THE UNION PROBLEM ON COMPLEX MANIFOLDS

PATRICK W. DARKO

Received 14 May 2001

Let Ω be a relatively compact subdomain of a complex manifold, exhaustable by Stein open sets. We give a necessary and sufficient condition for Ω to be Stein, in terms of L^2-estimates for the $\bar{\partial}$-operator, equivalent to the condition of Markoe (1977) and Silva (1978).

2000 Mathematics Subject Classification: 32E10, 32C35, 35N15.

1. Introduction. As indicated in [7], from the beginning of the theory of Stein spaces, the following question has held great interest: is a complex space, which is exhaustable by a sequence $X_1 \subset X_2 \subset \cdots$ of Stein subspaces, itself Stein?

In [1], the following is proved: every domain in \mathbb{C}^m which is exhaustable by a sequence of Stein domains $B_1 \subset B_2 \subset \cdots$ is itself Stein, and this is shown to hold more generally for unramified Riemann domain \mathcal{B} over \mathbb{C}^m in [6]. In [11], the following is proved: let X be a reduced complex space and $X_1 \subset X_2 \subset \cdots$ be an exhaustion of X by Stein domains, if every pair (X_j, X_{j+1}) is Runge then $X = UX_j$ is Stein. Recently, Markoe [9] and Silva [10] proved the following: let X be reduced and $X_1 \subset X_2 \subset \cdots$ be an exhaustion of X by Stein domains. Then X is Stein if and only if $H^1(X, \mathcal{O}) = 0$ (\mathcal{O} being the structure sheaf of X).

More recently the following has been proved in [12]: let $\Omega_1 \subset \Omega_2 \subset \cdots$ be a sequence of open Stein subsets of a Stein space X, $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$, and $\dim H^1(\Omega, \mathcal{O}) < \infty$. Then Ω is Stein.

Fornæss [4] produced an example to show that if $X_1 \subset X_2 \subset \cdots$ is a sequence of Stein manifolds, the limit manifold $X = \bigcup X_j$, in which each X_j is an open submanifold, need not be Stein. But it is known that if the limit manifold is itself an open submanifold of a Stein manifold then the limit manifold is necessarily Stein.

This led Fornæss and Narasimhan to pose the following problem [5]: let X be a Stein space and $\Omega_1 \subset \Omega_2 \subset \cdots$ an increasing sequence of Stein open sets in X. Is $\bigcup \Omega_j$ Stein? As indicated above this is the case when X is a Stein manifold, but this question remains open in the general case.

In this paper, we consider the case where X is a general complex manifold and $\Omega_1 \subset \Omega_2 \subset \cdots$ an increasing sequence of open Stein manifolds in X such that $\Omega = \bigcup \Omega_j$ is relatively compact in X. We give a condition for Ω to be Stein, equivalent to Markoe’s and Silva’s condition and involving L^2-estimates for the $\bar{\partial}$ operator.

2. Preliminaries. Let X be an n-dimensional complex manifold with a C^∞ Hermitian metric. The space $L^2_{(p,q)}(X)$ of square integrable differential forms of type (p,q) on X
is a Hilbert space under the scalar product,

\[(f, g) = \int_X f^* \ast \bar{g}, \]

(2.1)

where \(\ast \) is the Hodge \(\ast \)-operator associated with the metric and orientation of \(X \).

Let \(\Omega_1 \subset \Omega_2 \subset \cdots \) be an increasing sequence of Stein open sets in \(X \) such that their union \(\Omega = \bigcup_{j=1}^{\infty} \Omega_j \) is relatively compact in \(X \).

The following theorem is our main result.

Theorem 2.1. The union \(\Omega \) is Stein if and only if given an \(f \in L^2_{(p,q)}(\Omega) \), which is \(\delta \)-closed in the sense of distributions, there is a \(u \in L^2_{(p,q-1)}(\Omega) \) such that \(\delta u = f \) in the sense of distributions and

\[\|u\|_{L^2_{(p,q-1)}(\Omega)} \leq K \|f\|_{L^2_{(p,q)}(\Omega)}, \quad q > 0, \]

(2.2)

where \(K \) depends on \(\Omega \).

Let \(U \) be a bounded open set in \(\mathbb{C}^n \), and \(\mathcal{O} \) the structure sheaf of \(\mathbb{C}^n \). A section \(f = (f_1, \ldots, f_p) \in \Gamma(U, \mathcal{O}^p) \), where \(p > 0 \) is an integer, is \(L^2 \)-bounded if

\[\|f\|_{L^2(U)} = \|f_1\|_{L^2(U)} + \cdots + \|f_p\|_{L^2(U)} < \infty. \]

(2.3)

We then denote all sections of \(\mathcal{O}^p \) over \(U \) that are \(L^2 \)-bounded by \(\Gamma_2(U, \mathcal{O}^p) \).

For the definition of \(L^2 \)-bounded sections of coherent analytic sheaves, we require the coherent analytic sheaf \(\mathcal{F} \) to be defined on a simply connected polycylinder neighborhood \(V \) of the closure of \(U \). Then by [8, Theorem 5, Section F, Chapter VI], there is an \(\mathcal{O} \)-homographic in another simply connected polycylinder neighborhood \(V' \) of the closure of \(U \),

\[\mathcal{O}^p \xrightarrow{\lambda} \mathcal{F} \rightarrow 0, \]

(2.4)

where \(p > 0 \) is some integer; and \(f \in \Gamma(U, \mathcal{F}) \) is \(L^2 \)-bounded if \(f \in \Gamma_2(U, \mathcal{F}) := \lambda(\Gamma_2(U, \mathcal{O}^p)) \). It can be shown that \(\Gamma_2(U, \mathcal{F}) \) is independent of \(\lambda \) and \(p \), so that \(\Gamma_2(U, \mathcal{F}) \) is well defined.

Now let \(\Omega \) be a relatively compact subdomain of an \(n \)-dimensional complex manifold \(X \). An open subset \(Y \) of \(\Omega \) is said to be admissible for the coherent analytic sheaf \(\mathcal{F} \) defined in the neighborhood of the closure of \(\Omega \) in \(X \), if \(Y \) is Stein. There is a coordinate neighborhood \(V \) in the closure of \(\Omega \) in \(X \), and \(\hat{Y} \) is contained in the neighborhood of \(\hat{\Omega} \) where \(\hat{\mathcal{F}} \) is defined as \(f \in \Gamma(V, \mathcal{F}) \) which is \(L^2 \)-bounded if

\[f \in \Gamma_2(Y, \mathcal{F}) := \{ g \in \Gamma(Y, \mathcal{F}) : \eta_*(g) \in \Gamma_2(\eta(Y), \eta_*(\mathcal{F})) \}, \]

(2.5)

where \(\eta \) is the restriction of the biholomorphic map \(V \to V' \) to \(Y \), and \(\eta_*(\mathcal{F}) \) is the zero direct image of \(\mathcal{F} \) on \(Y \).

Let \(\Omega \) be as in **Theorem 2.1** (then clearly \(\Omega \) is locally Stein). Let \(\mathcal{F} \) be a coherent analytic sheaf in a neighborhood of the closure of \(\Omega \). Then it is clear that \(\Omega \) is a finite union, \(\Omega = \bigcup_{j=1}^{m} U_j \), where each \(U_j \) is admissible for \(\mathcal{F} \). If \(\mathcal{V} = \{U_j\}_{j \in I}, I = \{1, \ldots, m\}, \ldots \)
where the U_j's are as above, we say that \mathcal{V} is a finite admissible cover of Ω for \mathcal{F} and we define the L^2 (alternate) q-cochains of \mathcal{V} with values in \mathcal{F} as those cochains,

$$
c = (c_\alpha) \in C^q(\mathcal{V}, \mathcal{F}) = \prod_{\alpha \in I^{q+1}} \Gamma(U_\alpha, \mathcal{F}),
$$

$$
U_\alpha = U_{i_0} \cap \cdots \cap U_{i_q}, \quad \alpha = (i_0, \ldots, i_q),
$$

which are alternate and satisfy $c_\alpha \in \Gamma_2(U_\alpha, \mathcal{F})$ for all $\alpha \in I^{q+1}$. We denote by $C^q_2(\mathcal{V}, \mathcal{F})$ the space of L^2-bounded cochains.

The coboundary operator,

$$
\delta : C^q(\mathcal{V}, \mathcal{F}) \rightarrow C^{q+1}(\mathcal{V}, \mathcal{F}),
$$

maps $C^q_2(\mathcal{V}, \mathcal{F})$ into $C^{q+1}_2(\mathcal{V}, \mathcal{F})$. If $Z^q_2(\mathcal{V}, \mathcal{F}) = \{c \in C^q_2(\mathcal{V}, \mathcal{F}) : \delta c = 0\}$ and $B^q_2(\mathcal{V}, \mathcal{F}) = \delta C^{q-1}_2(\mathcal{V}, \mathcal{F})$, then as usual $B^q_2(\mathcal{V}, \mathcal{F}) \subseteq Z^q_2(\mathcal{V}, \mathcal{F})$ and we define $H^q_2(\mathcal{V}, \mathcal{F}) := Z^q_2(\mathcal{V}, \mathcal{F}) / B^q_2(\mathcal{V}, \mathcal{F})$ and call it the L^2-bounded cohomology of \mathcal{V} with values in \mathcal{F}. We then have the following theorem.

Theorem 2.2. For any $q > 0$, the natural map

$$
H^q_2(\mathcal{V}, \mathcal{F}) \rightarrow H^q(\Omega, \mathcal{F})
$$

is an isomorphism.

We use Theorem 2.2 as a pivot to prove Theorem 2.1, but the proof of Theorem 2.2 is not given here, since it is similar to that of [2, Theorem].

3. A triangle of isomorphisms.

Let Ω be as in Theorem 2.1. By the end of the section Theorem 2.1 will be proved. If $U \neq \emptyset$ is an open set in $\tilde{\Omega}$, then $\mathcal{B}_p^0(U)$ is the Hilbert space of holomorphic p-forms h on $\Omega \cap U$ such that

$$
\|h\|_{L^2(p,0)(\Omega \cap U)} < \infty.
$$

(3.1)

If V is open in $\tilde{\Omega}$ with $\emptyset \neq V \subset U$, the restriction map $\gamma_\Omega^V : \mathcal{B}_p^0(U) \rightarrow \mathcal{B}_p^0(V)$ is defined. Then $\mathcal{B}_p^0 = \{\mathcal{B}_p^0(U), \gamma_\Omega^V\}$ is the canonical presheaf of L^2-holomorphic p-forms on $\tilde{\Omega}$. The associated sheaf \mathcal{B}_p^0 is the sheaf of germs of L^2-holomorphic p-forms on $\tilde{\Omega}$. We then have the following lemma.

Lemma 3.1. Let \mathcal{D}^p be the sheaf of germs of holomorphic p-forms on X, and \mathcal{V} a finite admissible cover of Ω for \mathcal{D}^p. Then the following diagram is an isomorphism triangle of cohomology groups:

$$
\begin{array}{ccc}
H^q_2(\mathcal{V}, \mathcal{D}^p) & \rightarrow & H^q(\Omega, \mathcal{D}^p) \\
\downarrow & & \downarrow \\
H^q(\tilde{\Omega}, \mathcal{B}_p^0) & & \\
\end{array}
$$

(3.2)

for $q \geq 1$ and $p \geq 0$.

Proof. From Theorem 2.2 and the fact that any finite cover of $$\tilde{\Omega}$$ has a refinement $$\mathcal{U} = \{V_j\}_{j \in J}$$ such that $$\mathcal{U}_\Omega = \{V_j \cap \Omega\}_{j \in J}$$ is a finite admissible cover of $$\Omega$$ for $$\mathcal{D}^p$$, the lemma follows.

Now, using Hörmander’s $$L^2$$-estimates locally we get the following lemma.

Lemma 3.2. The cohomology group $$H^q(\tilde{\Omega}, \mathbb{B}^p_2)$$ is isomorphic to the quotient space

$$\{g : g \in L^2_{(p,q)}(\Omega) \text{ and } \bar{\partial} g = 0\} / \{\bar{\partial} h : h \in L^2_{p,q-1}(\Omega) \text{ and } \bar{\partial} h \in L^2_{(p,q)}(\Omega)\},$$

where $$\Omega$$ is as in Theorem 2.1.

Also the following lemma is proved in [3].

Lemma 3.3. If $$\Omega \Subset X$$ is Stein, where $$X$$ is a complex manifold, then given $$f \in L^2_{(p,q)}(\Omega)$$ with $$\bar{\partial} f = 0$$, there is $$u \in L^2_{(p,q-1)}(\Omega)$$ such that

$$\bar{\partial} u = f, \quad \|u\|_{L^2_{(p,q-1)}(\Omega)} \leq K \|f\|_{L^2_{(p,q)}(\Omega)},$$

where $$K$$ depends on $$\Omega$$.

To finish with the proof of Theorem 2.1 we remark that $$\mathcal{D}^0 = \mathcal{O}$$ is the structure sheaf of $$X$$ (as in Theorem 2.1), therefore Theorem 2.1 follows from Lemmas 3.1, 3.2, and 3.3, and from Markoe’s and Silva’s condition.

References

PATRICK W. DARKO: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, LINCOLN UNIVERSITY, LINCOLN UNIVERSITY, PA 19352, USA

E-mail address: pdarko@lu.lincoln.edu