THE GALOIS ALGEBRAS AND THE AZUMAYA GALOIS EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 26 October 2001

Let B be a Galois algebra over a commutative ring R with Galois group G, C the center of B, $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$, $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in K$, and $B_K = (\oplus_{g \in K} J_g)$. Then B_K is a central weakly Galois algebra with Galois group induced by K. Moreover, an Azumaya Galois extension B with Galois group K is characterized by using B_K.

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. Let B be a Galois algebra over a commutative ring R with Galois group G and C the center of B. The class of Galois algebras has been investigated by DeMeyer [2], Kanzaki [6], Harada [4, 5], and the authors [7]. In [2], it was shown that if R contains no idempotents but 0 and 1, then B is a central Galois algebra with Galois group K and C is a commutative Galois algebra with Galois group G/K where $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$ [2, Theorem 1]. This fact was extended to the Galois algebra B over R containing more than two idempotents [6, Proposition 3], and generalized to any Galois algebra B [7, Theorem 3.8] by using the Boolean algebra B_α generated by $\{ 0, e_g \mid g \in G \text{ for a central idempotent } e_g \}$ where $BJ_g = Be_g$ and $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$ [6]. The purpose of this paper is to show that there exists a subalgebra B_K of B such that B_K is a central weakly Galois algebra with Galois group $K|B_K$ induced by K where a weakly Galois algebra was defined in [8] and that $B_K B^K$ is an Azumaya weakly Galois extension with Galois group $K|B_K$ where an Azumaya Galois extension was studied in [1]. Thus some characterizations of an Azumaya Galois extension B of B^K with Galois group K are obtained, and the results as given in [2, 6] are generalized.

2. Definitions and notations. Throughout, let B be a Galois algebra over a commutative ring R with Galois group G, C the center of B, and $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$. We keep the definitions of a Galois extension, a Galois algebra, a central Galois algebra, a separable extension, and an Azumaya algebra as defined in [7]. An Azumaya Galois extension A with Galois group G is a Galois extension A of A^G which is a C^G-Azumaya algebra where C the center of A [1]. A weakly Galois extension A with Galois group G is a finitely generated projective left module A over A^G such that $A_1G \cong \text{Hom}_{A^G}(A, A)$ where $A_1 = \{ a_1 \}$, a left multiplication map by $a \in A$ [8]. We call that A is a weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is contained in the center of A and that
A is a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is the center of A. An Azumaya weakly Galois extension A with Galois group G is a weakly Galois extension A of A^G which is a C^G-Azumaya algebra where C is the center of A.

3. A weakly Galois algebra. In this section, let B be a Galois algebra over R with Galois group G, C the center of B, $B^G = \{ b \in B \mid g(b) = b \text{ for all } g \in G \}$, and $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$. Then, $B = \oplus \sum_{g \in G} J_g = (\oplus \sum_{g \in K} J_g) \oplus (\oplus \sum_{g \notin K} J_g)$ where $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ [6, Theorem 1]. We denote $\oplus \sum_{g \in K} J_g$ by B_K and the center of B_K by Z. Clearly, K is a normal subgroup of G. We show that B_K is an Azumaya algebra over Z and a central weakly Galois algebra with Galois group $K|B_K$.

Theorem 3.1. The algebra B_K is an Azumaya algebra over Z.

Proof. By the definition of B_K, $B_K = \oplus \sum_{g \in K} J_g$, so $C(= J_1) \subset B_K$. Since B is a Galois algebra with Galois group G and $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$, the order of K is a unit in C by [6, Proposition 5]. Moreover, K is an C-automorphism group of B, so B_K is a C-separable algebra by [5, Proposition 5]. Thus B_K is an Azumaya algebra over Z.

In order to show that B_K is a central weakly Galois algebra with Galois group $K|B_K$, we need two lemmas.

Lemma 3.2. Let $L = \{ g \in K \mid g(a) = a \text{ for all } a \in B_K \}$. Then, L is a normal subgroup of K such that $K(= K/L)$ is an automorphism group of B_K induced by K (i.e., $K|B_K \cong K$).

Proof. Clearly, L is a normal subgroup of K, so for any $h \in K$,

$$h(B_K) = \oplus \sum_{g \in K} h(J_g) = \oplus \sum_{g \in K} J_{gh^{-1}} = \oplus \sum_{g \in hKh^{-1}} J_g = \oplus \sum_{g \in K} J_g = B_K. \quad (3.1)$$

Thus $K|B_K \cong K$.

Lemma 3.3. The fixed ring of B_K under K, $(B_K)^K = Z$.

Proof. Let x be any element in $(B_K)^K$ and b any element in B_K. Then $b = \sum_{g \in K} b_g$ where $b_g \in J_g$ for each $g \in K$. Hence $bx = \sum_{g \in K} b_g x = \sum_{g \in K} g(x)b_g = \sum_{g \in K} x b_g = x \sum_{g \in K} b_g = xb$. Therefore $x \in Z$. Thus $(B_K)^K \subset Z$. Conversely, for any $z \in Z$ and $g \in K$, we have that $zx = xz = g(z)x$ for any $x \in J_g$, so $(g(z) - z)x = 0$ for any $x \in J_g$. Hence $(g(z) - z)J_g = \{0\}$. Noting that $BJ_g = J_g B = B$, we have that $(g(z) - z)B = \{0\}$, so $g(z) = z$ for any $z \in Z$ and $g \in K$. Thus $Z \subset (B_K)^K$. Therefore $(B_K)^K = Z$.

Theorem 3.4. The algebra B_K is a central weakly Galois algebra with Galois group $K|B_K \cong K$.

Proof. By Lemma 3.3, it suffices to show that (1) B_K is a finitely generated projective module over Z, and (2) $(B_K)|K \cong \text{Hom}_Z(B_K, B_K)$. Part (1) is a consequence of Theorem 3.1. For part (2), since B_K is an Azumaya algebra over Z by Theorem 3.1 again, $B_K \otimes_Z B_K^0 \cong \text{Hom}_Z(B_K, B_K)$ [3, Theorem 3.4, page 52] by extending the map $(a \otimes b)(x) = axb$ linearly for $a \otimes b \in B_K \otimes_Z B_K^0$ and each $x \in B_K$ where B_K^0 is the
opposite algebra of B_K. By denoting the left multiplication map with $a \in B_K$ by a_l and the right multiplication map with $b \in B_K$ by b_r, $(a \otimes b)(x) = (a_l b_r)(x) = axb$. Since $B_K = \bigoplus_{g \in K} J_g$, $B_K \otimes \mathcal{B}_K = \bigoplus_{g \in K} (B_K)_l (J_g)_r$. Observing that $(J_g)_r = (J_g)_{\mathcal{B}}^{-1}$ where $\mathcal{B} = g \mid b \in B_K \in K \mid B_K \cong K$, we have that $B_K \otimes \mathcal{B}_K = \bigoplus_{g \in K} (B_K)_l (J_g)_r = \bigoplus_{g \in K} (B_K)_l (g)_{\mathcal{B}}^{-1} = \bigoplus_{g \in K} (B_K)_l (B_K)_{\mathcal{B}}^{-1}$.

Moreover, since $BI_B = B$ for each $g \in K$ and $B = \bigoplus_{h \in G} J_h = B \otimes (\bigoplus_{h \in G} J_h)$, $B_K \otimes (\bigoplus_{h \in G} J_h) = B = B_I_B = B \otimes (\bigoplus_{h \in G} J_h)_{B_K}$ such that $B_K J_g \subset B_K$ and $\bigoplus_{h \in G} J_h = \bigoplus_{h \in G} J_h$. Hence $B_K J_g \subset B$ for each $g \in K$. Therefore $B_K \otimes \mathcal{B}_K = \bigoplus_{g \in K} (B_K)_l (B_K)_{\mathcal{B}}^{-1} = \bigoplus_{g \in K} (B_K)_{\mathcal{B}}^{-1} = (B_K)_l K$. Thus $(B_K)_l K \cong \text{Hom}_Z(B_K, B_K)$. This completes the proof of part (2). Thus B_K is an Azumaya algebra over Galois group $K \mid B_K \cong K$.

Recall that an algebra A is called an Azumaya weakly Galois extension of A^K with Galois group K if A is a weakly Galois extension of A^K which is a C^K-Azumaya algebra where C is the center of A. Next, we show that B_K is an Azumaya weakly Galois extension with Galois group $K \mid B_K \cong K$. We begin with the following two lemmas about B_K.

Lemma 3.5. *The fixed ring of B under K, $B^K = V_B(B_K)$.*

Proof. For any $b \in B^K$ and $x \in J_g$ for any $g \in K$, we have that $xb = g(b)x = bx$, so $b \in V_B(B_K)$ for any $g \in K$. Thus $b \in V_B(B_K)$. Conversely, for any $b \in V_B(B_K)$ and $g \in K$, we have that $bx = xb = g(b)x$ for any $x \in J_g$, so $(g(b) - b)x = 0$ for any $x \in J_g$. Hence $(g(b) - b)J_g = \{0\}$. But $BI_B = B$ for any $g \in K$, so $(g(b) - b)B = \{0\}$. Thus $g(b) = b$ for any $g \in K$; and so $b \in B^K$. Therefore $B^K = V_B(B_K)$.

Lemma 3.6. *The algebra B^K is an Azumaya algebra over Z where Z is the center of B_K.***

Proof. Since B is a Galois algebra over R with Galois group G, B is an Azumaya algebra over its center C. By the proof of *Theorem 3.1*, B_K is a C-separable subalgebra of B, so $V_B(B_K)$ is a C-separable subalgebra of B and $V_B(B_K) = B_K$ by the commutator theorem for Azumaya algebras [3, Theorem 4.3, page 57]. This implies that B_K and $V_B(B_K)$ have the same center Z. Thus $V_B(B_K)$ is an Azumaya algebra over Z. But, by *Lemma 3.5*, $B^K = V_B(B_K)$, so B^K is an Azumaya algebra over Z.

Theorem 3.7. *Let $A = B_KB^K$. Then A is an Azumaya weakly Galois extension with Galois group $K \mid A \cong K$.***

Proof. Since B_K is a central weakly Galois algebra with Galois group $K \mid B_K \cong K$ by *Theorem 3.4*, B_K is a finitely generated projective module over Z and $(B_K)_l K \cong \text{Hom}_Z(B_K, B_K)$. By *Lemma 3.6*, B^K is an Azumaya algebra over Z, so $A(\cong B_K \otimes Z B^K)$ is a finitely generated projective module over $B^K(= A^K)$. Moreover, since $B^K = V_B(B_K)$ by *Lemma 3.5* and $(B_K)_l K \cong \text{Hom}_Z(B_K, B_K)$,

$$A_l K = (B_K B^K)_l K = (B_K)_l K(B^K)_r \cong B_K K \otimes Z B^K \cong \text{Hom}_Z(B_K, B_K) \otimes Z B^K \cong \text{Hom}_Z(B_K B^K, B_K B^K) \cong \text{Hom}_Z(B_K B^K, B_K B^K)$$

$$= \text{Hom}_Z(A, A).$$
Thus \(A \) is a weakly Galois extension of \(A^K \) with Galois group \(K|_A \cong \bar{K} \). Next, we claim that \(A \) has center \(Z \) and \(A^K \) is an Azumaya algebra over \(Z^K \). In fact, \(B_K \) and \(B^K \) are Azumaya algebras over \(Z \) by Theorem 3.1 and Lemma 3.6, respectively, so \(A (= B_K B^K) \) has center \(Z \) and \(A^K = (B_K B^K)^K = B^K \). Noting that \(B^K \) is an Azumaya algebra over \(Z \), we conclude that \(A^K \) is an Azumaya algebra over \(Z^K \). Thus \(A \) is an Azumaya weakly Galois extension with Galois group \(K|_A \cong \bar{K} \).

4. An Azumaya Galois extension. In this section, we give several characterizations of an Azumaya Galois extension \(B \) by using \(B_K \). This generalizes the results in [2, 6]. The \(Z \)-module \(\{ b \in B_K \mid bx = g(x)b \text{ for all } x \in B_K \} \) is denoted by \(J^{(B_K)}_\bar{g} \) for each \(\bar{g} \in \bar{K} \) where \(\bar{K} (= K/L) \) is defined in Lemma 3.2.

\textbf{Lemma 4.1.} The algebra \(B_K \) is a central Galois algebra with Galois group \(K|_{B_K} \equiv \bar{K} \) if and only if \(J^{(B_K)}_\bar{g} = \oplus \{ l \in L \mid J^{(B_K)}_\bar{g} \subset J^{(B_K)}_l \} \) for each \(\bar{g} \in \bar{K} \).

\textbf{Proof.} Let \(B_K \) be a central Galois algebra with Galois group \(K|_{B_K} \equiv \bar{K} \). Then \(B_K = \oplus \sum_{\bar{g} \in \bar{K}} J^{(B_K)}_\bar{g} \) [6, Theorem 1]. Next it is easy to check that \(\oplus \sum_{l \in L} J^g_l \subset J^{(B_K)}_\bar{g} \). But \(B_K = \oplus \sum_{\bar{g} \in \bar{K}} J^{(B_K)}_\bar{g} \), so \(\oplus \sum_{\bar{g} \in \bar{K}} J^g_{\bar{g}} = \oplus \sum_{\bar{g} \in \bar{K}} J^{(B_K)}_\bar{g} \) where \(\oplus \sum_{l \in L} J^g_l \subset J^{(B_K)}_\bar{g} \). Thus \(J^{(B_K)}_\bar{g} = \oplus \sum_{l \in L} J^g_l \) for each \(\bar{g} \in \bar{K} \). Conversely, since \(J^{(B_K)}_\bar{g} = \oplus \sum_{l \in L} J^g_l \) for each \(\bar{g} \in \bar{K} \), \(B_K = \oplus \sum_{\bar{g} \in \bar{K}} J^{(B_K)}_\bar{g} = \oplus \sum_{\bar{g} \in \bar{K}} J^{(B_K)}_{\bar{g}} \). Moreover, by Lemma 3.3, \((B_K)^K = Z \), so \(\bar{K} \) is a \(Z \)-automorphism group of \(B_K \). Hence \(J^{(B_K)}_{\bar{g}} J^{(B_K)}_{\bar{g}^{-1}} = Z \) for each \(\bar{g} \in \bar{K} \). Thus \(B_K \) is a central Galois algebra with Galois group \(K|_{B_K} \equiv \bar{K} \) because \(B_K \) is an Azumaya \(Z \)-algebra by Theorem 3.1 (see [4, Theorem 1]).

Next, we characterize an Azumaya Galois extension \(B \) with Galois group \(K \).

\textbf{Theorem 4.2.} The following statements are equivalent:

\begin{enumerate}
\item\(B \) is an Azumaya Galois extension with Galois group \(K \);
\item\(Z = C \);
\item\(B = B_K B^K \);
\item\(B_K \) is a central Galois algebra over \(C \) with Galois group \(K|_{B_K} \equiv \bar{K} \).
\end{enumerate}

\textbf{Proof.} (1)\(\Rightarrow \) (2). Since \(B \) is an Azumaya Galois extension with Galois group \(K \), \(B^K \) is a \(C^K \)-Azumaya algebra. But, by Lemma 3.6, \(B^K \) is an Azumaya algebra over \(Z \), so \(Z = C^K \subset C \). Hence \(C \subset Z = C^K \subset C \). Thus \(Z = C \).

(2)\(\Rightarrow \) (3). Suppose that \(Z = C \). Then, by Theorem 3.1, \(B_K \) is an Azumaya algebra over \(C \). Hence by the commutator theorem for Azumaya algebras, \(B = B_K V_B(B_K) \) [3, Theorem 4.3, page 57]. But, by Lemma 3.6, \(B^K = V_B(B_K) \), so \(B = B_K B^K \).

(3)\(\Rightarrow \) (4). By hypothesis, \(B = B_K B^K \), so \(L = \{1\} \) where \(L \) is given in Lemma 3.2. By the proofs of Theorem 3.1 and Lemma 3.6, \(B_K \) and \(B^K \) are \(C \)-separable subalgebras of the Azumaya \(C \)-algebra \(B \) such that \(B = B_K B^K \), so \(B_K \) and \(B^K \) are Azumaya algebras over \(C \) [3, Theorem 4.4, page 58]. Thus \(C \) is the center of \(B_K \). Next, we claim that \(J_{\bar{g}} = J_{\bar{g}}^{(B_K)} \) for each \(\bar{g} \in \bar{K} \). In fact, it is clear that \(J_{\bar{g}} \subset J_{\bar{g}}^{(B_K)} \). Conversely, for each \(a \in J_{\bar{g}}^{(B_K)} \) and \(x \in B \) such that \(x = yz \) for some \(y \in B_K \) and \(z \in B^K \), noting that \(B^K = V_B(B_K) \), we have that \(ax = ayz = g(y)az = g(y)za = g(y)g(x)a = g(x)a \). Thus \(J_{\bar{g}}^{(B_K)} \subset J_{\bar{g}} \). This proves that \(J_{\bar{g}} = J_{\bar{g}}^{(B_K)} \) since \(L = \{1\} \) for each \(\bar{g} \in \bar{K} \). Hence, \(B_K \) is a central Galois algebra over \(C \) with Galois group \(K|_{B_K} \equiv K \) by Lemma 4.1.
(4)⇒(1). Since B is a Galois algebra with Galois group G, B is a Galois extension with Galois group K. By hypothesis, B_K is a central Galois algebra over C with Galois group $K|B_K = K$, so the center of B_K is C, that is, $Z = C$. Hence B^K is an Azumaya algebra over $C (= C^K)$ by Lemma 3.6. Thus B is an Azumaya Galois extension with Galois group K.

Theorem 4.2 generalizes the following result of Kanzaki [6, Proposition 3].

Corollary 4.3. If $f_g = \emptyset$ for each $g \notin K$, then B is a central Galois algebra with Galois group K and C is a Galois algebra with Galois group G/K.

Proof. This is the case in Theorem 4.2 that $B = B_KB^K = B_K$ where $B^K = C$.

We conclude the present paper with two examples, one to illustrate the result in Theorem 4.2, and another to show that $Z \neq C$.

Example 4.4. Let $A = \mathbb{R}[i,j,k]$, the real quaternion algebra over the field of real numbers \mathbb{R}, $B = (A \otimes \mathbb{R}) \oplus A \oplus A \oplus A \oplus A$, and G the group generated by the elements in \{g1, k1, j1, k-k, h1, h-j, h-k\} where g_1 is the identity of G and for all $(a \otimes b, a_1, a_2, a_3, a_4) \in B$,

$$
k_i(a \otimes b, a_1, a_2, a_3, a_4) = (ia_1^{-1} \otimes b, ia_1i^{-1}, ia_2i^{-1}, ia_3i^{-1}, ia_4i^{-1}),
$$

$$
k_j(a \otimes b, a_1, a_2, a_3, a_4) = (ja_1^{-1} \otimes b, ja_1j^{-1}, ja_2j^{-1}, ja_3j^{-1}, ja_4j^{-1}),
$$

$$
k_k(a \otimes b, a_1, a_2, a_3, a_4) = (kak^{-1} \otimes b, kak^{-1}, ka_2k^{-1}, ka_3k^{-1}, ka_4k^{-1}),
$$

$$
h_1(a \otimes b, a_1, a_2, a_3, a_4) = (a \otimes ibi^{-1}, a_2, a_1, a_4, a_3),
$$

$$
h_j(a \otimes b, a_1, a_2, a_3, a_4) = (a \otimes jb^{-1}, a_3, a_4, a_1, a_2),
$$

$$
h_k(a \otimes b, a_1, a_2, a_3, a_4) = (a \otimes kb^{-1}, a_4, a_3, a_2, a_1).
$$

Then,

1. we can check that B is a Galois algebra over B^G with Galois group G where $B^G = \{(r_1 \otimes r_2, r_1, r_2) \mid r_1, r_2, r \in \mathbb{R}\} \subset C$, and $C = (\mathbb{R} \otimes \mathbb{R}) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, the center of B;
2. $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\} = \{g_1, k_1, j_1, k-k\}$;
3. $J_1 = C$, $J_{k_1} = (\mathbb{R} \otimes 1) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, $J_{k_2} = (\mathbb{R} \otimes 1) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, $J_{k_3} = (\mathbb{R} \otimes 1) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, so $B_K = (A \otimes \mathbb{R}) \oplus A \oplus A \oplus A \oplus A$. Hence B_K has center C, that is $Z = C$, and B_K is a central Galois algebra over C with Galois group $K|B_K = K$;
4. $B^K = (\mathbb{R} \otimes \mathbb{R}) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ and $B = B_KB^K$, that is, B is an Azumaya Galois extension with Galois group K.

Example 4.5. Let $A = \mathbb{R}[i,j,k]$, the real quaternion algebra over the field of real numbers \mathbb{R}, $B = A \oplus A \oplus A$, $G = \{1, g_1, g_2, g_3\}$, and for all $(a_1, a_2, a_3) \in B$,

$$
g_i(a_1, a_2, a_3) = (ia_1i^{-1}, ia_2i^{-1}, ia_3i^{-1}),
$$

$$
g_j(a_1, a_2, a_3) = (ja_1j^{-1}, ja_3j^{-1}, ja_2j^{-1}),
$$

$$
g_k(a_1, a_2, a_3) = (ka_1k^{-1}, ka_3k^{-1}, ka_2k^{-1}).
$$

Then,

1. B is a Galois algebra over B^G where $B^G = \{(r_1, r, r) \mid r_1, r \in \mathbb{R}\} \subset C$, and $C = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, the center of B. The G-Galois system is $\{a_i; b_i \mid i = 1, 2, \ldots, 8\}$ where

\[
a_1 = (1, 0, 0), \quad a_2 = (i, 0, 0), \quad a_3 = (j, 0, 0), \quad a_4 = (k, 0, 0),
\]
\[
a_5 = (0, 1, 0), \quad a_6 = (0, j, 0), \quad a_7 = (0, 0, 1), \quad a_8 = (0, 0, k);
\]
\[
b_1 = \frac{1}{4} a_1, \quad b_2 = -\frac{1}{4} a_2, \quad b_3 = -\frac{1}{4} a_3, \quad b_4 = -\frac{1}{4} a_4, \quad (4.3)
\]
\[
b_5 = \frac{1}{2} a_5, \quad b_6 = -\frac{1}{2} a_6, \quad b_7 = \frac{1}{2} a_7, \quad b_8 = -\frac{1}{2} a_8,
\]

2. $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\} = \{1, g_1\}$ where $J_{g_1} = \mathbb{R}i \oplus \mathbb{R}i \oplus \mathbb{R}i$, so $B_K = \mathbb{R}[i] \oplus \mathbb{R}[i] \oplus \mathbb{R}[i]$ which is a commutative ring not equal to C, that is, $Z \neq C$.

Acknowledgments. This work was supported by a Caterpillar Fellowship at Bradley University. The authors would like to thank the Caterpillar Inc. for the support.

References

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu