ON THE NONCENTRAL DISTRIBUTION OF THE RATIO OF THE EXTREME ROOTS OF THE WISHART MATRIX

V.B. WAIKAR
Department of Mathematics & Statistics
Miami University
Oxford, Ohio 45056
USA

(Received February 6, 1979)

ABSTRACT. The distribution of the ratio of the extreme latent roots of the Wishart matrix is useful in testing the sphericity hypothesis for a multivariate normal population. Let X be a $p \times n$ matrix whose columns are distributed independently as multivariate normal with zero mean vector and covariance matrix Σ. Further, let $S = XX'$ and let $1 > \ldots > l_p > 0$ be the characteristic roots of S. Thus S has a noncentral Wishart distribution. In this paper, the exact distribution of $f_p = 1 - l_p/l_1$ is derived. The density of f_p is given in terms of zonal polynomials. These results have applications in nuclear physics also.

KEY WORDS AND PHRASES. Extreme roots, Wishart distribution, Zonal polynomials

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 62H10; Secondary 62E15.

1. INTRODUCTION.

The distribution of the ratio of the extreme latent roots of the Wishart
matrix is useful in testing the sphericity hypothesis for a multivariate normal population. In the central (null) case, Sugiyama (1970) derived the density of the ratio of the smallest to the largest root of the Wishart matrix when the associated covariance matrix is the identity matrix. Waikar and Schuurmann (1973) derived an alternate expression which is much superior to that given by Sugiyama (1970) from the point of view of computing and in fact we computed some tables of the percentage points which are also included in the above paper. In this paper, the author has derived an exact expression for the ratio of the smallest to the largest root of the noncentral Wishart matrix. This research has applications in nuclear physics [see Wigner (1967)].

2. PRELIMINARIES.

If A is a square, nonsingular matrix its inverse and determinant are denoted respectively by A^{-1} and $|A|$. The transpose, trace and exponential of the trace of a matrix B are denoted respectively by B', $tr B$ and $etr B$. Also I_p and 0_p denote respectively a $p \times p$ identity matrix and a $p \times p$ null matrix. In addition, we define as in James (1964).

$$F_{p,q}(a_1,\ldots,a_p; b_1,\ldots,b_q; S) = \sum_{k=0}^{\infty} \frac{(a_1)_k \cdots (a_p)_k C_k(S)}{(b_1)_k \cdots (b_q)_k k!}$$

and

$$F_{p,q}(a_1,\ldots,a_p; b_1,\ldots,b_q; S,T) = \sum_{k=0}^{\infty} \frac{(a_1)_k \cdots (a_p)_k C_k(S) C_k(T)}{(b_1)_k \cdots (b_q)_k C_k(I_p) k!}$$
where S and T are $p \times p$ symmetric matrices and $\kappa = (k_1, \ldots, k_p)$ is a partition of the integer k satisfying (i) $k_1 \geq k_2 \geq \ldots \geq k_p \geq 0$ and (ii) $k_1 + \ldots + k_p = k$. Further

$$
(a)_\kappa = \prod_{i=1}^{p} (a - (i - 1)/2)_i \quad \text{and} \quad (a)_{k} = a(a+1)\ldots(a+k-1), \quad (a)_0 = 1
$$

and finally $C_\kappa(S)$ is the zonal polynomial as defined in James (1964) and satisfies $(\text{tr } S)^k = \sum C_\kappa(S)$. A special case of the above is

$$
\text{I}_0(a; S) = |I_p - S|^{-a}.
$$

REMARK 1.

Note that if one of the a_i's above is a negative integer say $a_1 = -n$ then for $k > pn + 1$ all the coefficients vanish so that the function p^q reduces to a (finite) polynomial of degree pn (see Constantine (1963) p. 1276). Further, throughout the paper, whenever a partition say $\kappa = (k_1, \ldots, k_p)$ of a nonnegative integer k is defined, it will be implied that

(i) $k_1 \geq \ldots \geq k_p \geq 0$ and (ii) $k_1 + \ldots + k_p = k$

The following three lemmas are needed in the sequel.

LEMMA 2.1. Let k and d be two nonnegative integers and let $\kappa = (k_1, \ldots, k_p)$ and $\delta = (d_1, \ldots, d_p)$ denote partitions respectively of k and d. Further let $G = \text{diag}(g_1, \ldots, g_p)$. Then

$$
C_\kappa(G)C_\delta(G) = \sum_\beta g_\beta \sum_{\kappa, \delta} C_\beta(G)
$$

where $\beta = (b_1, \ldots, b_p)$ is a partition of the integer $k + d = b$.

LEMMA 2.2. Let G be as defined in Lemma 2.1 and further let $G_1 = \text{diag}(1, G)$. Let $\kappa = (k_1, \ldots, k_{p+1})$ be a partition of a nonnegative integer k. Then

$$
C_\kappa(G_1) = \sum_{t=0}^{\kappa} \sum_{\tau} b_{\kappa, \tau} C_\tau(G)
$$
where $\tau = (t_1, \ldots, t_p)$ is a partition of t.

The above two lemmas are stated in Khatri and Pillai (1968). The g-coefficients in (2.1) and the b-coefficients in (2.2) were tabulated by Khatri and Pillai (1968) for various values of the arguments and can be obtained from them.

Throughout this paper, the following notations will be used:

$$
\Gamma_p(a) = \frac{a^{p-1/4}}{\prod_{i=1}^{p} \Gamma(a - (i - 1)/2)}
$$

$$
\prod_{i<j=t}^{p-1} (a_i - a_j) = \prod_{i=t}^{p} \prod_{j=i+1}^{p} (a_i - a_j), \quad 0 \leq t \leq p.
$$

The following lemma can be proved by making trivial modification in the proof of the Lemma given in Sugiyama (1967).

Lemma 2.3. Let $R = \text{diag}(r_1, \ldots, r_{p-1})$ where $0 < r_1 < \cdots < r_{p-1} < 1$ and let

$$
R_1 = \text{diag}(r_1, \ldots, r_{p-1}, 1). \quad \text{Further let } \kappa = (k_1, \ldots, k_p) \text{ be a partition of the positive integer } k. \text{ Then}
$$

$$
D^p_k(t) = \int \cdots \int_{0<r_1<\cdots<r_{p-1}<1} |R|^{t-(p+1)/2} |I_{p-1} - R| C_k(R_1) \prod_{i>j=1}^{p-1} (r_i - r_j) dR
$$

$$
= (pt + k) \left(\Gamma_p((p/2)/\pi)^{p^{2/2}} C_k(I_p) \right) \left(\Gamma_p(t, \kappa) \Gamma_p((p + 1)/2)/\Gamma_p(t + (p + 1)/2, \kappa) \right)
$$

where

$$
\Gamma_p(a, \kappa) = \frac{a^{p-1/4}}{\prod_{i=1}^{p} \Gamma(a + k_i - (i - 1)/2)}.
$$

Lemma 2.4. Let A be any $p \times p$ matrix and let $\kappa = (k_1, \ldots, k_p)$ be a partition of a nonnegative integer k. Then

$$
C_k(I_p + A) = \sum_{g=0}^{k} \sum_{\kappa, \gamma} C_\gamma(A) C_\kappa(I_p)/C_\kappa(I_p),
$$

where $\gamma = (g_1, \ldots, g_p)$ is a partition of g.

The above lemma is stated in Constantine (1963) and some tabulations of a-coefficients are also given in the same paper.
3. DENSITY OF THE RATIO OF THE SMALLEST TO THE LARGEST ROOT OF THE WISHART MATRIX

Let X be a $p \times n$ matrix whose columns are distributed independently as multivariate normal with zero mean vector and covariance matrix $\mathbf{\Sigma}$ and let $p \leq n$. Further, let $S = XX'$ and let $\lambda_1 > \lambda_2 > \ldots > \lambda_p > 0$ be the characteristic roots of S. Thus S has a noncentral Wishart distribution and the joint density of its roots $\lambda_1, \ldots, \lambda_p$ as derived by James (1964) is

$$h_1(\lambda_1, \ldots, \lambda_p) = k(p,n) |\mathbf{\Sigma}|^{-n/2} \prod_{i=1}^{p} \Gamma(1 - 1/2 \lambda_i^{-1}, 1) \; \text{etr}(L) \; |L|^{(n - p - 1)/2} \prod_{i<j=1}^{p} (\lambda_i - \lambda_j), \; \lambda_1 > \ldots > \lambda_p > 0$$

where $L = \text{diag}(\lambda_1, \ldots, \lambda_p)$ and $k(p,n) = \pi^p 2^{p(n-2)/2} / \Gamma(p/2) (n/2)^{p(n/2)} \Gamma(p/2)$. Now, on making the transformation $\lambda_i = \lambda_i', \lambda_i' = 1 - \lambda_i / \lambda_1, i = 2, \ldots, p$ in (3.1), we obtain the joint density of $\lambda_1', \lambda_2', \ldots, \lambda_p'$ as

$$h_2(\lambda_1', \lambda_2', \ldots, \lambda_p') = k(p,n) |\mathbf{\Sigma}|^{-(n-2)/2} \prod_{i=1}^{p} \lambda_i' \; \text{etr}(\lambda_1' F) \; |F|^{-p} \prod_{i>j=2}^{p} (\lambda_i' - \lambda_j') \prod_{i=1}^{\infty} \sum_{k=0}^{\infty} C_k \left(I - \frac{1}{2} \mathbf{\Sigma}^{-1} \right) \frac{\lambda_1^k}{k!} C_k \left(\text{diag}(1, I_{p-1} - F) \right) = 0 < \lambda_1' < \infty, 0 < \lambda_2' < \ldots < \lambda_p' < 1$$

where $F = \text{diag}(f_2', \ldots, f_p')$ and $\kappa = (k_1', \ldots, k_p')$ is a partition of the integer k. On using Lemmas 2.2 and 2.4 to expand $C_k \left[\text{diag}(1, I - F) \right]$, and further, writing $\text{etr}(\lambda_1' F)$ as $\text{etr}(\lambda_1 F)$ and then expanding it we can rewrite the above density as
where \(\alpha = (a_1, \ldots, a_{p-1}) \) is a partition of the integer \(a \), \(\tau = (t_1, \ldots, t_{p-1}) \) is a partition of the integer \(t \), \(\gamma = (g_1, \ldots, g_{p-1}) \) is a partition of \(g \) and the \(b_{\kappa, \tau} \) and \(a_{\tau, \gamma} \) are given by Lemmas 2.2 and 2.4 respectively. Now note that

\[
C_\alpha(F) C_\gamma(-F) = \sum_{\eta} (-1)^\eta g_{\alpha, \gamma}^\eta C_\eta(F)
\]

where \(\eta = (n_1, \ldots, n_{p-1}) \) is a partition of \(a + g \) and the coefficients \(g_{\alpha, \gamma}^\eta \) are given by Lemma 2.1. Further

\[
|I - F|^{(n-p-1)/2} = \sum_{d=0}^\infty \frac{(-n - p - 1)/2}{d!} C_d(F)
\]

where \(\delta = (d_1, \ldots, d_{p-1}) \) is a partition of the integer \(d \).

Also then \(C_\eta(F) C_\delta(F) = \sum_\beta g_{\eta, \delta}^\beta C_\beta(F) \)

where \(\beta = (b_1, \ldots, b_{p-1}) \) is a partition of \((a + g) + d \) and the coefficients \(g_{\eta, \delta}^\beta \) are given by Lemma 2.1. Thus the density in (3.3) becomes

\[
h_4(\ell_1, \ell_2, \ldots, \ell_p)
\]

\[
= k(p, n) |\sigma|^{-n/2} \sum_{k=0}^\infty \frac{C_\kappa(I - \frac{1}{2}\ell)}{k! C_\kappa(I)} \sum_{a=0}^\infty \sum_{\alpha}^\infty \sum_{t=0}^\infty \frac{b_{\kappa, \tau}}{a!}
\]

\[
\sum_{g=0}^{t} a_{\tau, \gamma} C_\tau(I) (-1)^g \sum_{\eta} g_{\alpha, \gamma}^\eta \sum_{d=0}^{\infty} \frac{(-n - p - 1)/2}{d!}
\]
\[\sum_{\alpha}^{\beta} \sum_{\gamma}^{\delta} e^{-p_{1}p_{2}/2 + a_{1} + a_{2}} \prod_{i=j+1}^{p} (f_{i} - f_{j}) \mathcal{C}_{\beta}(F), \]

\[0 < \xi_1 < \infty, \ 0 < f_2 < \ldots < f_p < 1. \]

Now, on making the transformation \(i = \xi_1, \ r_i = f_i/f_p, \ i = 2, \ldots, p - 1, \ f_p = f_p \)
and then integrating out \(r_2, \ldots, r_{p-1} \) over the surface \(0 < r_2 < \ldots < r_{p-1} < 1 \)
(using Lemma 2.3) we get the joint density of \(\xi_1 \) and \(f_p \)

\[h_5(\xi_1, f_p) = k(p, n) \left| \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \sum_{a=0}^{\infty} \frac{C_k(I - \frac{1}{2} \sum_{a=0}^{\infty} \sum_{t=0}^{\infty} \delta f_{\alpha, \gamma} \gamma_{\delta} \delta_{\beta}} {k! (I)^{k}} \right| \]

\[= \frac{(-n - p - 1)/2}{\delta} \sum_{d=0}^{\infty} \sum_{\beta}^{\infty} \frac{C_{I}(I) (-1)^{\delta}} {\sum_{\gamma}^{\infty} \sum_{\alpha, \gamma}^{\infty} \gamma_{\delta} \delta_{\beta}} \]

\[= \frac{p(p+1) - a + g + d}{\beta} \sum_{\beta}^{p-1} (p + 2), \]

where \(D_{\beta}^{p-1}((p + 2)/2) \) is given by Lemma 2.3.

Now, on integrating out \(\xi_1 \) \((0 < \xi_1 < \infty)\), we get the marginal density of \(f_p = 1 - \xi_1 / \xi_1 \) as

\[h_6(f_p) = k(p, n) \left| \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \sum_{a=0}^{\infty} \frac{C_k(I - \frac{1}{2} \sum_{a=0}^{\infty} \sum_{t=0}^{\infty} \delta f_{\alpha, \gamma} \gamma_{\delta} \delta_{\beta}} {k! (I)^{k}} \right| \]

\[= \frac{(-n - p - 1)/2}{\delta} \sum_{d=0}^{\infty} \sum_{\beta}^{\infty} \frac{C_{I}(I) (-1)^{\delta}} {\sum_{\gamma}^{\infty} \sum_{\alpha, \gamma}^{\infty} \gamma_{\delta} \delta_{\beta}} \]

\[= \frac{p(p+1) - a + g + d}{\beta} \sum_{\beta}^{p-1} (p + 2), \]
-\left(\frac{\nu_p}{2} + k + a\right) \frac{1}{\Gamma\left(\frac{\nu_p}{2} + k + a\right)} \frac{1}{p^{\nu_p(p+1)-2+a+g+d}} \times p \quad (3.6)

REMARK 2.

An important observation is that in the special case when \((n - p - 1)/2\) is an integer, the summation over \(d\) becomes finite (see Remark 1) in (3.6) which means the noncentral density of \(f_p = 1 - \frac{z}{(z)^2}\) involves only two infinite sums.

ACKNOWLEDGMENT. The author wishes to acknowledge the support from Miami University in the form of a Summer Research Fellowship.

REFERENCES

