INTEGRABILITY AND L^1-CONVERGENCE OF REES-STANOJEVIĆ SUMS WITH GENERALIZED SEMICONVEX COEFFICIENTS

KULWINDER KAUR and S. S. BHATIA

Received 24 April 2001 and in revised form 25 October 2001

Integrability and L^1-convergence of modified cosine sums introduced by Rees and Stanojević (1973) under a class of generalized semiconvex null coefficients are studied, using Cesaro means of integral order.

2000 Mathematics Subject Classification: 42C10, 40G05.

1. Introduction. Let

$$g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

$$g_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a_k + \sum_{k=1}^{n} \sum_{j=k}^{n} (\Delta a_j) \cos kx.$$ (1.2)

The problem of L^1-convergence of the Fourier cosine series (1.1) has been settled for various special classes of coefficients. Young [6] found that $a_n \log n = o(1)$, $n \to \infty$ is a necessary and sufficient condition for cosine series with convex ($\Delta^2 a_n \geq 0$) coefficients, and Kolmogorov [5] extended this result to the cosine series with quasi-convex $(\sum_{n=1}^{\infty} n|\Delta^2 a_{n-1}| < \infty)$ coefficients. Later, Garrett and Stanojević [3] using modified cosine sums (1.2), proved the following theorem.

THEOREM 1.1. Let $\{a_n\}$ be a null sequence of bounded variation. Then the sequence of modified cosine sums

$$g_n(x) = S_n(x) - a_{n+1} D_n(x),$$ (1.3)

where $S_n(x)$ are the partial sums of the cosine series (1.1) and $D_n(x)$ is the Dirichlet kernel, converges in L^1-norm to $g(x)$, the pointwise sum of the cosine series, if and only if for every $\epsilon > 0$, there exists $\delta(\epsilon) > 0$, independent of n, such that

$$\int_0^\delta \left| \sum_{k=n+1}^{\infty} \Delta a_k D_k(x) \right| dx < \epsilon, \quad \text{for every } n.$$ (1.4)

This result contains as a special case a number of classical and neo-classical results. In particular, in [3] the following corollary to Theorem 1.1 is proved.
Theorem 1.2. Let \(\{a_n\} \) be a null sequence of bounded variation satisfying condition (1.4). Then the cosine series is the Fourier series of its sum \(g(x) \) and \(\|S_n(g) - g\| = o(1) \), \(n \to \infty \) is equivalent to \(a_n \log n = o(1) \), \(n \to \infty \).

In [2] Garrett and Stanojević proved the following theorem.

Theorem 1.3. If \(\{a_n\} \) is a null quasi-convex sequence, then \(g_n(x) \) converges to \(g(x) \) in the \(L^1 \)-norm.

Definition 1.4 (see [4]). A sequence \(\{a_n\} \) is said to be semiconvex if \(\{a_n\} \to 0 \) as \(n \to \infty \), and

\[
\sum_{n=1}^{\infty} n |\Delta^2 a_{n-1} + \Delta^2 a_n| < \infty, \quad (a_0 = 0),
\]

where \(\Delta^2 a_n = \Delta a_n - \Delta a_{n+1}, \Delta a_n = a_n - a_{n+1} \).

It may be remarked here that every quasi-convex null sequence is semi-convex. We generalize semiconvexity of null sequences in the following way: a null sequence \(\{a_n\} \) is said to be generalized semiconvex, if

\[
\sum_{n=1}^{\infty} n^\alpha |\Delta^{\alpha+1} a_{n-1} + \Delta^{\alpha+1} a_n| < \infty, \quad \text{for } \alpha > 0 \quad (a_0 = 0).
\]

For \(\alpha = 1 \), this class reduces to the class defined in [4]. The object of this paper is to show that Theorem 1.3 of Garrett and Stanojević [2] holds good for cosine sums (1.2) with generalized semi-convex null coefficients.

2. Notation and formulae. In what follows, we use the following notions [7]:

\[
S_n^0 = S_n = a_0 + a_1 + \cdots + a_n;
\]

\[
S_n^k = S_{n-1}^k + S_{n-1}^{k-1} + \cdots + S_{n-1}^1 + S_n^1, \quad k = 1, 2, \ldots, n = 0, 1, 2, \ldots;
\]

\[
A_n^0 = 1, \quad A_n^k = A_n^{k-1} + A_{n-1}^{k-1} + \cdots + A_1^{k-1} + A_0^{k-1} \quad k = 1, 2, \ldots, n = 0, 1, 2, \ldots.
\]

The \(A_n^k \)'s are called the binomial coefficients and are given by the following relation:

\[
\sum_{k=0}^{\infty} A_n^k x^k = (1 - x)^{(n+\alpha)}.
\]

whereas \(S_n^k \)'s are given by

\[
\sum_{k=0}^{\infty} S_n^k x^k = (1 - x)^{-\alpha} \sum_{k=0}^{\infty} S_k x^k,
\]

and

\[
A_n^\alpha = \sum_{v=0}^{n} A_v^{\alpha-1}, \quad A_n^\alpha - A_{n-1}^\alpha = A_n^{\alpha-1},
\]

\[
A_n^\alpha = \left(\frac{n + \alpha}{n} \right)^\alpha \frac{n^\alpha}{\Gamma(\alpha + 1)} \quad (\alpha \neq -1, -2, \ldots).
\]

The Cesaro means \(T_n^\alpha \) of order \(\alpha \) is denoted by \(T_n^\alpha = S_n^\alpha / A_n^\alpha \).
Also for $0 < x \leq \pi$, let

$$
\tilde{D}_0(x) = -\frac{1}{2} \cot \frac{x}{2},
$$

$$
\tilde{S}_n(x) = \tilde{D}_0(x) + \sin x + \sin 2x + \cdots + \sin nx,
$$

$$
\tilde{S}^1_n(x) = \tilde{S}_0(x) + \tilde{S}_1(x) + \tilde{S}_2(x) + \cdots + \tilde{S}_n(x),
$$

$$
\tilde{S}^2_n(x) = \tilde{S}_0(x) + \tilde{S}^1_1(x) + \tilde{S}^1_2(x) + \cdots + \tilde{S}^1_n(x),
$$

$$
\vdots
$$

$$
\tilde{S}^k_n(x) = \tilde{S}^{k-1}_0(x) + \tilde{S}^{k-1}_1(x) + \tilde{S}^{k-1}_2(x) + \cdots + \tilde{S}^{k-1}_n(x).
$$

The conjugate Cesaro means \tilde{T}_k^α of order α is denoted by $\tilde{T}_k^\alpha = \tilde{S}_k^\alpha / A_k^\alpha$. We use the following lemma for the proof of our result.

Lemma 2.1 (see [1]). If $\alpha \geq 0$, $p \geq 0$,

$$
\epsilon_n = o(n^{-p}),
$$

$$
\sum_{n=0}^{\infty} A_n^{\alpha+p} |\Delta^{\alpha+1} \epsilon_n| < \infty,
$$

then

$$
\sum_{n=0}^{\infty} A_n^{\lambda+p} |\Delta^{\lambda+1} \epsilon_n| < \infty \text{ for } -1 \leq \lambda \leq \alpha,
$$

$$
A_n^{\lambda+p} \Delta^\lambda \epsilon_n \text{ is of bounded variation for } 0 \leq \lambda \leq \alpha \text{ and tends to zero as } n \to \infty.
$$

3. Main result. The main result of this paper is the following theorem.

Theorem 3.1. If $\{a_n\}$ is a generalized semiconvex null sequence, then $g_n(x)$ converges to $g(x)$ in L^1-metric if and only if $\lim_{n \to \infty} \Delta a_n \log n = o(1)$, as $n \to \infty$.

Proof. We have

$$
g_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a_k + \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_j \cos kx
$$

$$
= \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos kx - a_{n+1} D_n(x)
$$

$$
= \sum_{k=1}^{n} a_k \cos kx - a_{n+1} D_n(x) \quad (a_0 = 0)
$$

$$
= \sum_{k=1}^{n-1} \left(a_{k-1} - a_{k+1} \right) \frac{\sin kx}{2 \sin x} + a_{n-1} \frac{\sin nx}{2 \sin x} + a_n \frac{\sin (n+1)x}{2 \sin x} - a_{n+1} D_n(x),
$$

(3.1)
where
\[D_n(x) = \frac{\sin nx + \sin(n + 1)x}{2 \sin x}, \]
\[gn(x) = \sum_{k=1}^{n-1} (a_{k-1} - a_{k+1}) \frac{\sin kx}{2 \sin x} + a_{n-1} \frac{\sin nx}{2 \sin x} + a_n \frac{\sin(n + 1)x}{2 \sin x} - a_{n+1} \frac{\sin nx}{2 \sin x} - a_n \frac{\sin(n + 1)x}{2 \sin x} \]
\[= \frac{1}{2 \sin x} \sum_{k=1}^{n} (\Delta a_{k-1} + \Delta a_k) \sin kx + \Delta a_n \frac{\sin(n + 1)x}{2 \sin x}. \]

Applying Abel’s transformation, we have
\[gn(x) = \frac{1}{2 \sin x} \sum_{k=1}^{n-1} (\Delta^2 a_{k-1} + \Delta^2 a_k) \sum_{v=1}^{k} \sin v x + (\Delta a_{n-1} + \Delta a_n) \sum_{v=1}^{n} \sin v x \]
\[+ \Delta a_n \frac{\sin(n + 1)x}{2 \sin x} \]
\[= \frac{1}{2 \sin x} \left[\sum_{k=1}^{n-1} (\Delta^2 a_{k-1} + \Delta^2 a_k) (\bar{S}_k^0(x) - \bar{S}_0(x)) + (\Delta a_{n-1} + \Delta a_n) (\bar{S}_n^0(x) - \bar{S}_0(x)) \right] \]
\[+ \Delta a_n \frac{\sin(n + 1)x}{2 \sin x} \]
\[= \frac{1}{2 \sin x} \left[\sum_{k=1}^{n-1} (\Delta^2 a_{k-1} + \Delta^2 a_k) \bar{S}_k^0(x) - \sum_{k=1}^{n-1} (\Delta^2 a_{k-1} + \Delta^2 a_k) \bar{S}_0(x) \right] \]
\[+ \frac{1}{2 \sin x} [(\Delta a_{n-1} + \Delta a_n) \bar{S}_n^0(x) - (\Delta a_{n-1} + \Delta a_n) \bar{S}_0(x)] + \Delta a_n \frac{\sin(n + 1)x}{2 \sin x} \]
\[= \frac{1}{2 \sin x} \left[\sum_{k=1}^{n-1} (\Delta^2 a_{k-1} + \Delta^2 a_k) (\tilde{S}_k^0(x)) - (\Delta a_{n-1} + \Delta a_n) \tilde{S}_n^0(x) + a_2 \tilde{S}_0(x) \right] \]
\[+ \Delta a_n \frac{\sin(n + 1)x}{2 \sin x}. \]

(3.3)

If we use Abel’s transformation \(\alpha \) times, we have similarly,
\[g_n(x) = \frac{1}{2 \sin x} \left[\sum_{k=1}^{n-\alpha} (\Delta^{\alpha+1} a_{k-1} + \Delta^{\alpha+1} a_k) \tilde{S}_k^{\alpha-1}(x) + \sum_{k=1}^{\alpha} \Delta^k a_{n-k} \tilde{S}_{n-k+1}^{\alpha-1}(x) \right] \]
\[+ \frac{1}{2 \sin x} \left[\sum_{k=1}^{\alpha} \Delta^k a_{n-k} \tilde{S}_{n-k+1}^{\alpha-1}(x) + a_2 \tilde{S}_0(x) \right] + \Delta a_n \frac{\sin(n + 1)x}{2 \sin x}. \]

(3.4)

Since \(\bar{S}_n(x) \) and \(\bar{T}_n(x) \) are uniformly bounded on every segment \([\epsilon, \pi - \epsilon], \epsilon > 0 \),
\[g(x) = \lim_{n \to \infty} g_n(x) \]
\[= \frac{1}{2 \sin x} \left[\sum_{k=1}^{\infty} (\Delta^{\alpha+1} a_{k-1} + \Delta^{\alpha+1} a_k) \tilde{S}_k^{\alpha-1}(x) + a_2 \tilde{S}_0(x) \right]. \]

(3.5)
Thus
\[
g(x) - g_n(x) = \frac{1}{2\sin x} \left[\sum_{k=n-\alpha+1}^{\infty} (\Delta^{\alpha+1} a_{k-1} + \Delta^{\alpha+1} a_k) \tilde{S}_k^{\alpha-1}(x) - \sum_{k=1}^{\alpha} \Delta^k a_{n-k} \tilde{S}_{n-k+1}^k(x) \right] \\
- \frac{1}{2\sin x} \left[\sum_{k=1}^{\alpha} \Delta^k a_{n-k+1} \tilde{S}_{n-k+1}^k(x) \right] - \Delta a_n \sin(n+1)x \frac{\sin(n+1)x}{2 \sin x},
\]

\[
\|g(x) - g_n(x)\| \leq C \left[\sum_{k=n-\alpha+1}^{\infty} |(\Delta^{\alpha+1} a_{k-1} + \Delta^{\alpha+1} a_k)| \right] \left[\int_0^{\pi} |\tilde{S}_k^{\alpha-1}(x)| dx \right] \\
+ C \left[\sum_{k=1}^{\alpha} |\Delta^k a_{n-k}| \int_0^{\pi} |\tilde{S}_{n-k}^k(x)| dx + \sum_{k=1}^{\alpha} |\Delta^k a_{n-k+1}| \int_0^{\pi} |\tilde{S}_{n-k+1}^k(x)| dx \right] \\
+ \int_0^{\pi} |\Delta a_n \sin(n+1)x| dx,
\]

\[
\|g(x) - g_n(x)\| \leq C \left[\sum_{k=n-\alpha+1}^{\infty} A_\alpha^k |(\Delta^{\alpha+1} a_{k-1} + \Delta^{\alpha+1} a_k)| \right] \left[\int_0^{\pi} |\tilde{T}_k^{\alpha}(x)| dx \right] \\
+ C \left[\sum_{k=1}^{\alpha} A_\alpha^k |\Delta^k a_{n-k}| \int_0^{\pi} |\tilde{T}_{n-k}^k(x)| dx \right] \\
+ C \left[\sum_{k=1}^{\alpha} A_\alpha^k |\Delta^k a_{n-k+1}| \int_0^{\pi} |\tilde{T}_{n-k+1}^k(x)| dx \right] \\
+ \int_0^{\pi} |\Delta a_n \sin(n+1)x| dx.
\]

The first three terms of the above inequality are of \(o(1)\) by Lemma 2.1 and the hypothesis of Theorem 3.1.

Moreover, since
\[
\int_0^{\pi} \left| \frac{\sin(n+1)x}{2 \sin x} \right| dx \leq C \log n, \quad n \geq 2,
\]

therefore
\[
\int_0^{\pi} \left| \frac{\Delta a_n \sin(n+1)x}{2 \sin x} \right| dx \sim \Delta a_n \log n.
\]
It follows that \(\int_0^{\pi} |g(x) - g_n(x)| \, dx \to 0 \), if and only if \(\Delta a_n \log n \to o(1) \) as \(n \to \infty \). This completes the proof of the theorem. \(\square \)

ACKNOWLEDGMENT. The authors are thankful to the referees for their wise comments, which have definitely improved the representation of the paper.

REFERENCES

KULWINDER KAUR: SCHOOL OF BASIC AND APPLIED SCIENCES, THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, P.O. BOX 32, PATIALA 147004, INDIA
E-mail address: mathkk@hotmail.com

S. S. BHATIA: SCHOOL OF BASIC AND APPLIED SCIENCES, THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, P.O. BOX 32, PATIALA 147004, INDIA
E-mail address: ssbhatia63@yahoo.com