A LEBSGUE DECOMPOSITION FOR ELEMENTS IN
A TOPOLOGICAL GROUP

THOMAS P. DENCE
Department of Mathematics
Bowling Green State University
Firelands Campus
Huron, Ohio 44839 U.S.A.

(Received May 3, 1979 and in revised form February 29, 1980)

ABSTRACT. Our aim is to establish the Lebesgue decomposition for strongly-bounded elements in a topological group. In 1963 Richard Darst established a result giving the Lebesgue decomposition of strongly-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of strongly-bounded additive functions defined on an algebra of sets. Analogous results follow for lattices of sets. Generalizing some of the techniques yield decompositions for elements in a topological group.

KEY WORDS AND PHRASES. Lebesgue decomposition, projection operator, strongly-bounded, topological group.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 22A10, 28A10, 28A45.

1. INTRODUCTION.

In 1963 R. B. Darst [2] established a result giving the Lebesgue decomposition
of s-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of s-bounded additive functions defined on an algebra of sets \([4]\). The set of corresponding restrictions of additive set functions defined on a lattice of sets corresponds to a lattice of projection operators \([5]\). The analogous result on lattices is established by using the same techniques \([3]\). More recently, Traynor has obtained decompositions of set functions with values in a topological group \([6], [7]\). The purpose here is to present a Lebesgue decomposition theorem for elements in a topological group by the use of projection operators. It is believed that this result would aid in obtaining decompositions of operators on non-locally convex lattices.

2. PRELIMINARIES

Let \(G\) be an Abelian topological group under addition, and let \(T\) be an algebra of projection operators \([1]\) on \(G\). For \(t_1, t_2 \in T\) define \(t_1 \leq t_2\) to mean \(t_1 \leq t_2\) and define \(t_1 - t_2\) to mean \(t_1 t_2\). This relation induces a partial ordering on \(T\), which in turn has a lattice structure if we set \(t_1 \land t_2 = \sup \{t \in T: t \leq t_1, t \leq t_2\}\) and \(t_1 \lor t_2 = \inf \{t \in T: t_1 \leq t, t_2 \leq t\}\) providing the sup and inf exist. But, we have \(t_1 \lor t_2 = t_1 + t_2 - t_1 t_2 = (t_1 t_2)\) and \(t_1 \land t_2 = t_1 t_2\), so \(T\) is a Boolean algebra of operators. Let \(\mathcal{M}\) be the set of all symmetric neighborhoods about \(0 \in G\). For each \(U \in \mathcal{M}\) and each positive integer \(n\), define \(nU = \{x + y: x, y \in (n-1)U\}\) and \(\mathcal{M}_n = \{0\} \subset G\), whence \(1U = U\). Then a subset \(H \subset G\) is bounded if given \(U \in \mathcal{M}\) there exists an integer \(n\) such that \(H \subset nU\). It would make sense to even say \(H \subset (m/n)U\) for this would mean \(nH \subset mU\). We define an element \(f \in G\) to be s-bounded (strongly bounded) if, for every sequence \(\{t_i\} \subset T\) of pairwise disjoint elements, \(t_i(f) \to 0\). For each positive real number \(x\), \(T_x\) shall denote a non-empty subset of \(T\) with the properties
1) \(t_x \in T_x \) and \(t \in T \) implies \(tt_x \in T_x \), and
2) \(t_x \in T_x \) and \(t_y \in T_y \) implies \(t_x \lor t_y \in T_{x+y} \).

Several lemmas can now be stated, and their proofs follow as in [1] and [2].

Lemma 1. Let \(t_1, t_2 \in T \). Suppose \(t_2(g) \in U \) implies \(t_1(g) \in U \) for arbitrary \(g \in G \) and \(U \in \mathcal{U} \). Then \(t_1 \leq t_2 \).

Lemma 2. If \(\{t_i\} \) is a monotone sequence of elements of \(T \), and if \(f \in G \) is \(s \)-bounded, then \(\{t_i(f)\} \) is Cauchy in \(G \).

Given \(U \in \mathcal{U} \) we write \(U_0 = U \) and for each \(n > 0 \) we write \(U_n \) to represent some element of \(\mathcal{U} \) where \(U_n + U_n \subseteq U_{n-1} \), whence \(2^n U_n \subseteq U \). This is possible since addition is continuous in \(G \).

Definition. \(T \) has Property A if given \(g \in G \) and \(U \in \mathcal{U} \) then there exists a \(V \in \mathcal{U} \) such that if \(a, b \in T \) and \((a' b)(g) \notin U \) then \(a(g) \in V \) and \((a + a' b)(g) \notin V \).

Note that Property A is a condition yielding information about the growth of elements from \(G \); a condition on the manner in which projections affect the relative location of elements in symmetric neighborhoods. We also look at a smaller class of neighborhoods by selecting an arbitrary bounded set \(\hat{U} \) from and forming the sets \(n \hat{U} \) with \(n = 1, 2, \cdots \). Choosing \(\hat{U}_1, \hat{U}_2, \cdots \) we then form \(S = \{\ldots, \hat{U}_2, \hat{U}_1, \hat{U}, 2 \hat{U}, \cdots\} \) and set \(\hat{\mathcal{U}} \) equal to the set

\[
\left\{ \sum_{i=1}^{n} S_i : S_1 \in S, S_i \neq S_j \text{ if } i \neq j \right\}.
\]

It follows that \(\hat{\mathcal{U}} \) possesses the following property inherited from \(\mathcal{U} \): if \(U \in \hat{\mathcal{U}} \) then there exists \(U_1 \in \hat{\mathcal{U}} \) such that \(U_1 + U_1 \subseteq U \). This yields the result,

Lemma 3. If \(T \) has Property A with respect to \(\hat{\mathcal{U}} \), and if \(t_1, t_2 \in T \) with \(t_1 \leq t_2 \), then \(t_2(g) \in U \) implies \(t_1(g) \in U \) for arbitrary \(g \in G \) and \(U \in \hat{\mathcal{U}} \).

From now on we shall assume \(T \) has Property A with respect to \(\hat{\mathcal{U}} \).

Lemma 4. Let \(f \in G \) be \(s \)-bounded, \(\{t_k\} \subseteq T \) and \(U \in \hat{\mathcal{U}} \). Then there exists a positive integer \(n \) such that if \(j \geq i > n \) then
For \(g \in G \) and \(n \in \mathbb{N} \) let \(S(n, g) = \left\{ U : t(g) \in U \text{ for all } t \in T_{1/n} \right\} \).

Lemma 3 guarantees that no \(S(n, g) \) is empty.

Lemma 5. If \(t(g) \neq 0 \) for some \(t \in T_{1/n} \), then there exists a \(W \in S(n, g) \) such that \(W_1 + W_2 + \cdots + W_n \notin S(n, g) \) for all choices of \(W_i \in \hat{\mathcal{U}} \).

Proof. Let \(U \in S(n, g) \) and construct a sequence \(\{A_k\} \subset \hat{\mathcal{U}} \) as follows. Set \(A_1 = U_1 + U_2 + \cdots + U_n \) for arbitrary \(U_i \), and set \(A_{k+1} = (A_k)_1 + (A_k)_2 + \cdots + (A_k)_n \) for arbitrary \((A_k)_i \). Now \(A_1 \subset \left(\frac{(2^n-1)/2^n}{2^n}\right)^{2n} U \), and then \(A_2 \subset \left(\frac{(2^n-1)/2^n}{2^n}\right)^{2n} U \). In general \(A_k \subset \left(\frac{(2^n-1)/2^n}{2^n}\right)^k U \). But the coefficient \(\left(\frac{(2^n-1)/2^n}{2^n}\right)^k \) can be made as small as we like (consequently given \(i > 0 \) there exists \(k > 0 \) such that \(A_k \subset U_i \)), so if the lemma is not true then given \(U \in S(n, g) \) there would exist \(U_1, U_2, \ldots, U_n \) such that \(U_1 + U_2 + \cdots + U_n \notin S(n, g) \). Setting \(A_1 = U_1 + \cdots + U_n \) we apply the hypothesis again and get \((A_1)_1 + \cdots + (A_1)_n \in S(n, g) \). Continuing this procedure yields sets \(A_k \) which contain \(\{t(g) : t \in T_{1/n}\} \), and which continue to get smaller. This is impossible since \(t(g) \neq 0 \) for some \(t \).

Let us denote this set \(W \) by \(W(n, g) \). This lemma implies that out of all the neighborhoods containing \(\{t(g) : t \in T_{1/n}\} \), \(W(n, g) \) is one of the "smallest."

Since \(\{t(g) : t \in T_{1/(n+1)}\} \) is contained in \(\{t(g) : t \in T_{1/n}\} \) we can choose our \(W(n, g) \) to be nested, \(W(n, g) \supseteq W(n+1, g) \). Assuming this sequence of neighborhoods converges, we are led to defining the following function.

Definition. Let \(Y : G \to \hat{\mathcal{U}} \) by \(Y(g) = \lim W(n, g) \).

This function is the counterpart to the function \(y \) in [2]. Our last lemma is the following.

Lemma 6. Let \(G \) be complete and \(f \in G \) be \(s \)-bounded. Let \(W(n, f) \) be an associated sequence of neighborhoods as above that contain \(\{t(f) : t \in T_{1/n}\} \). Then given \(M > 0 \) there exists a decreasing sequence \(\{a_i\} \) in \(T \) such that

1) if \(x > 0 \) then there exists an integer \(i \) such that \(a_i \in T_x \), and
2) \(\lim a_i(f) \neq W_1 + W_2 + \cdots + W_M \) where \(W = \lim W(n,f) \), and for all \(W_i \).

Proof. To just sketch the essentials of the lemma, we let \(t_i \in T_{1/2^{i+1}} \) such that \(t_i(f) \neq W_1 + W_2 + \cdots + W_{M+2} \) for all \(W_i \), \(i = 1, 2, \ldots, M+2 \). This is possible by the choice of \(W(n,f) \). By Lemma 4 there exists a positive integer \(n_1 \) such that \(j > i > n_1 \) implies \(\bigvee_{i \leq k \leq j} t_k(f) \in W_{M+3} \). Applying Lemma 4 again to the sequence \(t_{n_1+1}, t_{n_1+2}, \ldots, t_{n_2}, \ldots \) produces a positive integer \(n_2 \) such that \(\bigvee_{q \leq k \leq p} t_k(f) \in W_{M+4} \) for \(j > i > n_2 \). Continuing this process we get an increasing sequence \(\{n_j\} \uparrow \) of positive integers such that \(\bigvee_{q \leq k \leq p} t_k(f) \in W_{M+j+2} \) whenever \(p \geq q > n_j \).

If \(u_j = \bigvee_{n_j < i \leq n_{j+1}} t_i \) then \(u_j \in T_{1/2^{n_j+1}} \) and \(k > j \) implies

\[
(\bigvee_{j < p \leq k} u_p - u_j)(f) \in W_{M+j+3}.
\]

Setting \(a_k = \bigwedge_{j \leq k} u_j \) produces the desired decreasing sequence.

We now can state and prove our main decomposition result.

Theorem. Let \(G \) be an Abelian topological group, and let \(T \) be an algebra of projection operators on \(G \). Assume \(T_x, \mathcal{M} \) and \(\hat{\mathcal{M}} \) are as before with \(G \) being complete, and with \(T \) possessing Property A with respect to \(\hat{\mathcal{M}} \). If \(f \in G \) is s-bounded then there exists unique elements \(h, s \in G \) such that

1) \(f = h + s \),
2) given \(U \in \hat{\mathcal{M}} \) there exists a positive real number \(x \) such that if \(t \in T_x \) then \(t(h) \in U \),
3) given \(U \in \hat{\mathcal{M}} \) and \(\varepsilon > 0 \) there exists \(t \in T_{\varepsilon} \) such that \(t'(s) \in U \).

Proof. First, as counterparts to the classical Lebesgue decomposition theorem, the element \(h \) is to represent the continuous portion of \(f \), while \(s \) represents the singular portion. Again, to just sketch some of the essentials of the proof, we bypass the uniqueness and, turning our attention to existence...
note that if \(h = f \) satisfies condition (2) then there is nothing to prove. Denoting \(Y(f) \) by \(W(f) \), we assume \(W(f) \) contains points other than \(0 \in G \). Then, from Lemma 6, there exists a sequence \(\{a_{1i}\} \) in \(T \) such that \(\lim a_{1i}(f) \neq W_1(f) + W_2(f) \) for all \(W_1(f) \). Let \(s_1 = \lim a_{1i}(f) \epsilon G \) and \(f_1 = f - s_1 = \lim a_{1i}'(f) \). If \(Y(f_1) = \{0\} \), then \(f_1 \) satisfies (2) and the proof is completed because \(a_{11}(f) = s_1 \) implies \(a_{11}'(s_1) \rightarrow 0 \), and thus \(f_1 \) is also \(s \)-bounded. So given \(U \epsilon \hat{\mathcal{L}} \) and \(\epsilon > 0 \) there exists \(t \epsilon T \) such that \(t'(s) \epsilon U \), namely \(t = a_{1i} \) for large \(i \). If \(f_1 \) does not satisfy (2), applying Lemma 6 to \(f_1 \) produces another sequence \(\{a_{2i}\} \) in \(T \) such that \(\lim a_{2i}(f_1) \neq W_1(f_1) + W_2(f_1) \). Let \(s_2 = \lim a_{2i}(f_1) \) and \(f_2 = f_1 - s_2 = \lim a_{2i}'(f_1) \). Then \(f_2 \) is \(s \)-bounded and \(f = f_2 + (s_1 + s_2) \). To show \(s_1 + s_2 \) satisfies condition (3) we let \(U \epsilon \hat{\mathcal{L}} \) and \(\epsilon > 0 \). We have \(a_{11}'(s_1) \rightarrow 0 \) and \(a_{21}'(s_2) \rightarrow 0 \). So there exists a positive integer \(N \) such that \(a_{11}'(s_1) \epsilon U_1 \) and \(a_{21}'(s_2) \epsilon U_1 \) for all \(i \) greater than \(N \). Then \((a_{11} \land a_{21}') (s_1 + s_2) = (a_{11}' \land a_{21}') (s_1) + (a_{11}' \land a_{21}') (s_2) \epsilon U \). Condition (3) is satisfied by letting \(t = a_{1i} \lor a_{2i} \) for large \(i \). So if \(Y(f_2) = \{0\} \) then let \(h = f_2 \) and \(s = s_1 + s_2 \) and the proof is completed. If not, continue the process. If for some positive integer \(k \), \(Y(f_k) = \{0\} \), we are through. Otherwise we obtain a sequence \(\{(s_k, f_k)\} \) of pairs of elements of \(G \) and a sequence \(\{\{a_{ki}\} \} \) of non-increasing sequences of elements of \(T \) such that for each positive integer \(k \) we have

1) there exists a sequence \(\{x_{ki}\} \) of positive reals where \(x_{ki} \rightarrow 0 \) and \(a_{ki} \epsilon T \)

2) \(s_k = \lim a_{ki}(f_k - 1) \) with \(f_0 = f \),

3) \(f_k = f_{k-1} - s_k = \lim a_{ki}'(f_{k-1}) \),

4) \(s_k \neq W_1(f_{k-1}) + W_2(f_{k-1}) \) for all \(W_1(f_{k-1}) \),

5) \(f = f_k + \sum_{i=1}^{k} s_i \).
In the end we will have our decomposition \(f = h + s \) with \(s = \sum_{i=1}^{\infty} s_i \) and \(h = f - s \).

Toward this goal, although the steps shall be omitted, the next step is to show \(\lim s_k = 0 \) by showing that \(s_k \) eventually belongs to an arbitrarily selected \(U \in \mathcal{U} \). And then it must be established that \(\lim_{n \to \infty} \sum_{i=1}^{n} s_i \) exists. Assuming this, we then let \(s = \lim_{n \to \infty} \sum_{i=1}^{n} s_i \) and \(h = f - s \). We shall show that \(s \) satisfies condition (3) of the theorem. We have \(s_k = \lim_{i} a_{ki}(f_{k-1}) \). Let \(U \in \mathcal{U} \). Then \(a_{ki}(s_k) \to 0 \), so \(a_{ki}(s_k) \in \bigcup_{k=1}^{\infty} \mathcal{U}_k \) for all \(i \) greater than some positive integer \(M_k \). Since \(s = \lim_{n \to \infty} \sum_{i=1}^{n} s_i \) then there exists a positive integer \(N \) such that \(\sum_{i=1}^{n} s_i \in \mathcal{U}_1 \), and then

\[
\left(\bigvee_{k \leq N} a_{ki} \right)'(s) = \left(\bigvee_{k \leq N} a_{ki} \right)' \sum_{j=1}^{N} s_j + \left(\bigvee_{k \leq N} a_{ki} \right)' \sum_{j > N} s_j
\]

\[
= \sum_{j=1}^{N} k \leq N a_{ki}'(s_j) + \left(\bigvee_{k \leq N} a_{ki} \right)' \sum_{j > N} s_j
\]

\[
\in \mathcal{U}_2 + \cdots + \mathcal{U}_{N+1} + \mathcal{U}_1 \quad \text{for large } i = \max \{ M_1, \ldots, M_N \}
\]

So, let \(t = \bigvee_{k \leq N} a_{ki} \) where \(i = \max \{ M_1, \ldots, M_N \} \) and condition (3) is satisfied. Now \(h = f - s = \lim f_n \) and \(Y(f_n) \to \{ 0 \} \). Then \(Y(h) = \{ 0 \} \) and the decomposition is finished.

These results are part of the author's dissertation from Colorado State University.

REFERENCES

