ON GENERALIZED QUATERNION ALGEBRAS

GEORGE SZETO
Department of Mathematics
Bradley University
Peoria, Illinois 61625
U.S.A.

(Received February 1, 1979 and in revised form July 13, 1979)

ABSTRACT. Let B be a commutative ring with 1, and G (={o}) an automorphism group of B of order 2. The generalized quaternion ring extension $B[j]$ over B is defined by S. Parimala and R. Sridharan such that (1) $B[j]$ is a free B-module with a basis $\{1,j\}$, and (2) $j^2 = -1$ and $j b = o(b) j$ for each b in B. The purpose of this paper is to study the separability of $B[j]$. The separable extension of $B[j]$ over B is characterized in terms of the trace (= $1 + o$) of B over the subring of fixed elements under o. Also, the characterization of a Galois extension of a commutative ring given by Parimala and Sridharan is improved.

KEY WORDS AND PHRASES. Quaternion Rings, Separable Algebras, and Galois Extensions.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES. 16A16, 13A20, 13B05.
1. INTRODUCTION.

In [6], we studied the separable extension of group rings RG and quaternion rings $R[i,j,k]$ over a ring R with 1. We have shown that $R[i,j,k]$ is a separable extension of R if and only if 2 is a unit in R. Recently, S. Parimala and R. Sridharan ([5]) investigated another class of quaternion ring extensions $B[j]$ over a commutative ring B with 1 and with an automorphism group $G (= \{6\})$ of order 2, where $B[j]$ is a free B-module with a basis $\{1, j\}$, $j^2 = -1$, and $jb = 6(b)j$ for each b in B. Their work is based on the following characterization of a Galois extension of a commutative ring ([5], Proposition 1.1): Let A be the set of elements in B fixed under σ. Assume 2 is a unit in A. Then, B is Galois over A if and only if $B \otimes_A B[j] \cong M_2(B)$, a matrix algebra over B of order 2, where the Galois extension is in the sense of Chase-Harrison-Rosenberg ([2]). The purpose of this paper is to study the separability of $B[j]$. Without the assumption that 2 is a unit in A, we shall characterize the separability of $B[j]$ in terms of the trace ($= 1 + 6$) of B over A. This shows the existence of a separable generalized quaternion ring extension $B[j]$ with 2 not a unit in A. When $\text{Char}(A) = 2$, we shall show that $B[j]$ is a separable extension over B if and only if B is Galois over A. Thus we can improve the above theorem of Parimala and Sridharan. Then, the case in which 2 is a unit will be discussed, and several examples are constructed to illustrate our main results.

2. PRELIMINARIES.

Let us recall some basic definitions as given in [1], [2], [3], [4] and [6]. Let B be a commutative ring containing a subring A with the same identity 1. Then B is called a Galois extension over A ([2], or [3], Chapter 3) with a finite automorphism group G if (1) there exist
elements \{a_i, b_i \in B / i = 1, 2, \ldots, n\} such that
\[\sum a_i b_i = 1 \text{ and } \sum a_i \sigma(b_i) = 0 \text{ whenever } \sigma \neq 1 \text{ in } G, \] and (2) \(A = \{ b \in B / \sigma(b) = b \text{ for all } \sigma \in G \}. \] The map \(\sum \sigma \) is called the trace of \(B \) over \(A \) denoted by \(\text{Tr} \). Let \(S \) be a ring (not necessarily commutative) containing a subring \(R \) with the same identity 1. Then \(S \) is called a separable extension of \(R \) if there exist elements, \{c_i, d_i \in S / i = 1, 2, \ldots, n\} such that (1) \(a(\sum c_i d_i) = (\sum c_i d_i)a \) for all \(a \in S \) where \(\sum \) is over \(R \), and (2) \(\sum c_i d_i = 1 \). Such an element \(\sum c_i d_i \) is called a separable idempotent for \(S \). When \(R \) is contained in the center of \(S \), \(S \) is called a separable \(R \)-algebra. The separable \(R \)-algebra \(S \) is called an Azumaya \(R \)-algebra if \(R \) is the center of \(S \).

3. SEPARABLE QUATERNION ALGEBRAS.

Throughout, we assume that \(B \) is a commutative ring with 1, and \(G (= \{ \sigma \}) \) an automorphism group of order 2 of \(B \), and that \(B[j] \) is the generalized quaternion algebra over \(A \), where \(A \) is the subring of elements fixed under \(\sigma \). Our main goal in the section is to study a separable extension \(B[j] \) over \(B \) without the assumption that 2 is a unit in \(A \). We begin with a description of the set of separable idempotents for \(B[j] \) (if there are any) over \(B \). Clearly, \(\{1j, 1j, j, j \} \) is a basis for \(B[j] \).

LEMMA 3.1. The element \(x = a_{11}(1j) + a_{22}(1j) + a_{21}(j) + a_{12}(j) \) is a separable idempotent for \(B[j] \) over \(B \) if and only if (1) \(a_{22} = -\sigma(a_{11}) \) such that \(\text{Tr}(a_{11}) = 1 \), and (2) \(a_{21} = \sigma(a_{12}) \) such that \(a_{12}((b - \sigma(b)) = 0 \) for all \(b \) in \(B \) and \(\text{Tr}(a_{12}) = 0 \).

PROOF. Let \(x \) be a separable idempotent for \(B[j] \) over \(B \). Then \(xu = ux \) for each \(u \) in \(B[j] \). Hence \(xj = jx \); that is,
\[\sigma(a_{11})(j) + \sigma(a_{12})(j) - \sigma(a_{21})(1j) - \sigma(a_{22})(1j) = \]
Equating corresponding coefficients, we have $a_{11} = -a_{22}$, $a_{12} = a_{21}$; that is, $a_{22} = -6(a_{11})$ and $a_{21} = 6(a_{12})$ for $6^2 = 1$. Also, $bx = xb$ for all b in B, so $b_{12}(b - 6(b)) = 0$. Thus $x = a_{11}(101) + a_{12}(10j) + 6(a_{12})(j0j) - 6(a_{11})(j0j)$ with $a_{12}(b - 6(b)) = 0$. Moreover, by the second condition of a separable idempotent, $a_{11} + (a_{12} + 6(a_{12}))j + 6(a_{11}) = 1$, so $Tr(a_{11}) = 1$ and $Tr(a_{12}) = 0$. Conversely, it is straightforward to verify that any x satisfying all equations as given is a separable idempotent.

Theorem 3.2. $B[j]$ is a separable extension over B if and only if there is an element c in B such that $Tr(c) = 1$.

Proof. The necessity is a consequence of Lemma 3.1. For the sufficiency, if $Tr(c) = 1$, we take $a_{11} = c$, $a_{12} = a_{21} = 0$. Then $a_{11}(101) - 6(a_{11})(j0j)$ is a separable idempotent for $B[j]$ by Lemma 3.1. Thus $B[j]$ is a separable extension over B.

Using Theorem 3.2, we can obtain a characterization of a separable extension $B[j]$ over B when $Char(A) = 2$.

Theorem 3.3. Assume $Char(A) = 2$. Then, $B[j]$ is a separable extension over B if and only if B is a Galois extension over A.

Proof. Let B be a Galois extension over A. Corollary 1.3 on P. 85 in [3] implies that $Tr(c) = 1$ for some c in B. Thus $B[j]$ is a separable extension over B by Theorem 3.2. Conversely, by Theorem 3.2 again, there exists an c in B such that $Tr(c) = 1$, so $(c+6(c)) = 1$. By hypothesis, $Char(A) = 2$, $6(c) = 6(-c) = -6(c)$, so $c - 6(c) = 1$. Hence the ideal generated by $\{(b - 6(b)) / b \in B\} = B$. This implies that B is Galois over A by the statement 5 in Proposition 1.2 on P. 81 in [3].

Let us recall that the theorem of Parimala and Sridharan (Proposition 1.1 in [5]): Assume 2 is a unit in A. Then, B is Galois over A.

if and only if $B^q_A B[j] \cong M_2(B)$, a matrix algebra over B of order 2.

We are going to improve it without the assumption that 2 is a unit in A.

THEOREM 3.4. If B is Galois over A, then $B^q_A B[j] \cong M_2(B)$.

PROOF. If B is Galois over A, there exists an c in B such that

$$\text{Tr}(c) = 1$$

([3], Corollary 1.3, P. 85). Hence $B[j]$ is a separable extension over A by Theorem 3.2. But B is also a separable extension over A by Proposition 1.2 in [3], so the transitive property of separable extensions ([4], Proposition 2.5) implies that $B[j]$ is a separable A-algebra. Moreover, we claim that (1) $B[j]$ is an Azumaya algebra over A, and (2) B is a maximal commutative subalgebra of $B[j]$. The proof of these facts was given in [7]. For completeness, we give an outline here. For part (1), it suffices to show that A is the center of $B[j]$. Clearly, A is contained in the center. Now, let $b+b'j$ be in the center. Then $j(b+b'j) = (b+b'j)j$ and $c(b+b'j) = (b+b'j)c$ for each c in B. Equating coefficients of the basis $\{1,j\}$ in the above equations, we have that b is in A and $b' = 0$ by Statement 5 in Proposition 1.2 on P. 81 in [3]. For part (2), to show that B is a maximal commutative subalgebra of $B[j]$ is to show that the commutant of B in $B[j]$ is B.

The computation is similar to part (1).

Moreover, noting that B is separable over A, we then conclude

$$B^q_A (B[j])^O \cong \text{Hom}_B(B [j], B [j])$$

by Theorem 5.5 on P. 65 in [3], and this implies that $B^q_A B[j] \not\cong M_2(B)$, where $(B[j])^O$ is the opposite ring.

In [7], the sufficiency of the Parimala and Sridharan theorem was shown by a different method from [5]. Now we slightly improve the statement without the assumption that 2 is a unit in A.

THEOREM 3.5. Let $B[j]$ be a separable extension over B. If $B^q_A B[j] \cong M_2(B)$, then B is Galois over A.

PROOF. Since $B[j]$ is a separable extension over B, there exists an element c in B such that $\text{Tr}(c) = 1$ by Theorem 3.2. Hence the sequence $B \to A \to 0$ is exact under the trace map. But A is projective over A, so the sequence splits, and then A is an A-direct summand of B. By hypothesis, $B \otimes_A B[j] \cong M_2(B)$ which is an Azumaya B-algebra, so $B[j]$ is an Azumaya A-algebra ([3], Corollary 1.10, P. 45). Therefore B is Galois over A by using the same argument as given in [7].

In Theorem 3.5, the hypothesis that $B \otimes_A B[j] \cong M_2(B)$ can be replaced by that $B \otimes_A B[j]$ is an Azumaya B-algebra with the same proof.

4. SPECIAL SEPARABLE QUATERNION ALGEBRAS.

Theorem 3.5 tells us that $B[j]$ is an Azumaya A-algebra such that $B \otimes_A B[j] \cong M_2(B)$ when B is Galois over A. In this section, we are going to discuss generalized quaternion algebras $B[j]$ in which 2 is a unit in A when B is projective and separable over A. With a similar argument as given in Lemma 3.1, we have

LEMMA 4.1. The element $a_{11}(1o1)+a_{12}(1o1)+a_{21}(j01)+a_{22}(j0j)$ in $A[j] \otimes_A B[j]$ is a separable idempotent for $A[j]$ if and only if (1) $a_{22} = -a_{11}$ such that $2a_{11} = 1$, and (2) $a_{21} = a_{12}$ such that $2a_{12} = 0$.

THEOREM 4.2. The A-algebra $A[j]$ is separable if and only if 2 is a unit in A.

PROOF. The necessity is clear by Lemma 4.1; the sufficiency is immediate because $(1/2)(1o1-j0j)$ is a separable idempotent.

Now we give a characterization of $B[j]$ in which 2 is a unit when B is projective and separable over A.

THEOREM 4.3. Let B be separable and projective over A. Then, $B[j]$ is a separable extension over B and projective over $A[j]$ as a bimodule if and only if 2 is a unit in A.
PROOF. Let 2 be a unit in A and let c be \((1/2)\). Then \(\text{Tr}(c) = 1/2 + 1/2 = 1\), and hence \(B[j]\) is separable over \(B\) by Theorem 3.2. By hypothesis, \(B\) is projective over \(A\), so \(B[j]\) is left projective over \(A\) (for \(B[j]\) is left projective over \(B\)). Hence \(B[j]\) is left projective over \(A[j]\) ([3], Proposition 2.3, P. 48). We next claim that \(B[j]\) is also right projective over \(A[j]\). In fact, \(\alpha: B[j]A[j] \rightarrow B[j]\) defined by \(\alpha(b + b'j) = b\alpha b'j\) for all \(b\) and \(b'\) in \(B\) is an isomorphism as right \(A[j]\)-modules. But \(B\) is projective over \(A\), so \(B[j]A[j]\) is right projective over \(A[j]\). This proves that \(B[j]\) is right projective over \(A[j]\). Thus \(B[j]A[j] \rightarrow (B[j])^O\) is projective as \(A[j]-A[j]\)-module. Since \(B[j]\) is a direct summand of \(B[j]A[j] \rightarrow (B[j])^O\) as a \(B[j]A[j]\)-module (for \(B[j]\) is separable over \(A\)), \(B[j]\) is projective as a \(A[j]-A[j]\)-module.

Conversely, to show that 2 is a unit in \(A\), it suffices to show that \(A[j]\) is a separable \(A\)-algebra by Theorem 4.2. Since \(B[j]\) is a separable extension over \(B\), \(\text{Tr}(c) = 1\) for some \(c\) in \(B\) by Theorem 3.2. Hence \(\text{Tr}: B \rightarrow A \rightarrow 0\) is exact. We claim that \(\text{Tr}\) induces an exact sequence: \(B[j] \rightarrow A[j] \rightarrow 0\) as \(A[j]-A[j]\)-modules. We define \(\beta: B[j] \rightarrow A[j] \rightarrow 0\) by \(\beta(b + b'j) = \text{Tr}(b) + \text{Tr}(b')j\). Clearly, \(\beta\) is an additive group homomorphism. Moreover, for \(a, a'\) in \(A\), \((b + b'j)(a + a'j) = (ba + b'a') + (ba' + b'a)j\), so \(\beta((b + b'j)(a + a'j)) = \text{Tr}(ba - b'a') + \text{Tr}(ba' + b'a)j = (a\text{Tr}(b) - a'\text{Tr}(b')) + (a'\text{Tr}(b) + a\text{Tr}(b'))j\). Also, \(\beta((b + b'j)(a + a'j) = (\text{Tr}(b) + \text{Tr}(b')j)(a + a'j) = \beta((b + b'j)(a + a'j))\). Thus \(\beta\) is a right \(A[j]\)-homomorphism. Similarly, by noting that \(\text{Tr} = 1 + 6\) and that \((\text{Tr})6 = \text{Tr} = 6(\text{Tr})\), it is straightforward to verify that \(\beta\) is a left \(A[j]\)-homomorphism. But then \(A[j]\) is \(A[j]-A[j]\) projective such that \(\beta\) is onto (for \(\text{Tr}(c) = 1\) in \(A[j]\)). This implies that the exact

5. EXAMPLES.

This section includes several examples to illustrate our results.

(1) Let \(Z \) be the ring of integers, and \(Z \times Z (= B) \) the ring of direct product of \(Z \) under the componentwise operations. Define \(\sigma: Z \times Z \rightarrow Z \times Z \) by \(\sigma(a,a') = (a',a) \) for \(a,a' \) in \(Z \). Then \(\sigma \) is an automorphism group of order 2 and \(\{(a,a) / a \in Z\} (= A) \) is the subring of \(Z \times Z \) of the fixed elements under \(\sigma \). Imbed \(Z \) in \(Z \times Z \) by \(a \rightarrow (a,a) \). Then we have

(a) \(Z \times Z \) is a free \(A \)-module with a basis \(\{(1,0),(0,1)\} \).

(b) \(Z \times Z \) is separable over \(Z \).

(c) \((Z \times Z)[j] \) is a separable extension over \(Z \times Z \) because \(\text{Tr}((1,0)) = (1,0)+(0,1) = (1,1) \) by Theorem 3.2.

(d) \(Z[j] \) is not separable over \(Z \) because 2 is not a unit in \(Z \) by Theorem 4.2.

(e) \((Z \times Z)[j] \) is not projective over \(Z[j] \) because 2 is not a unit in \(Z \) by Theorem 4.3.

(2) Let \(Z(3) \) be the local ring of \(Z \) at the prime ideal \((3) \). Replace \(Z \) by \(Z(3) \) in Example (1). Then we have

(a) 2 is a unit in \(Z(3) \).

(b) All properties (a), (b) and (c) in Example (1) hold.
(c) \((Z(3)^{xZ(3)})[3]\) is projective over \(Z(3)[3]\) by Theorem 4.3.

(3) \(Z \times Z\) and \(Z(3)^{xZ(3)}\) in Example (1) and Example (2) are Galois over \(Z\) and \(Z(3)^{xZ(3)}\) respectively by using Proposition 1.2 on p. 64 in [3],
Since \(\text{Tr}(3,-2)) = (3,-2)+(-2,3) = (1,1)\) which is not in any maximal ideal of \(Z \times Z\) or \(Z(3)^{xZ(3)}\). Thus \((Z \times Z)[Z \times Z][3] \cong M_2(Z \times Z)\) and \((Z(3)^{xZ(3)})[Z(3)^{xZ(3)}][3] \cong M_2(Z(3)^{xZ(3)}))\) by Theorem 3.4.

(4) Let \(i\) be the usual imaginary unit. Then \(Z[i]\) is not separable over \(Z\). \(Z[i]\) has an automorphism group \(\{\sigma: \sigma(a+bi) = a-bi\) for \(a, b\) in \(Z\}\) such that \(\sigma^2 = 1\) and \(Z\) is the fixed ring of \(\sigma\). Also, (a) \((Z[i])[i]\) is not separable over \(Z[i]\), and (b) \(Z[i]\) is not Galois over \(Z\).

REFERENCES

