A NOTE ON THE SUBCLASS ALGEBRA

JOHN KARLOF

Department of Mathematics
University of Nebraska at Omaha
Omaha, Nebraska 68182
U.S.A.

(Received January 16, 1978 and in revised form November 19, 1979)

ABSTRACT. Each irreducible character of the subclass algebra is paired up with its irreducible module.

KEY WORDS AND PHRASES. Finite group, irreducible character, subclass algebra.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 20C05 primary; 20C15 secondary.

INTRODUCTION.

Let G be a finite group and let H be a subgroup of G. If g ∈ G, the subclass of G containing g is the set \(E_g = \{ hgh^{-1} | h \in H \} \) and the subclass sum containing g is \(B_g = \sum_{x \in E_g} g \). The algebra over the complex numbers, K, generated by these subclass sums is called the subclass algebra (denoted by S) associated with G and H.

Let \(\{ M_1, \ldots, M_s \} \) be the irreducible KG-modules with \(M_j \) affording the irreducible character, \(\chi_j \), of G and let \(\{ N_1, \ldots, N_t \} \) be the irreducible KH-modules with \(N_i \)
affording the irreducible character ϕ_i, of H. Suppose $\{e_i\}_{i=1}^t$ is a set of primitive orthogonal idempotents of KH and $\{f_i\}_{i=1}^t$ is the set of primitive central orthogonal idempotents of KH where the sets are indexed so that $N_i = KH e_i$ and $f_i = (\dim N_i) e_i = \frac{\dim \phi_i}{|H|} \sum_{h \in H} \phi_i(h^{-1}) h$. We define the non-negative integers $\{c_{ij}\}$ by

$$\chi_j \bigg|_H = \sum_{i=1}^t c_{ij} \phi_i.$$

In [2], it was demonstrated that the irreducible S-modules are $\{e_i M_j\}$.

D. Travis [3] has shown that the irreducible characters of S are parameterized by pairs $\chi_j, \phi_1 (c_{ij} \neq 0)$ and are given by

$$\psi_{ij}(g) = \frac{|E_g|}{|H|} \sum_{h \in H} \chi_j(gh) \phi_1(h^{-1}). \quad (1)$$

Independent of Travis's work we show that the irreducible character afforded by $e_i M_j$ is ψ_{ij}.

LEMMA: $\chi_i(sB_g) = |E_g| \chi(sg) \forall s \in S, \forall g \in G$

PROOF: Since $B_g = \frac{|E_g|}{|H|} \sum_{h \in H} ghg^{-1}$, we have $\chi_i(sB_g) = \frac{|E_g|}{|H|} \sum_{h \in H} \chi_i(ghg^{-1})$

$$= \frac{|E_g|}{|H|} \sum_{h \in H} \chi_i(hsg^{-1}) \text{ since } hs = sh, \forall h \in H$$

$$= |E_g| \chi_i(sg).$$

THEOREM: Let ψ_{ij} be the character afforded by the irreducible S-module $e_i M_j (c_{ij} \neq 0)$. Then ψ_{ij} is as defined by equation (1).

PROOF: By proposition 2.3 of [2], we have $M_j |^S = \sum_{k=1}^t (\dim N_k) e_k M_j$

$$= \sum_{k=1}^t \sum_{j} f_k M_j.$$

Therefore, for $s \in S$, $\chi_j(sf_i) = \sum_{k=1}^t \sum_{j} (\dim \phi_k) \psi_{kj}(sf_i)$.
\[(\dim \phi_i) \psi_{ij}(s f_i)\]
\[(\dim \phi_i) \psi_{ij}(s)\]

since the trace of the action of \(s f_i\) on \(f_i M_j\) is the same as the trace of the action of \(s\) on \(f_i M_j\) and the trace of the action of \(s f_i\) on \(f_k M_j\) \((i \neq k)\) is 0.

Thus \(\psi_{ij}(B_g) = \frac{1}{\dim \phi_i} \chi_j(B_g f_i)\)
\[= \frac{|E_g|}{\dim \phi_i} \chi_j(g f_i)\]
by the Lemma
\[= \frac{|E_g|}{|H|} \sum_{h \in H} \chi_j(gh) \Phi_i(h^{-1})\].

End of proof.

Acknowledgment: We thank the referee for simplifying the proof of the above theorem.

REFERENCES

