THE GALOIS EXTENSIONS INDUCED BY IDEMPOTENTS
IN A GALOIS ALGEBRA

GEORGE SZETO and LIANYONG XUE

Received 7 June 2001

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. The Boolean algebra of idempotents for commutative Galois algebras plays an important role (see [1, 3, 6]). Let B be a Galois algebra with Galois group G and $J_B = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$, e_B the central idempotent such that $BJ_B = Be_B$, and $e_K = \sum_{g \in K} e_g$ for a subgroup K of G. Then Be_K is a Galois extension with the Galois group $G(e_K) = \{ g \in G \mid g(e_k) = e_k \}$ containing K and the normalizer $N(K)$ of K in G. An equivalence condition is also given for $G(e_K) = N(K)$, and Be_G is shown to be a direct sum of all Be_i generated by a minimal idempotent e_i. Moreover, a characterization for a Galois extension B is shown in terms of the Galois extension Be_G and $B(1-e_G)$.

Let B be a Galois algebra with Galois group G, $J_B = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$, e_B the central idempotent such that $BJ_B = Be_B$, and $e_K = \sum_{g \in K} e_g$ for a subgroup K of G. Then Be_K is a Galois extension with the Galois group $G(e_K) = \{ g \in G \mid g(e_k) = e_k \}$ containing K and the normalizer $N(K)$ of K in G. An equivalence condition is also given for $G(e_K) = N(K)$, and Be_G is shown to be a direct sum of all Be_i generated by a minimal idempotent e_i. Moreover, a characterization for a Galois extension B is shown in terms of the Galois extension Be_G and $B(1-e_G)$.
2. Definitions and notation. Let B be a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, and B^G the set of elements in B fixed under each element in G. We call B a Galois extension of B^G with Galois group G if there exist elements \(\{a_i, b_i \in B, \ i = 1, 2, \ldots, m \} \) for some integer m such that $\sum_{i=1}^m a_i g(b_i) = \delta_{1, g}$ for each $g \in G$. We call B a Galois algebra over B^G if B is a Galois extension of B^G which is contained in C and B a central Galois extension if B is a Galois extension of C. Throughout this paper, we will assume that B is a Galois algebra with Galois group G. Let $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$. In [2], it was shown that $BJ_g = Be_g$ for some central idempotent e_g of B. We denote by $\langle B_a; +, \cdot \rangle$ the Boolean algebra generated by $\{0, e_g \mid g \in G\}$ where $e \cdot e' = ee'$ and $e + e' = e + e' - ee'$ for any e and e' in B_a. Throughout, $e + e'$ for $e, e' \in B_a$ means the sum in the Boolean algebra $\langle B_a; +, \cdot \rangle$ and a monomial e in B_a is $\prod_{g \in S} e_g \neq 0$ for some $S \subset G$.

3. Galois extensions generated by idempotents. Let K be a subgroup of G. The idempotent $\sum_{g \in K, e_g = 1} e_g \in B_a$ is called the group idempotent of K denoted by e_K. Let $G(e) = \{ g \in G \mid g(e) = e \}$ for $e \in B_a$. Then we will show that $K \subset G(e_K)$ and e_K generates a Galois extension Be_K with Galois group $G(e_K)$. A necessary and sufficient condition for $G(e_K) = N(K)$ is also given where $N(K)$ is the normalizer of K in G. Thus some consequences for the Galois extension Be_K can be derived when K is a normal subgroup of G or $K = G$.

Lemma 3.1. For any $g, h \in G$,

1. $g(e_h) = e_{gh^{-1}}$.
2. $e_h = 1$ if and only if $e_{gh^{-1}} = 1$.

Proof. (1) It is easy to check that $g(J_h) = J_{gh^{-1}}$, so $Bg(e_h) = g(Be_h) = g(BJ_h) = Bg(J_h) = BJ_{gh^{-1}} = Be_{gh^{-1}}$. Thus $g(e_h) = e_{gh^{-1}}$.

(2) It is clear by (1). \(\square \)

Theorem 3.2. Let K be a subgroup of G, $e_K = \sum_{g \in K, e_g = 1} e_g$, and $G(e_K) = \{ g \in G \mid g(e_K) = e_K \}$. Then

1. K is a subgroup of $G(e_K)$ and
2. $B = Be_K \oplus B(1 - e_K)$ such that Be_K and $B(1 - e_K)$ are Galois extensions with Galois group induced by and isomorphic with $G(e)$.

Proof. (1) For any $g \in K$, by Lemma 3.1,

\[
g(e_K) = g\left(\sum_{k \in K, e_k = 1} e_k\right) = \sum_{k \in K, e_k = 1} g(e_k) = \sum_{k \in K, e_k = 1} e_{kg^{-1}} = \sum_{gk^{-1} \in \sum_{g \in K, e_g = 1} k^{-1}} e_{gk^{-1}} = e_{gKg^{-1}}.
\]

Since $g \in K$, $gKg^{-1} = K$. Hence $g(e_K) = e_K$, and so $g \in G(e_K)$.

(2) We first claim that for any $e \neq 0$ in B_a, Be is a Galois extension with Galois group induced by and isomorphic with $G(e)$. In fact, since B is a Galois extension with Galois group G, there exists a G-Galois system for $B \{a_i, b_i \in B, \ i = 1, 2, \ldots, m\}$ for some
integer \(m \) such that \(\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g} \) for each \(g \in G \). Hence \(\sum_{i=1}^{m} (a_i e) g(b_i e) = e \delta_{1,g} \) for each \(g \in G(e) \). Therefore, \(\{a_i e, b_i e \in B_e, i = 1, 2, \ldots, m\} \) is a \(G(e) \)-Galois system for \(B_e \) and \(e = \sum_{i=1}^{m} (a_i e) (b_i e - g(b_i, e)) \) for each \(g \neq 1 \) in \(G(e) \). But \(e \neq 0 \), so \(g \mid B_e \neq 1 \) whenever \(g \neq 1 \) in \(G(e) \). Thus, \(B_e \) is a Galois extension with Galois group induced by and isomorphic with \(G(e) \). Statement (2) is a particular case when \(e = e_k \) and \(e = 1 - e_k \), respectively.

The proof of Theorem 3.2(2) suggests an equivalence condition for a Galois extension \(B \).

Theorem 3.3. The extension \(B \) is a Galois extension with Galois group \(G(e) \) for a central idempotent \(e \) of \(B \) if and only if \(B = B_e \oplus B(1 - e) \) such that \(B_e \) and \(B(1 - e) \) are Galois extensions with Galois group induced by and isomorphic with \(G(e) \). In particular, \(B \) is a Galois algebra with Galois group \(G(e) \) for a central idempotent \(e \) of \(B \), if and only if \(B = B_e \oplus B(1 - e) \) such that \(B_e \) and \(B(1 - e) \) are Galois algebras with Galois group induced by and isomorphic with \(G(e) \).

Proof. (\(\Rightarrow \)) Since \(B \) is a Galois extension with Galois group \(G(e) \), \(B = B_e \oplus B(1 - e) \) such that \(B_e \) and \(B(1 - e) \) are Galois extensions with Galois group induced by and isomorphic with \(G(e) \) by the proof of Theorem 3.2(2).

(\(\Leftarrow \)) Let \(\{a_j^{(i)}; b_j^{(i)} \in B_e \mid j = 1, 2, \ldots, n_i\} \) be a \(G(e) \)-Galois system for \(B_e \) and let \(\{a_j^{(2)}; b_j^{(2)} \in B(1 - e) \mid j = 1, 2, \ldots, n_2\} \) be a \(G(e) \)-Galois system for \(B(1 - e) \). Then we claim that \(\{a_j^{(i)}; b_j^{(i)} \mid j = 1, 2, \ldots, n_i, \ i = 1, 2\} \) is a \(G(e) \)-Galois system for \(B \). In fact, \(\sum_{i=1}^{2} \sum_{j=1}^{n_i} a_j^{(i)} b_j^{(i)} = e + (1 - e) = 1 \). Moreover, for each \(g \neq 1 \) in \(G(e) \)—noting that \(g \neq 1 \) in \(G(e) \) if and only if \(g \mid B_e \neq 1 \) and \(g \mid B(1 - e) \neq 1 \) by hypothesis—we have that \(\sum_{j=1}^{n_i} a_j^{(i)} g(b_j^{(i)}) = 0, \ i = 1, 2, \) so \(\sum_{j=1}^{n_i} a_j^{(i)} g(b_j^{(i)}) = 0 \). Therefore \(\{a_j^{(i)}; b_j^{(i)} \mid j = 1, 2, \ldots, n_i, \ i = 1, 2\} \) is a \(G(e) \)-Galois system for \(B \), and so \(B \) is a Galois extension with Galois group \(G(e) \).

Next, it is clear that \(B^{G(e)} \subset C \) if and only if \((B_e)^{G(e)} \subset C_e \) and \((B(1 - e))^G(e) \subset C(1 - e) \), so by the above argument, \(B \) is a Galois algebra with Galois group \(G(e) \) for a central idempotent \(e \) of \(B \) if and only if \(B = B_e \oplus B(1 - e) \) such that \(B_e \) and \(B(1 - e) \) are Galois algebras with Galois group induced by and isomorphic with \(G(e) \).

Corollary 3.4. An algebra \(B \) is a Galois algebra with Galois group \(G \) if and only if \(B = B_G \oplus B(1 - e_G) \) such that \(B_G \) and \(B(1 - e_G) \) are Galois algebras with Galois group induced by and isomorphic with \(G \).

Proof. By Theorem 3.2(1), \(G(e_G) = G \), so the corollary is immediate by Theorem 3.3.

Now let \(S(K) = \{H \mid H \text{ is a subgroup of } G \text{ and } e_H = e_K \} \) and \(\alpha : S(K) \rightarrow e_K \). It is easy to see that \(\alpha \) is a bijection from \(\{S(K) | K \text{ is a subgroup of } G\} \) to the set of group idempotents in \(B_a \).

We are interested in an equivalence condition for \(K \) such that \(G(e_K) = N(K) \). We need the following lemma.

Lemma 3.5. Let \(K \) be a subgroup of \(G \), then for a \(g \in G \), \(g \in G(e_K) \) if and only if \(gKg^{-1} \subset S(K) \).
Proof. Suppose \(g \in G(e_K) \), then
\[
e_K = g(e_K) = g \left(\sum_{k \in K, e_k \neq 1} e_k \right) = \sum_{k \in K, e_k \neq 1} g(e_k) = \sum_{k \in K, e_k \neq 1} e_{gkg^{-1}} = e_{gKg^{-1}}.
\]
(3.2)
Thus \(gKg^{-1} \in S(K) \). On the other hand, suppose \(gKg^{-1} \in S(K) \). Then
\[
g(e_K) = g \left(\sum_{k \in K, e_k \neq 1} e_k \right) = \sum_{k \in K, e_k \neq 1} g(e_k) = \sum_{k \in K, e_k \neq 1} e_{gkg^{-1}} = e_{gKg^{-1}} = e_K.
\]
(3.3)
Thus \(g \in G(e_K) \).

Theorem 3.6. \(G(e_K) = N(K) \) if and only if \(S(K) \) contains exactly one conjugate of the subgroup \(K \).

Proof. \((\Rightarrow)\) For any \(g \in G \) such that \(gKg^{-1} \in S(K) \), \(g \in G(e_K) \) by Lemma 3.5. But \(G(e_K) = N(K) \) by hypothesis, so \(g \in N(K) \). Hence \(gKg^{-1} = K \). Thus \(S(K) \) contains exactly one conjugate of the subgroup \(K \).

\((\Leftarrow)\) For any \(g \in N(K), gKg^{-1} = K \), so \(gKg^{-1} \in S(K) \). Hence \(g \in G(e_K) \) by Lemma 3.5. Thus \(N(K) \subset G(e_K) \). Conversely, for each \(g \in G(e_K), gKg^{-1} \in S(K) \) by Lemma 3.5, so \(gKg^{-1} = K \) by hypothesis. Thus \(g \in N(K) \). This implies that \(G(e_K) = N(K) \).

Corollary 3.7. Assume that the order of \(G \) is a unit in \(B \). If \(S(K) \) contains exactly one conjugate of the subgroup \(K \), then \(Be_K \) is a Galois extension of \((Be_K)^K \) with Galois group \(K \) and \((Be_K)^K \) is a Galois extension of \((Be_K)^{G(e_K)} \) with Galois group \(G(e_K)/K \).

Proof. By Theorem 3.2(2), \(Be_K \) is a Galois extension with Galois group \(G(e_K) \). Hence \(Be_K \) is a Galois extension of \((Be_K)^K \) with Galois group \(K \) for \(K \) is a subgroup of \(G(e_K) \) by Theorem 3.2(1). Moreover, by hypothesis, the order of \(G \) is a unit in \(B \), so the order of \(K \) is a unit in \(Be_K \). Since \(S(K) \) contains exactly one conjugate of the subgroup \(K, K \) is a normal subgroup of \(G(e_K) \) by Theorem 3.6. Thus \((Be_K)^K \) is a Galois extension of \((Be_K)^{G(e_K)} \) with Galois group \(G(e_K)/K \).

Next are some consequences for an abelian group \(G \) or \(K = G \).

Corollary 3.8. If \(B \) is an abelian extension with Galois group \(G \) (i.e., \(G \) is abelian) of an order invertible in \(B \), then for any subgroup \(K \) of \(G, Be_K \) is a Galois extension of \((Be_K)^K \) with Galois group \(K \) and \((Be_K)^K \) is a Galois extension of \((Be_K)^{G(e_K)} \) with Galois group \(G(e_K)/K \).

When \(K = G \), we derive an expression for \(B \) by using the set \(\{e_i | i = 1, 2, \ldots, m\} \) of minimal idempotents in \(B_a \). This gives detail descriptions of the components \(Be_G \) and \(B(1-e_G) \) as given in Corollary 3.4.
THE GALOIS EXTENSIONS INDUCED BY IDEMPOTENTS ...

\textbf{Theorem 3.9.} Let B be a Galois algebra with Galois group G. Then $B = B_G \oplus B(1-e_G)$ such that $B_G = \bigoplus_{i=1}^{m} B_{ei}$ where each B_{ei} is a central Galois algebra with Galois group H_i for some subgroup H_i of G and $B(1-e_G) = C(1-e_G)$ which is a commutative Galois algebra with Galois group induced by and isomorphic with G in case $e_G \neq 1$ where \{\(e_i \mid i = 1, 2, \ldots, m\)\} are given in [5, Theorem 3.8].

\textbf{Proof.} Since $e_i = \prod_{h \in H_i} e_h$ where H_i is the maximal subset (subgroup) of G such that $\prod_{h \in H_i} e_h \neq \{0\}$ or $e_i = (1 - \sum_{j=1}^{t} e_j) \prod_{h \in H_i} e_h$ where H_i is the maximal subset (subgroup) of G for some $t < i$ such that $(1 - \sum_{j=1}^{t} e_j) \prod_{h \in H_i} e_h \neq \{0\}$ (see [5, Theorem 3.8]), we have that $e_i(\sum_{g \in G, eg \neq 1} e_g) = e_i$ for each i. Thus $\sum_{i=1}^{m} e_i \leq \sum_{g \in G, eg \neq 1} e_g$. Noting that $e_g(1 - \sum_{i=1}^{m} e_i) = 0$ for each $g \neq 1$ in G (see [5, Theorem 3.8]), we have that $(\sum_{g \in G, eg \neq 1} e_g)(1 - \sum_{i=1}^{m} e_i) = 0$, that is, $(\sum_{g \in G, eg \neq 1} e_g)(\sum_{i=1}^{m} e_i) = \sum_{g \in G, eg \neq 1} e_g$. Hence $\sum_{g \in G, eg \neq 1} e_g \leq \sum_{i=1}^{m} e_i$. Thus $\sum_{g \in G, eg \neq 1} e_g = \sum_{i=1}^{m} e_i$, that is, $e_G = \sum_{i=1}^{m} e_i$. But then by [5, Theorem 3.8], $B = \bigoplus_{i=1}^{m} B_{ei} \oplus B(1 - \sum_{i=1}^{m} e_i) = B_G \oplus B(1 - e_G)$ such that $B(1 - e_G) = C(1 - e_G)$ which is a commutative Galois algebra with Galois group induced by and isomorphic with G, and $B_G = \bigoplus_{i=1}^{m} B_{ei}$ such that each B_{ei} is a central Galois algebra with Galois group H_i for some subgroup H_i of G where \{\(e_i \mid i = 1, 2, \ldots, m\)\} are minimal idempotents of B_a.

\textbf{Theorem 4.1.} Let S be a subset of G. Then there exists a unique subset Z_S of the set \{1, 2, \ldots, \(m\)\} such that $e_S = \sum_{i \in Z_S} e_i$.

\textbf{Proof.} Since $C = \bigoplus_{i=1}^{m} C e_i \oplus C f$ (see [5, Theorem 3.8]), $e_S = \sum_{i=1}^{m} c_i e_i + c f$ for some $c_i, c \in C$. It can be checked that e_i are minimal elements of B_a, so $e_S e_i = e_i$ or $e_S e_i = 0$. Let $Z_S = \{i \mid e_S e_i = e_i\}$. Then for each $i \in Z_S$, $e_i = e_S e_i = c_i e_i$, and for each $i \notin Z_S$, $0 = e_S e_i = c_i e_i$. Hence $e_S = \sum_{i \in Z_S} e_i + c f$. Moreover, since $e_g f = 0$ for each $g \neq 1$ in G (see [5, Theorem 3.8]), we have that $0 = e_S f = (\sum_{i \in Z_S} e_i + c f) f = c f$. Hence $e_S = \sum_{i \in Z_S} e_i$. The uniqueness of Z_S is clear.

Next is a description of the components B_{ek} and $B(1 - e_k)$ for a subgroup K of G as given in Theorem 3.2.

\textbf{Corollary 4.2.} For any subgroup K of G, $B = B_{K} \oplus B(1 - e_k)$ such that $B_{k} = \sum_{i \in Z_K} B_{ei}$ and $B(1 - e_k) = B(1 - \sum_{i \in Z_K} e_i)$ which are Galois extensions with Galois group induced by and isomorphic with $G(e_k)$.

\textbf{Proof.} It is an immediate consequence of Theorems 3.2(2) and 4.1. \hfill \Box

In [4], let K be a subgroup of G. Then K is called a nonzero subgroup of G if $\prod_{k \in K} e_k \neq 0$, and K is called a maximal nonzero subgroup of G if $K \subset K'$ where K' is a nonzero subgroup of G such that $\prod_{k \in K} e_k = \prod_{k \in K'} e_k$, then $K = K'$. It was shown that the set of monomials in B_a and the set of maximal nonzero subgroups of G are in a one-to-one correspondence (see [4, Theorem 3.2]). Also, any maximal nonzero
subgroup $K = H_e = \{ g \in G \mid e \leq e_g \}$ where $e = \prod_{k \in K} e_k$ and H_e is a normal subgroup of $G(e)$ (see [4, Lemma 3.3]). Next is a characterization of a monomial idempotent $e_S (= \sum_{g \in S, e_g \neq 1} e_g)$ for a subset of G.

Theorem 4.3. Let S be a subset of G such that $e_S = \sum_{g \in S, e_g \neq 1} e_g \neq 0,1$. Then e_S is a monomial if and only if $e_j \leq e_S$ whenever $H_{e_S} \subset H_{e_j}$ for an atom e_j.

Proof. (\Rightarrow) By [4, Theorem 3.2], $e \rightarrow H_e$ is a one-to-one correspondence between the set of monomials in B_a and the set of maximal nonzero subgroups of G. Noting that $e = \prod_{g \in H_e} e_g$ when e is a monomial, we have for any monomials e and e', $H_e \subset H_e'$ implies that $e \geq e'$. Thus, $e_j \leq e_S$ whenever $H_{e_S} \subset H_{e_j}$ for an atom e_j because e_S is a monomial by hypothesis.

(\Leftarrow) By Theorem 4.1, $e_S = \sum_{e_i \in Z S} e_i$ where $Z_S = \{ e_i \mid e_i \leq e_S \}$. Let $e = \prod_{g \in H_{e_S}} e_g$. Then $e_S \leq e$ and $H_{e_S} = H_e$. Suppose $e_S \neq e$. Then $e_S = \sum_{e_i \in Z_S} e_i < e = \sum e_j$ where $\sum_{e_i \in Z_S} e_i$ is a direct summand of $\sum e_j$ by Theorem 4.1. It is easy to check that $H_{e_S} = \cap_{e_i \in Z_S} H_{e_i} = H_e = \cap H_{e_j}$. Therefore there exists some $e_j \notin Z_S$, that is, $e_j \notin e_S$ such that $H_{e_S} \subset H_{e_j}$. This is a contradiction. Thus $e_S = e$, which is a monomial.

Acknowledgements. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank the Caterpillar Inc. for the support.

References

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA

E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA

E-mail address: lxue@hilltop.bradley.edu