NOTES ON WHITEHEAD SPACE OF AN ALGEBRA

M. ARIAN-NEJAD

Received 2 August 2001

Let R be a ring, and denote by $[R,R]$ the group generated additively by the additive commutators of R. When $R_n = M_n(R)$ (the ring of $n \times n$ matrices over R), it is shown that $[R_n,R_n]$ is the kernel of the regular trace function modulo $[R,R]$. Then considering R as a simple left Artinian F-central algebra which is algebraic over F with $\text{Char} F = 0$, it is shown that R can decompose over $[R,R]$, as $R = Fx + [R,R]$, for a fixed element $x \in R$. The space $R/[R,R]$ over F is known as the Whitehead space of R. When R is a semisimple central F-algebra, the dimension of its Whitehead space reveals the number of simple components of R. More precisely, we show that when R is algebraic over F and $\text{Char} F = 0$, then the number of simple components of R is greater than or equal to $\dim_F R/[R,R]$, and when R is finite dimensional over F or is locally finite over F in the case of $\text{Char} F = 0$, then the number of simple components of R is equal to $\dim_F R/[R,R]$.

2000 Mathematics Subject Classification: 12E15, 16K40.

1. Introduction. Additive commutator elements of a ring R and the groups and structures they make have a great role in the general specification of a ring, and their study is one of the approaches to recognize rings in noncommutative ring theory [2, 3, 4, 5]. The reason is clear, they have covered the secrets of noncommutative behaviour of the structure. In recent years, these elements are returned once again under a full consideration, and a lot of wonderful works has been done on them [1, 10, 11, 12, 13]. Our study here is also among these studies, and it reveals some of bilateral relations between substructure given by additive commutators (the additive commutator group $[R,R]$, the additive Whitehead group, and the space $R/[R,R]$) and some characteristics of the ring. In what follows let R be a ring. By $[R,R]$ we denote the group generated additively by the additive commutators of R. Following [2], the additive group $R/[R,R]$ is called the additive Whitehead group of R. This group is an F-vector space when R is a central F-algebra, and is called the Whitehead space of R.

2. Results. Our first result is about the additive commutator subgroup of a matrix ring over a given ring.

Proposition 2.1. Let R be a unitary ring and let $R_n = M_n(R)$ be the ring of $n \times n$ matrices over R. Consider the regular trace function on R_n, as $\text{tr} : R_n \to R$, then

$$[R_n,R_n] = \{ A \in R_n \mid \text{tr}(A) \in [R,R] \}.$$ \hspace{1cm} (2.1)

Proof. The inclusion "\subseteq" follows by the fact that $\text{tr}(AB - BA) \in [R,R]$. In order to show the reverse inclusion, let $\{E_{ij}\}$ be the matrix units and note that if $i \neq j$, we have $E_{ij} = E_{ii}E_{ij} - E_{ij}E_{ii} \in [R_n,R_n]$ and $E_{ii} - E_{jj} = E_{ij}E_{ji} - E_{ji}E_{ij} \in [R_n,R_n]$. For any
$A = (a_{ij}) \in R_n$, we have the following congruence:

$$A = \Sigma a_{ij}E_{ij} \equiv \Sigma a_{ii}E_{ii} \equiv \Sigma a_{ii}E_{i11} \pmod{[R_n, R_n]}.$$ \hspace{1cm} (2.2)

In particular, if $\text{tr}(A) \in [R, R]$, then $A \in [R, R_n]$. \hfill \square

Corollary 2.2. Consider the trace function on R_n module of $[R, R]$. Clearly the group isomorphism $R_n/[R_n, R_n] \cong R/[R, R]$ can be derived.

Theorem 2.3. Let R be a left Artinian central simple F-algebra which is algebraic over F with $\text{Char} F = 0$. Then R decomposes over $[R, R]$ as $R = Fx + [R, R]$, for a fixed $x \in R$.

Proof. By Wedderburn-Artin theorem, $R = M_n(D)$ for a division ring D and suitable $n \in \mathbb{N}$. We divide our proof into two parts.

(i) Let $n = 1$, in other words let $R = M_1(D) = D$ be a division ring. Let $a \in R$ and let $f(t) = t^n + b_1 t^{n-1} + \cdots + b_r$ be the minimal polynomial of a over F, where $b_i \in F$, $i = 1, 2, \ldots, r$ and $r = \dim_F F(a)$. By the Wedderburn theorem [9, page 265], $f(t)$ splits completely in $R[t]$, this means that there exists $c_i \in R^* = D - \{0\}$, $i = 1, 2, \ldots, r - 1$, such that $f(t) = (t - a)(t - c_1ac_1^{-1}) \cdots (t - cr_{-1}ac_{r-1}^{-1})$. Then we have

$$\text{Tr}_{F(a)/F}(a) = a + c_1ac_1^{-1} + c_2ac_2^{-1} + \cdots + cr_{-1}ac_{r-1}^{-1} = ra + (c_1ac_1^{-1} - a) + \cdots + (cr_{-1}ac_{r-1}^{-1} - a) \hspace{1cm} (2.3)$$

$$= ra + (c_1(ac_1^{-1} - ac_1^{-1})c_1 + \cdots + (cr_{-1}(ac_{r-1}^{-1} - ac_{r-1}^{-1})c_{r-1})$$

$$= ra + d_1 + d_2 + \cdots + d_{r-1} = ra + d,$$

where $d_1, \ldots, d_{r-1}, d \in [R, R]$. This simply yields $a \in F + [R, R]$ which imply that $R = F + [R, R]$, $x = 1$.

(ii) Let $n \in \mathbb{N}$ be an arbitrary positive integer. We have $R = M_n(D)$, where D is a division ring. By (i), $D = F + [D, D]$, so

$$R = M_n(D) = M_n(F + [D, D]) = M_n(F) + M_n([D, D]) \subseteq M_n(F) + [R, R] \subseteq R. \hspace{1cm} (2.4)$$

This implies that $R = M_n(F) + [R, R]$. By this formula, given $A \in R$, there exist $B \in M_n(F)$ and $C \in [R, R]$ such that $A = B + C$, hence $A = (B - (\text{tr}B/n)I) + (\text{tr}B/n)I + C$, where I is the identity matrix of size n. By Proposition 2.1, $(B - (\text{tr}B/n)I) \in [R, R]$, and $A = (\text{tr}B/n)I + ((B - (\text{tr}/n)I) + C$, consequently

$$R = FI + [R, R], \hspace{1cm} x = I. \hspace{1cm} (2.5)$$

To see a different statements and initial ideas of these theorems we refer the reader to [1, 2]. Also a multiplicative version of Theorem 2.3 could be found in [11].

Now, we are going to state our main result, which is about the Whitehead space of a semisimple ring. This theorem is a generalization of a nice theorem due to $R. \text{Brauer}$ [8, page 130].
Theorem 2.4. Let \(R \) be a left Artinian semisimple central \(F \)-algebra and let \(k \) be the number of left simple components of \(R \). Then,

1. if \(R \) is algebraic over \(F \) and \(\text{Char} F = 0 \), then \(k \geq \dim_F R/[R,R] \);
2. if \(R \) is finite dimensional over \(F \), or is locally finite over \(F \), and \(\text{Char} F = 0 \), then \(k = \dim_F R/[R,R] \).

Proof. Consider the following chain of functions:

\[
R \xrightarrow{f_1} M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k) \xrightarrow{f_2} D_1/[D_1,D_1] \times \cdots \times D_k/[D_k,D_k],
\]

where \(f_1 \) is the isomorphism given by the Wedderburn-Artin theorem for the decomposition of a semisimple left Artinian ring into a direct product of simple rings [6, 14], and \(f_2 \) is the \(F \)-algebra homomorphisms, by considering component-wise the trace function on \(M_{n_i}(D_i) \mod[D_i,D_i], i = 1, \ldots, k \).

By Proposition 2.1 we have, \(\ker(f_2 \circ f_1) = [R,R] \), noting that \([R,R] \cong [R_1,R_1] \times \cdots \times [R_k,R_k] \), where \(R_{n_i} = M_{n_i}(D_i), i = 1, \ldots, k \). Therefore the following \(F \)-isomorphism holds:

\[
R/[R,R] \cong D_1/[D_1,D_1] \times \cdots \times D_k/[D_k,D_k].
\]

It remains to compute the dimension of Whitehead space of a division ring in the two cases (i) and (ii) above.

First let \(D \) be algebraic over \(F \) and \(\text{Char} F = 0 \). We show that any two elements \(\bar{a}, \bar{b} \in D/[D,D] \) are linearly dependent. By Theorem 2.3, there exist elements \(\alpha, \beta \in F \) and \(d_1, d_2 \in [D,D] \), such that \(a = \alpha + d_1 \) and \(b = \beta + d_2 \). In other words, \(\beta \bar{a} - \alpha \bar{b} = 0 \) in \(D/[D,D] \). Hence in this case \(\dim_F D/[D,D] \leq 1 \).

Now let \(D \) be finite dimensional \(F \)-central algebra. Let \(RT_{D/F} : D \to F \) be the reduced trace function which is surjective by [7, page 148]. Furthermore, by a theorem of Amitsur and Rowen [5, page 171] its kernel is equal to \([D,D] \) and so it is a hyperplane over \(F \), in this case \(\dim_F D/[D,D] = 1 \).

As a latter case let \(D \) be a locally finite division ring over it’s center \(F \) and \(\text{Char} F = 0 \). Now consider the function \(TR : D \to F \) defined by

\[
TR(x) = \frac{1}{\deg_F(x)} \text{Tr}_{F(x)/F}(x),
\]

we show that this function is an \(F \)-linear surjective map, whose kernel is \([D,D] \). The claim then is clear.

First note that in this case \(1 \notin [D,D] \), for if \(1 \in [D,D] \), then there exist some \(x_i \)'s and \(y_i \)'s in \(D \), such that \(1 = \sum (x_i y_i - y_i x_i) \). Let \(D_1 \) be the division ring generated by \(F \) together with \(x_i \)'s and \(y_i \)'s. Taking the reduced trace of \(D_1 \) over its centre of both sides of \(1 = \sum(x_i y_i - y_i x_i) \), we get a contradicting result. Therefore \([D,D] \cap F = \{0\} \). Now, by considering the trace formula (given in the proof of Theorem 2.3) for elements \(a, b \) and \(\lambda a + b \) (\(\lambda \in F \)) in \(D \), it is readily verified that

\[
\frac{1}{r} \text{Tr}(\lambda a + b) = \frac{\lambda}{n} \text{Tr}(a) + \frac{1}{m} \text{Tr}(b),
\]

where \(r = \text{deg}_F(x) \).
where \(r, n, \) and \(m \) are degrees of \(\lambda a + b, a \) and \(b. \) So \(TR \) is \(F \)-linear. The surjectivity is clear. In order to specify the kernel of \(TR, \) consider the trace formula for elements of \([D,D]\). Suppose that \(a \in [D,D] \). Now, we have \(\text{Tr}_{F(a)/F}(a) = na + d \in [D,D] \cap F, \) where \(n \) is the degree of \(a \) over \(F \) and \(d \in [D,D] \). Therefore \(TR(a) = 0. \) By the same argument we can see that if \(TR(a) = 0, \) then \(a \in [D,D] \).

Acknowledgment. The author is indebted in part to the Research Council of the University of Zanjan for support.

References

M. ARIAN-NEJAD: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZANJAN, ZANJAN, IRAN

E-mail address: arian@mail.znu.ac.ir