o)|\]

where \(|\Pi(P_1)| = (n + 1)(n - 2), |\Pi(P_1) \cap \Delta(P_o)| = n - 2\) and \(|\Pi(P_1) \cap \Gamma(P_o)| = |\Gamma(P_o)| - |\Gamma(P_o) \cap \Delta(P_1)| - |\Gamma(P_o) \cap \Gamma(P_1)| - |\Gamma(P_3) \cap \Delta(P_1)| = 2 \text{ by (20) and } |\Gamma(P_o) \cap \Gamma(P_1)| = |P_2 o \cap P_2 o 1| = |1_2 o \cap 1_2 o 1| = 1\).

Hence \(|\Pi(P_1) \cap \Gamma(P_o)| = n - 2\) and \(\nu' =...
(n - 2)(n - 1).

v' = |\Pi(P_o) \cap \Pi(P_2)| = |\Pi(P_2)| - |\Pi(P_2) \cap \Delta(P_o)| - |\Pi(P_2) \cap \Gamma(P_o)|

where

|\Pi(P_2)| = (n + 1)(n - 2),

|\Pi(P_2) \cap \Delta(P_o)| = |\Pi(P_2) \cap \Delta(P_1)|

by Lemma 1

= |\Delta(P_1)| - |\Delta(P_1) \cap \Delta(P_o)| - |\Delta(P_1) \cap \Gamma(P_o)|

= (n + 1) - 1 = n - 2

by (20),

|\Pi(P_2) \cap \Gamma(P_o)| = |\Pi(P_2) \cap \Gamma(P_1)|

by Lemma 1

= |P_3 \cap P_1| = \left| \left\{ g \in G : |g_1^o \in G, g_1^o \in G \right\} \right| = n - 2

since through any point on \(P_2 \) goes exactly one line of \(P_1 \) and one of \(P_2 \). Hence

v' = (n - 2)(n - 1).

It follows that

\(C^2 = C \cdot C = (n + 1)(n - 2) I + (n - 1)(n - 2)(A + B) +

(n^2 - 3n + 1) C = (n + 1)(n - 2) I + (n^2 - 3n + 2)(A + B + C) - C \) and

\(C^2 + C - 2(n - 2) I = (n - 1)(n - 2) J \) whence

\((C - (n + 1)(n - 2) I)(C^2 + C - 2(n - 2) I) = 0. \)

The eigenvalues of \(C \) are

\(\lambda_1 = (n + 1)(n - 2), \lambda_{2,3} = (-1 \pm \sqrt{8n - 15})/2. \)

REMARK: Let \(\phi : G \rightarrow \text{GL}_v(\mathbb{C}) \) be the matrix representation of \(G \) obtained by

associating with each \(\gamma \in G \) the corresponding permutation matrix \(\phi(\gamma) \) (the ordering

of \(P \) is the same as used in constructing the matrices \(A, B, C \)). By (2) \(\phi(\gamma) \)

commutes with \(A, B, C \) for all \(\gamma \in G \). Hence, by [9] Theorem 28.4, \(\{ I, A, B, C \} \) is

the basis of the commuting algebra \(\mathcal{W}(G) \) of \(\phi \). By [9] Theorem 29.5 \(\mathcal{W}(G) \) is commu-

itative and hence, by [9] Theorem 29.4, the representation \(\phi \) has 4 irreducible

constituents \(D_1 = 1, D_2, D_3, D_4 \), each with multiplicity 1. If \(f_i \) is the degree

of \(D_i \) then \(f_1 = 1 \) and \(\sum_{i=1}^4 f_i = v. \)

Let us finally show how the fact that \(A \) and \(C \) have trace 0 contradicts the

integrality of the multiplicities of \(\lambda_1, \lambda_2, \lambda_3. \)
In the 3 cases \(\lambda_1 \) appears with multiplicity 1. Let \(f \) denote the multiplicity of \(\lambda_2 \); then \(v - f - 1 \) is the multiplicity of \(\lambda_3 \). This leads to

- In case I,
 \[
 0 = n(n - 1) + f(3 + \sqrt{8n + 1})/2 + (n(n + 1) - f)(3 - \sqrt{8n + 1})/2
 \]

- In case II,
 \[
 0 = (n + 1) + f\sqrt{n} + (-\sqrt{n})(n(n + 1) - f)
 \]

- In case III,
 \[
 0 = (n + 1)(n - 2) + f(-1 + \sqrt{8n - 15})/2 + (n(n + 1) - f)(-1 - \sqrt{8n - 15})/2
 \]

In any case this contradicts the fact that \(n \geq 2 \) and \(f \geq 1 \) are integers.

In case III this is clear.

In case I suppose that a prime \(p \) divides \(\sqrt{8n + 1} \). Then \(p \nmid n \), hence \(p \mid 5n + 1 \) and then \(p \mid 3n \), i.e. \(p = 3 \). This implies that \(8n + 1 = 3^{2i} \) for some \(i \geq 2 \) and that
\[
 n(5n + 1)/\sqrt{8n + 1} = (3^{2i-1})(5 \cdot 3^{2i-1} + 1)/8 \cdot 3^{i-1} \not\in \mathbb{N}.
\]

In case II suppose that a prime \(p \) divides \(\sqrt{8n - 15} \). Then \(p \in \{17, 23\} \) and \(p^2 \nmid n + 1, p^2 \nmid n - 4 \). Hence \(8n - 15 \in \{17^2, 23^2, 17^2 \cdot 23^2\} \), i.e. \(n \in \{38, 68, 19112\} \). Suppose that \(n = 38 \). Since \(G_{\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2} \) is transitive on \(\{\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2\} \), \(|G| \) is even. This contradicts the fact that if \(n \equiv 2 \mod 4 \), then the full collineation group is of odd order (Hughes [5]).

Suppose that \(n \in \{68, 19112\} \). Then \(n \) is not a square and \(n^2 + n + 1 \) not a prime.

Hence, since \(G \) is flag-transitive, \(n \) is a prime power (Higman and Mc Laughlin [4]) which is absurd.

REFERENCES

