A NOTE ON A CLASS OF BANACH ALGEBRA-VALUED POLYNOMIALS

SIN-EI TAKAHASI, OSAMU HATORI, KEIICHI WATANABE, and TAKESHI MIURA

Received 10 March 2002

Let F be a Banach algebra. We give a necessary and sufficient condition for F to be finite dimensional, in terms of finite type n-homogeneous F-valued polynomials.

2000 Mathematics Subject Classification: 46H99.

1. Introduction and results. Let E and F be complex Banach spaces. We denote by $L(nE,F)$ the Banach space of all continuous n-linear mappings A from E^n into F endowed with the norm $\|A\| = \sup\{\|A(x_1,\ldots,x_n)\| : \|x_j\| \leq 1, j = 1,\ldots,n\}$. A mapping P from E into F is called a continuous n-homogeneous polynomial if $P(x) = A(x,\ldots,x)$ (for all $x \in E$) for some $A \in L(nE,F)$. We denote by $P(nE,F)$ the Banach space of all continuous n-homogeneous polynomials P from E into F endowed with the norm $\|P\| = \sup\{\|P(x)\| : \|x\| \leq 1\}$. Also a mapping P from E into F is called a finite type n-homogeneous polynomial if $P(x) = f_1(x)b_1 + \cdots + f_k(x)b_k$ (for all $x \in E$), where $f_1,\ldots,f_k \in E^*$ and $b_1,\ldots,b_k \in F$. We denote by $Pf(nE,F)$ the space of all finite type n-homogeneous polynomials P from E into F. Then we have $Pf(nE,F) \subseteq P(nE,F)$. Indeed, let $P \in Pf(nE,F)$. Then we write $P(x) = f_1(x)b_1 + \cdots + f_k(x)b_k$ (for all $x \in E$), where $f_1,\ldots,f_k \in E^*$ and $b_1,\ldots,b_k \in F$. Let

$$A(x_1,\ldots,x_n) = \sum_{i=1}^{k} f_i(x_1)\cdots f_i(x_n)b_i, \quad (x_1,\ldots,x_n) \in E^n. \quad (1.1)$$

Then A is a continuous n-linear mapping from E^n into F and $P(x) = A(x,\ldots,x)$ (for all $x \in E$). Hence $P \in P(nE,F)$. We are now interested in the case that F is a Banach algebra. Let

$$P_{f}(nE,F) = \{\varphi_1^n + \cdots + \varphi_k^n : \varphi_j \in B(E,F) (j = 1,\ldots,k), k \in \mathbb{N}\}, \quad (1.2)$$

where $\varphi_j^n(x) = (\varphi_j(x))^n (x \in E)$. Then we have $P_{f}(nE,C) = P_{f}(nE,F)$ and $P_{f}(nC,F) \subseteq P_{f}(nE,F)$ (see [1, Section 1]). Also, we have $P_{f}(nE,F) \subseteq P(nE,F)$. Indeed, let $P \in P_{f}(nE,F)$. Then we can write $P = \varphi_1^n + \cdots + \varphi_k^n$ for some $\varphi_1,\ldots,\varphi_k \in B(E,F)$. Set $A(x_1,\ldots,x_n) = \sum_{i=1}^{k} \varphi_i(x_1)\cdots \varphi_i(x_n)$ (for all $x_1,\ldots,x_n \in E^n$). Then A is a continuous n-linear mapping from E^n into F and $P(x) = A(x,\ldots,x)$ (for all $x \in E$). Hence $P \in P(nE,F)$.

Now, for each $n \in \mathbb{N}$, we say that an algebra F has the r_n-property if, given any $b \in F$, we can find elements $a_1,\ldots,a_p \in F$ such that $b = \sum_{i=1}^{p} a_i^n$. We also say that an algebra F has the r-property if F has the r_n-property for each $n \in \mathbb{N}$.
Proposition 1.1 (see [1]). (1) Every unital complex algebra has the r-property.

(2) Let E be a Banach space and F be a Banach algebra. Then $P_f(nE,F) \subseteq P_f(nE,F)$ if and only if F has the r_n-property.

In [1], it is remarked that, given an arbitrary Banach space $(F, +, \| \cdot \|)$, we can always define a product \circ and a norm $\| \cdot \|_*$ on F in order that $(F, +, \circ, \| \cdot \|_*)$ is a unital Banach algebra and $\| \cdot \|_*$ is equivalent to $\| \cdot \|$. By Proposition 1.1 and the above remark, Lourenço-Moraes proved the following proposition.

Proposition 1.2 (see [1]). Let E be a Banach space. The following are equivalent:

(a) E is a finite-dimensional space;

(b) $P_f(nE,F) = P_f(nE,F)$ for every $n \in \mathbb{N}$ and for every Banach algebra F with the r_n-property;

(c) $P_f(nE,F) = P_f(nE,F)$ for every $n \in \mathbb{N}$ and for every unital Banach algebra F.

Remark 1.3. By the proof of Proposition 1.2 (see [1]), we see that each of the following two statements are also equivalent to one of, hence all of, (a), (b), and (c) in Proposition 1.2:

(b') $P_f(1E,F) = P_f(1E,F)$ for every unital Banach algebra F;

(d) $P_f(nE,F) = P_f(nE,F)$ for every $n \in \mathbb{N}$ and for every Banach space F.

In this note we show the following result, which is opposite to Proposition 1.2.

Proposition 1.4. Let F be a Banach algebra. Then the following are equivalent:

(a) F is a finite-dimensional space;

(b) $P_f(nE,F) \subseteq P_f(nE,F)$ for every $n \in \mathbb{N}$ and for every Banach space E;

(c) $P_f(1E,F) \subseteq P_f(1E,F)$ for every Banach space E.

In particular, in the unital case, we have the following proposition.

Proposition 1.5. Let F be a unital Banach algebra. Then the following are equivalent:

(a) F is a finite-dimensional space;

(b) $P_f(nE,F) = P_f(nE,F)$ for every $n \in \mathbb{N}$ and for every Banach space E;

(c) $P_f(1E,F) = P_f(1E,F)$ for every Banach space E.

2. Proofs

Lemma 2.1. Let n be any positive integer and let x_1, \ldots, x_n be n-real variables. Then

\[
\prod_{i=1}^{n} x_i = \frac{1}{2^n n!} \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k x_k \right)^n
\]

(2.1)

holds.

Proof. For each m with $0 \leq m \leq n$, let

\[
P_m(x_1, \ldots, x_n) = \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k x_k \right)^m
\]

(2.2)
Then we have \(P_m(0, x_2, \ldots, x_n) = P_m(x_1, 0, \ldots, x_n) = \cdots = P_m(x_1, \ldots, x_{n-1}, 0) = 0 \). Indeed since

\[
P_m(x_1, \ldots, x_n) = \sum_{\varepsilon_2, \ldots, \varepsilon_n = \pm 1} \varepsilon_2 \cdot \varepsilon_n (x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n)^m
\]

\(- \sum_{\varepsilon_2, \ldots, \varepsilon_n = \pm 1} \varepsilon_2 \cdot \varepsilon_n (-x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n)^m, \) \hspace{1cm} (2.3)

it follows that \(P_m(0, x_2, \ldots, x_n) = 0 \). Similarly,

\[
P_m(x_1, 0, \ldots, x_n) = \cdots = P_m(x_1, \ldots, x_{n-1}, 0) = 0. \) \hspace{1cm} (2.4)

Therefore, we have

\[
P_m(x_1, \ldots, x_n) = 0, \] \hspace{1cm} (2.5)

for each \(m = 0, 1, 2, \ldots, n-1 \) and

\[
P_n(x_1, \ldots, x_n) = K_n \prod_{i=1}^{n} x_i, \] \hspace{1cm} (2.6)

for some constant \(K_n \), because \(P_m(x_1, \ldots, x_n) \) is \(m \)-homogeneous for \(x_1, \ldots, x_n \). Hence we only show that \(K_n = 2^n n! \). Note that

\[
K_n = P_n(1, \ldots, 1) = \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k \right)^n. \] \hspace{1cm} (2.7)

Then \(K_1 = 2 \). Now, for each \(m \) with \(0 \leq m \leq n \), let \(\alpha_m = \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k \right)^m \). Then by (2.5) and (2.6), we have \(\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0 \) and \(\alpha_n = K_n \). Hence,

\[
K_{n+1} = \sum_{\varepsilon_1, \ldots, \varepsilon_{n+1} = \pm 1} \varepsilon_1 \cdot \varepsilon_{n+1} \left(\sum_{k=1}^{n+1} \varepsilon_k \right)^{n+1}
\]

\[
= \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k + 1 \right)^{n+1} - \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k - 1 \right)^{n+1}
\]

\[
= \sum_{m=0}^{n+1} \binom{n+1}{m} \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k \right)^{m}
\]

\[
- \sum_{m=0}^{n+1} \binom{n+1}{m} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k \right)^{m}
\]

\[
= \sum_{m=0}^{n+1} \binom{n+1}{m} (1 - (-1)^{n+1-m}) \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdot \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k \right)^{m}
\]

\[
= \sum_{m=0}^{n+1} \binom{n+1}{m} (1 - (-1)^{n+1-m}) \alpha_m
\]

\[
= \binom{n+1}{n} (1 - (-1)^{n+1}) K_n
\]

\[
= 2(n+1) K_n,
\]

so that we have \(K_n = 2^n n! \) \((n = 1, 2, \ldots)\) inductively. \(\square \)
Proof of Proposition 1.4. (a)⇒(b). Let \(\{u_1, \ldots, u_N\} \) be a basis of \(F \) and \(g_1, \ldots, g_N \) the corresponding coordinate functionals, that is, \(g_i(u_j) = \delta_{ij} \) \((i, j = 1, \ldots, N)\). Let \(P \in P_f(\ell E, F) \). Then we can write \(P(x) = \sum_{i=1}^{\ell} (T_i(x))^n \) \((x \in E)\) for some \(T_1, \ldots, T_\ell \in B(E, F) \). Let

\[
f_{ij}(x) = g_j(T_i(x)) \quad (x \in E),
\]

for each \(i = 1, \ldots, \ell, j = 1, \ldots, N \). Then we have \(T_i(x) = \sum_{j=1}^{N} f_{ij}(x) u_j \) \((x \in E, i = 1, \ldots, \ell)\), and hence by Lemma 2.1,

\[
P(x) = \sum_{i=1}^{\ell} \left(\sum_{j=1}^{N} f_{ij}(x) u_j \right)^n
\]

\[
= \sum_{i=1}^{\ell} \prod_{j_1=1}^{N} \cdots \prod_{j_n=1}^{N} f_{i,j_1}(x) \cdots f_{i,j_n}(x) u_{j_1} \cdots u_{j_n}
\]

\[
= \sum_{i=1}^{\ell} \prod_{j_1=1}^{N} \cdots \prod_{j_n=1}^{N} \frac{1}{K_n} \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^{n} \varepsilon_k f_{i,j_k}(x) \right)^n u_{j_1} \cdots u_{j_n}
\]

\[
= \sum_{i=1}^{\ell} \prod_{j_1=1}^{N} \cdots \prod_{j_n=1}^{N} \sum_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} \left(f_{i,j_1, \ldots, j_n, \varepsilon_1, \ldots, \varepsilon_n}(x) \right)^n b_{j_1, \ldots, j_n, \varepsilon_1, \ldots, \varepsilon_n}
\]

for each \(x \in E \), where \(f_{i,j_1, \ldots, j_n, \varepsilon_1, \ldots, \varepsilon_n} = \varepsilon_1 f_{i,j_1} + \cdots + \varepsilon_n f_{i,j_n} \in E^* \) and \(b_{j_1, \ldots, j_n, \varepsilon_1, \ldots, \varepsilon_n} = (1/K_n)\varepsilon_1 \cdots \varepsilon_n u_{j_1} \cdots u_{j_n} \in F \). Therefore we have \(P \in P_f(n E, F) \).

(b)⇒(c). This is trivial.

(c)⇒(a). Suppose that \(P_f(1 E, F) \subseteq P_f(1 E, F) \) for every Banach space \(E \). Note that \(P_f(1 F, F) = \{ T \in B(F, F) : \dim T(F) < \infty \} \) and \(P_f(1 F, F) = B(F, F) \). Then by hypothesis, the identity map of \(F \) onto itself is finite dimensional and so is \(F \). \qed

Proof of Proposition 1.5. This follows immediately from Propositions 1.1 and 1.4. \qed

References